laser-plasma based electron accelerator...laser-plasma based electron accelerator jérôme faure...

31
Laser-plasma based electron accelerator Jérôme Faure Laboratoire d’Optique Appliquée Ecole Polytechnique / ENSTA / CNRS Palaiseau, France [email protected] We acknowledge the support of the European Community, under the FP6 “Structuring the European research area” programme (project CARE, contract number RII3-CT-2003-506395 and project Euroleap, contract 028541)

Upload: others

Post on 19-Mar-2020

12 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Laser-plasma based electron accelerator...Laser-plasma based electron accelerator Jérôme Faure Laboratoire d’Optique Appliquée Ecole Polytechnique / ENSTA / CNRS Palaiseau, France

Laser-plasma based electron accelerator

Jérôme Faure Laboratoire d’Optique Appliquée

Ecole Polytechnique / ENSTA / CNRS Palaiseau, France

[email protected]

We acknowledge the support of the European Community, under the FP6 “Structuring the European research area” programme (project CARE, contract number RII3-CT-2003-506395 and project Euroleap, contract 028541)

Page 2: Laser-plasma based electron accelerator...Laser-plasma based electron accelerator Jérôme Faure Laboratoire d’Optique Appliquée Ecole Polytechnique / ENSTA / CNRS Palaiseau, France

Collaborators

Experiment: C. Rechatin, Y. Glinec, A. Norlin, J. Lim, V. Malka (LOA, Palaiseau,

France) A. Ben Ismail, A. Specka, H. Videau (LLR, Palaiseau, France)

Simulations / theory A. Lifschitz (LPGP, Orsay, France) E. Lefebvre, X. Davoine (CEA-DAM, France) A. Pukhov (Univ. Dusseldorf, Germany) L. Silva & J. Vieira, R. Fonseca (GolP, Lisbon, Portugal)

Page 3: Laser-plasma based electron accelerator...Laser-plasma based electron accelerator Jérôme Faure Laboratoire d’Optique Appliquée Ecole Polytechnique / ENSTA / CNRS Palaiseau, France

Main motivation: compactness

RF cavity: 1 m Plasma wave: 100 µm

Ez = 10-100 MV/m Physical limit: breakdown

Ez = 10-100 GV/m Physical limit: wavebreaking

+ bunch length = a fraction of the wavelength of accelerating field ultrashort electron bunches (10 fs)

Page 4: Laser-plasma based electron accelerator...Laser-plasma based electron accelerator Jérôme Faure Laboratoire d’Optique Appliquée Ecole Polytechnique / ENSTA / CNRS Palaiseau, France

Why plasmas ? A plasma: free electrons and ions: already ionized

(for electron density ne=1019 cm-3)

z

δn/n0

Ez z

EZ is 104 greater than in a radio-frequency cavity compact accelerators possible

vp ≈ c Plasma wave

Page 5: Laser-plasma based electron accelerator...Laser-plasma based electron accelerator Jérôme Faure Laboratoire d’Optique Appliquée Ecole Polytechnique / ENSTA / CNRS Palaiseau, France

WAKEFIELDS

•  Laser driver: an ultra-intense and ultra-short laser pulse

Driver beam Witness beam

Tajima & Dawson, PRL (1979)

Page 6: Laser-plasma based electron accelerator...Laser-plasma based electron accelerator Jérôme Faure Laboratoire d’Optique Appliquée Ecole Polytechnique / ENSTA / CNRS Palaiseau, France

Laser driver: ponderomotive force

•  Ponderomotive force: pushes electrons outward at high laser intensities (I > 1018 W/cm2) Fp ~ -d Ilaser

E-field

F

F

electron

Ilaser

•  Wakefield excitation is effective at resonance: τ0c ~ λp

Short pulses are required (τ0 < 100 fs)

E-field

Laser pulse vg ≈ c

I δn/n

vp ≈ vg ≈ c Plasma wave 1D picture

λp

Page 7: Laser-plasma based electron accelerator...Laser-plasma based electron accelerator Jérôme Faure Laboratoire d’Optique Appliquée Ecole Polytechnique / ENSTA / CNRS Palaiseau, France

