laser photothermal spectroscopy of light-induced absorption

13
Quantum Electronics 43 (1) 1 – 13 (2013) © 2013 Kvantovaya Elektronika and Turpion Ltd Abstract. Basic methods of laser photothermal spectroscopy, which are used to study photoinduced absorption in various media, are briefly considered. Comparative analysis of these methods is per- formed and the latest results obtained in this field are discussed. Different schemes and examples of their practical implementation are considered. Keywords: photothermal spectroscopy, photothermal methods (tech- niques), photoinduced absorption, laser-induced absorption, review. 1. Introduction Photoinduced (induced) absorption increases with an increase in the laser intensity. This absorption can be caused by irradi- ating a material with an intense light source (pump radiation) and be observed by sensing the sample with probe radiation at another wavelength. The spectral dependence of photoin- duced absorption yields a large amount of data on the struc- tural defects of the material studied, which determine to a great extent its characteristics [1]. The investigation of photoinduced absorption spectra appears to be very important to gain information about defect centres in semiconductor materials, for example, in thin films of amorphous and polycrystalline silicon, silicon carbide, etc. [2 – 4]. In recent years, much attention has been paid to the light-induced absorption and its relationship with the photo- electric properties of films of wide-gap metal oxides (TiO 2 , ZnO, etc.), which are used in solar batteries and in photoca- talysis [5 – 9]. Numerous studies of induced absorption in photorefractive materials have been performed; they were stimulated by wide application of these materials in holo- graphic data storage devices, nonlinear filters, phase-match- ing devices, and optical switches [10 – 14]. Photoinduced absorption in crystals used in nonlinear optics and some other effects are actively studied [15 – 17]. The study of photoinduced absorption is based on mod- ern techniques for measuring low optical absorption in opti- cally transparent materials and coatings. The conventional methods for measuring absorption in both bulk materials and thin films are spectrophotometric techniques (which have a rather large error) [18] and more exact calorimetric methods [19]. Multipass cells with multiple reflection [20, 21] and intra- cavity techniques, both active and passive [21], with sensitiv- ity on the order of 10 –3 – 10 –4 , have been developed to measure Laser photothermal spectroscopy of light-induced absorption L.A. Skvortsov L.A. Skvortsov Institute of Cryptography, Communications, and Informatics, Michurinskii prosp. 70, 117602 Moscow, Russia; e-mail: [email protected] Received Received 22 June 2012 Kvantovaya Elektronika 43 (1) 1 – 13 (2013) Translated by Yu.P. Sin’kov REVIEW PACS numbers: 79.10.Ca; 78.20.nb; 42.62.Fi DOI: 10.1070/QE2013v043n01ABEH014912 Contents 1. Introduction ............................................................................................ 1 2. Brief review of techniques based on the photothermal effect ...................................................... 2 2.1. Photoacoustic technique 2.2. Photothermal defelction (mirage-effect) spectroscopy 2.3. Thermal lens technique 2.4. Surface thermal lensing 2.5. Photothermal radiometry 2.6. Photothermal reflectance technique 2.7. Photothermal interferometry 3. Measurement of light-induced absorption by photothermal techniques (case of low intensities) .......................... 6 3.1. Necessity of modified photothermal techniques to measure light-induced absorption 3.2. Modified photoacoustic technique 3.3. Modified photothermal radiometry 3.4. Modified deflection technique 3.5. Modified thermal lens technique 3.6. Measurement of light-induced absorption by the photothermal reflectance technique 4. Measurement of light-induced absorption by photothermal techniques (case of high intensities) ......................... 9 4.1. Induced absorption under multiphoton effect 4.2. Measurement of induced absorption under two-photon excitation using the thermal lens technique 4.3. Measurement of induced absorption under two-photon excitation using the deflection technique 5. Conclusions ............................................................................................. 10 6. References .............................................................................................. 10

Upload: kerem

Post on 11-Nov-2015

248 views

Category:

Documents


1 download

DESCRIPTION

Laser photothermal spectroscopy of light-induced absorption

TRANSCRIPT

  • Quantum Electronics 43(1) 113 (2013) 2013 KvantovayaElektronikaandTurpionLtd

    Abstract. Basic methods of laser photothermal spectroscopy, which are used to study photoinduced absorption in various media, are briefly considered. Comparative analysis of these methods is per-formed and the latest results obtained in this field are discussed. Different schemes and examples of their practical implementation are considered.

    Keywords:photothermal spectroscopy, photothermal methods (tech-niques), photoinduced absorption, laser-induced absorption, review.

    1. Introduction

    Photoinduced(induced)absorptionincreaseswithanincreaseinthelaserintensity.Thisabsorptioncanbecausedbyirradi-atingamaterialwithanintenselightsource(pumpradiation)andbeobservedbysensingthesamplewithproberadiationatanotherwavelength.Thespectraldependenceofphotoin-ducedabsorptionyieldsalargeamountofdataonthestruc-

    tural defects of thematerial studied, which determine to agreatextentitscharacteristics[1].