Accelerating and focusing fields

a=0.5

Electron density Pulse

Defocusing

Ez

Er

Focusing

Accelerating

Decelerating

« weak laser intensity »: linear regime

Page 8: Laser-plasma based electron accelerator...Laser-plasma based electron accelerator Jérôme Faure Laboratoire d’Optique Appliquée Ecole Polytechnique / ENSTA / CNRS Palaiseau, France

Ez

Er

3D nonlinear wakefields

Focusing

Defocusing

Accelerating

Decelerating

a0=2 Electron density

Pulse

λp=10-30 µm (depending on plasma electron density ne)

Page 9: Laser-plasma based electron accelerator...Laser-plasma based electron accelerator Jérôme Faure Laboratoire d’Optique Appliquée Ecole Polytechnique / ENSTA / CNRS Palaiseau, France

Injecting electrons in plasma wakefields

z-ct δne

z-ct δne

Lbunch > λp Lbunch < λp

Different phases Different electric fields 100 % energy spread

Electrons « in phase » Monoenergetic acceleration

Challenge for RF technology: requires Lbunch < 100 fs

 Need to find ways to inject sub-100 fs electron bunches

  Electron bunches accelerated in plasma waves are ultrashort (< 10 fs)

Page 10: Laser-plasma based electron accelerator...Laser-plasma based electron accelerator Jérôme Faure Laboratoire d’Optique Appliquée Ecole Polytechnique / ENSTA / CNRS Palaiseau, France

Self-injection in the nonlinear (bubble*) regime

cτ ≤ λp and w0 ≤ λp a > 3

*Pukhov & Meyer-ter-Vehn, Appl. Phys. B 2002

Laser pulse

Plasma « bubble » Injection of electrons

Time evolution of electron spectrum from PIC simulations monoenergetic

electron beam

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

The image canno

The image cannot be displayed. Your

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

0 200 400 E, MeV

t=350

t=450 t=550

t=650 t=750

t=850

5 10 8

1 10 9 N e / MeV

Page 11: Laser-plasma based electron accelerator...Laser-plasma based electron accelerator Jérôme Faure Laboratoire d’Optique Appliquée Ecole Polytechnique / ENSTA / CNRS Palaiseau, France

5-pass Amp. : 200 mJ

8-pass pre-Amp. : 2 mJ

Oscillator : 2 nJ, 15 fs

Stretcher : 500 pJ, 400 ps

Après Compression : 2 J, 30 fs, 0.8 µm,

10 Hz, 10 -7 2 m

Nd:YAG : 10 J

4-pass, Cryo. cooled Amp. : < 3.5 J, 400 ps

Laser “Salle Jaune”

Page 12: Laser-plasma based electron accelerator...Laser-plasma based electron accelerator Jérôme Faure Laboratoire d’Optique Appliquée Ecole Polytechnique / ENSTA / CNRS Palaiseau, France

compressor

Vacuum chamber

Page 13: Laser-plasma based electron accelerator...Laser-plasma based electron accelerator Jérôme Faure Laboratoire d’Optique Appliquée Ecole Polytechnique / ENSTA / CNRS Palaiseau, France

Experiments

Gas jet

laser

electrons

Schematic Picture of experiment

Scale: 100 MeV in 1 mm

Page 14: Laser-plasma based electron accelerator...Laser-plasma based electron accelerator Jérôme Faure Laboratoire d’Optique Appliquée Ecole Polytechnique / ENSTA / CNRS Palaiseau, France

200 100 50 20 Energy (MeV)

Div

erge

nce(

°)

Laser axis

First quasi-monoenergetic beams

J. Faure et al., Nature (2004)

PIC

Experiment

Page 15: Laser-plasma based electron accelerator...Laser-plasma based electron accelerator Jérôme Faure Laboratoire d’Optique Appliquée Ecole Polytechnique / ENSTA / CNRS Palaiseau, France

• Berkeleyexperiment:Usedplasmachannelforguidingne=2×1019cm-3cτ~2.2×λp85MeV

• Imperialcollege\RALLongRayleighlengthne=2×1019cm-3cτ~2×λp75MeV

Charge~100 pC

Other quasi-monoenergetic results

Demonstrated by ~30 groups around the world

Page 16: Laser-plasma based electron accelerator...Laser-plasma based electron accelerator Jérôme Faure Laboratoire d’Optique Appliquée Ecole Polytechnique / ENSTA / CNRS Palaiseau, France

The path to higher energy

•  Scale: 1 GeV in cm scale •  Berkeley experiment using plasma waveguide (Leemans et al., Nat.

Phys. 2006)

•  Charge: ten’s of pC •  δE/E=5 % (instrument limited)

laser e-beam

Also GeV class beams at RAL (England), using a 500 TW laser

Page 17: Laser-plasma based electron accelerator...Laser-plasma based electron accelerator Jérôme Faure Laboratoire d’Optique Appliquée Ecole Polytechnique / ENSTA / CNRS Palaiseau, France

Physical picture of beam production PIC simulation 2 mm propagation

Scenario: nonlinear evolution of laser (self-focusing + pulse shortening)

  Self-guiding of laser pulse   Increases laser intensity   Cause wave-breaking and electron injection

Drawbacks: - Very nonlinear phenomena - Injection is not controlled and depends on laser pulse evolution

We want to develop a more controlled method Control is important for higher beam quality

Page 18: Laser-plasma based electron accelerator...Laser-plasma based electron accelerator Jérôme Faure Laboratoire d’Optique Appliquée Ecole Polytechnique / ENSTA / CNRS Palaiseau, France

Control and stability: external injection using another laser pulse

D. Umstadter et al, PRL 76, 2073 (1996); E. Esarey et al, PRL 79, 2682 (1997); Fubiani PRE 70, 016402 (2004)

Counter-propagating geometry: pump injection

Ponderomotive force of beatwave: Fp ~ 2a0a1/λ0 (a0 et a1 can be “weak”)y Boost electrons locally and injects them: y INJECTION IS LOCAL IN FIRST BUCKET y no need of self-focusing, no self-trapping

Plasma wave

Principle: Pump beam

Injection beam

electrons

Page 19: Laser-plasma based electron accelerator...Laser-plasma based electron accelerator Jérôme Faure Laboratoire d’Optique Appliquée Ecole Polytechnique / ENSTA / CNRS Palaiseau, France

Experimental setup Injection beam 130 mJ, 30 fs φfwhm=28× 23 µm I ~ 4×1017 W/cm2

Pump beam 670 mJ, 30 fs, φfwhm=21×18 µm I ~ 4×1018 W/cm2

Page 20: Laser-plasma based electron accelerator...Laser-plasma based electron accelerator Jérôme Faure Laboratoire d’Optique Appliquée Ecole Polytechnique / ENSTA / CNRS Palaiseau, France

From self-injection to external injection

ne=1.25×1019 cm-3

ne=1019 cm-3

ne=7.5×1018 cm-3

pump

Single beam

pump injection

2 beams

Self-injection Threshold

ne=7.5×1018 cm-3

Faure et al. Nature 2006

Page 21: Laser-plasma based electron accelerator...Laser-plasma based electron accelerator Jérôme Faure Laboratoire d’Optique Appliquée Ecole Polytechnique / ENSTA / CNRS Palaiseau, France

Statistics over 30 shots E = 206 +/- 11 MeV (5 %) Qpk = 13+/- 4 pC (30 %) dE = 14 +/- 3 MeV (20 %)

Very little electrons at low energy !! dE/E=5% close to spectrometer resolution

Stable monoenergetic beams at 200 MeV 3 mm gas jet

Page 22: Laser-plasma based electron accelerator...Laser-plasma based electron accelerator Jérôme Faure Laboratoire d’Optique Appliquée Ecole Polytechnique / ENSTA / CNRS Palaiseau, France

Controlling the bunch energy by controlling the acceleration length

By changing delay between pulses: •  Change collision point •  Change effective acceleration length •  Tune bunch energy

Pump beam Injection beam

Gas jet

2 mm

Page 23: Laser-plasma based electron accelerator...Laser-plasma based electron accelerator Jérôme Faure Laboratoire d’Optique Appliquée Ecole Polytechnique / ENSTA / CNRS Palaiseau, France

Tunable monoenergetic bunches

pump injection

late injection

pump injection

early injection pump injection

middle injection

Page 24: Laser-plasma based electron accelerator...Laser-plasma based electron accelerator Jérôme Faure Laboratoire d’Optique Appliquée Ecole Polytechnique / ENSTA / CNRS Palaiseau, France

•  Charge can be tuned by controlling the injection volume: Changing intensity of injection beam: smaller Iinj means

less heating and smaller injection volume

Tuning the charge and the energy spread

In pratice, energy spread and charge are correlated: ΔV=ΔpΔx, conservation of ΔV +smaller injection volume also implies smaller Δp

Page 25: Laser-plasma based electron accelerator...Laser-plasma based electron accelerator Jérôme Faure Laboratoire d’Optique Appliquée Ecole Polytechnique / ENSTA / CNRS Palaiseau, France

Tuning the beam with injection beam intensity

Energy @ 80 MeV stays similar

Charge from 60 to 5 pC

ΔE from 20 to 5 MeV (close to resolution)

Page 26: Laser-plasma based electron accelerator...Laser-plasma based electron accelerator Jérôme Faure Laboratoire d’Optique Appliquée Ecole Polytechnique / ENSTA / CNRS Palaiseau, France

transport / focusing dispersion / imaging

LANEX screens Permanent

dipole

quadripoles

Gas jet

Resolution < 1 % expected

Spectrometer was designed and built by Laboratoire Leprince Ringuet (LLR)

Collaboration with LLR* for resolving small energy spread beams

* A. Specka, H. Videau, A. Ben Ismail

Page 27: Laser-plasma based electron accelerator...Laser-plasma based electron accelerator Jérôme Faure Laboratoire d’Optique Appliquée Ecole Polytechnique / ENSTA / CNRS Palaiseau, France

Focusing spectrometer

Page 28: Laser-plasma based electron accelerator...Laser-plasma based electron accelerator Jérôme Faure Laboratoire d’Optique Appliquée Ecole Polytechnique / ENSTA / CNRS Palaiseau, France

1% energy spread beams

Page 29: Laser-plasma based electron accelerator...Laser-plasma based electron accelerator Jérôme Faure Laboratoire d’Optique Appliquée Ecole Polytechnique / ENSTA / CNRS Palaiseau, France

Conclusion

SUMMARY G •  Quasi-monoenergetic beams produced at 100’s MeV level •  Stability is improving (5 % rms in energy) •  Controlled injection provides

•  tunable energy: 20-300 MeV •  tunable charge (in the 10’s of pC range) •  tunable energy spread (down to 1%)

•  Simulations reproduce results •  indicate < 10 fs electron bunches

PERSPECTIVES Q •  CONTINUE TO INVESTIGATE THIS TECHNIQUE:

•  Push energy limit: use wave guide to increase propagation distances. Goal: stable and tunable GeV class beams

•  DIAGNOSE THESE BEAMS •  Measure emittance •  Measure bunch length

•  USE THESE BEAMS (applications, science …)

Page 30: Laser-plasma based electron accelerator...Laser-plasma based electron accelerator Jérôme Faure Laboratoire d’Optique Appliquée Ecole Polytechnique / ENSTA / CNRS Palaiseau, France

X-rays:diffraction γ-rays:radiography

Medicine Radiotherapy

Accelerator Physics

Injector

Chemistry & Radiobiology

Irradiation by short bunches

Electrons generated by Laser-Plasma Interactions

Potential impact of laser-plasma accelerators

Moderate energy: 10 MeV-1GeV Compact

Sub-50 fs bunch duration

Page 31: Laser-plasma based electron accelerator...Laser-plasma based electron accelerator Jérôme Faure Laboratoire d’Optique Appliquée Ecole Polytechnique / ENSTA / CNRS Palaiseau, France

Compact XFEL: towards a bright X ray source

Applications: study of complex structures (X-ray diffraction, EXAFS) But fs time scale

θ ~ µrad

10cm

Advantage of laser-plasma accelerators: •  Short bunches high peak current •  Seeding with perfectly synchronized harmonics of the laser

Challenges: •  Decrease energy spread (< 1% required for amplification) •  Increase charge