    The investigation of photoinduced absorption spectraappearstobeveryimportanttogaininformationaboutdefectcentresinsemiconductormaterials,forexample,inthinfilmsofamorphousandpolycrystallinesilicon,siliconcarbide,etc.[24]. In recentyears,muchattentionhasbeenpaid to thelight-inducedabsorptionanditsrelationshipwiththephoto-electric properties of films ofwide-gapmetal oxides (TiO2,ZnO,etc.),whichareusedinsolarbatteriesandinphotoca-talysis [59]. Numerous studies of induced absorption inphotorefractive materials have been performed; they werestimulated by wide application of these materials in holo-graphicdatastoragedevices,nonlinearfilters,phase-match-ing devices, and optical switches [1014]. Photoinducedabsorptionincrystalsusedinnonlinearopticsandsomeothereffectsareactivelystudied[1517].

    Thestudyofphotoinducedabsorptionisbasedonmod-erntechniquesformeasuringlowopticalabsorptioninopti-cally transparentmaterials and coatings. The conventionalmethodsformeasuringabsorptioninbothbulkmaterialsandthin filmsare spectrophotometric techniques (whichhavearatherlargeerror)[18]andmoreexactcalorimetricmethods[19].Multipasscellswithmultiplereflection[20,21]andintra-cavitytechniques,bothactiveandpassive[21],withsensitiv-ityontheorderof103104,havebeendevelopedtomeasure

    Laser photothermal spectroscopy of light-induced absorption

    L.A.Skvortsov

    L.A. Skvortsov InstituteofCryptography,Communications,andInformatics,Michurinskiiprosp.70,117602Moscow,Russia;e-mail:[email protected] Elektronika 43(1)113(2013)TranslatedbyYu.P.Sinkov

    REVIEW PACSnumbers:79.10.Ca;78.20.nb;42.62.FiDOI:10.1070/QE2013v043n01ABEH014912

    Contents1.Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.Briefreviewoftechniquesbasedonthephotothermaleffect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

    2.1.Photoacoustictechnique2.2.Photothermaldefelction(mirage-effect)spectroscopy2.3.Thermallenstechnique2.4.Surfacethermallensing2.5.Photothermalradiometry2.6.Photothermalreflectancetechnique2.7.Photothermalinterferometry

    3.Measurementoflight-inducedabsorptionbyphotothermaltechniques(caseoflowintensities). . . . . . . . . . . . . . . . . . . . . . . . . . 63.1.Necessityofmodifiedphotothermaltechniquestomeasurelight-inducedabsorption3.2.Modifiedphotoacoustictechnique3.3.Modifiedphotothermalradiometry3.4.Modifieddeflectiontechnique3.5.Modifiedthermallenstechnique3.6.Measurementoflight-inducedabsorptionbythephotothermalreflectancetechnique

    4.Measurementoflight-inducedabsorptionbyphotothermaltechniques(caseofhighintensities) . . . . . . . . . . . . . . . . . . . . . . . . . 94.1.Inducedabsorptionundermultiphotoneffect4.2.Measurementofinducedabsorptionundertwo-photonexcitationusingthethermallenstechnique4.3.Measurementofinducedabsorptionundertwo-photonexcitationusingthedeflectiontechnique

    5.Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106.References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

  • L.A.Skvortsov2

    low absorption. However, this sensitivity is insufficient todetectphotoinducedabsorptioninthinfilmsor(inthecaseoflowexposures)bulksamples.

    Laserphotothermalspectroscopyisanalternativetocon-ventionalabsorptionspectroscopytechniques.Photothermalmethodshavetheactivecharacter;theyarenondestructiveand, inmost cases, contactless. A characteristic sign of allphotothermaltechniquesisthattheyyieldinformationaboutthe properties and composition of a medium under studybasedondirectdetectionofthepowerabsorbedinitfromthecorresponding changes in the physical and thermodynamicparametersofthematerial[2226].Adirectconsequenceofthisisthefollowingsetoffeatures:(1)zero-referencedmea-surements(theoutputsignaliszerointheabsenceofabsorp-tion), (2) an increase in sensitivity with an increase in theradiationpower(uptotheabsorptionsaturationmode),and(3)fundamentallimitationofthelimitingsensitivitybyther-malfluctuationsinthemediumunderstudy.

    Photothermal techniques can be implemented in twoways.Inthefirstversion,asampleisexposedtocwlaserradi-ationperiodicallymodulatedinamplitude(theso-calledpho-tothermalmodulation spectroscopy).The second version isthe pulsed photothermal spectroscopy, where periodicallyrepeated laserpulsesareused. Inbothcases,absorptionoflaserradiationbytheobjectunderstudyleadstoexcitationofthermalwavesinit,asaresultofwhichthetemperatureandrecordedsignalbecomemodulated.Havinganalysedthetimedependenceoftherecordedsignalanditsphase,onecangaininformationaboutvariousphysicalpropertiesoftheobject,including the magnitude and dynamics of photoinducedabsorption.

    Aswasmentionedabove,photothermalspectroscopyisamodulationmeasurement technique,which impliesperiodicperturbationofsomeparameterofthematerialunderstudybymodulated(pulsed)laserradiation.Thebasicadvantagesof photothermal spectroscopy, as compared with conven-tionalspectroscopy,areduetothepossibilityofeliminatingthebackground(structureless)componentofsignalandmea-suring differential spectra. The reason is that the signalrecordedisdirectlyrelatednottotheparametertobemea-suredbuttoitschange,i.e.,tothederivativeofthisparameterwithrespecttotemperature.Therefore,photothermalspectrahavefinefeatures,analysisofwhichyieldsdataontheprop-ertiesofmaterialthatcannotalwaysberevealedbyconven-tionalspectroscopy.Inaddition,lock-indetectionofasignalatamodulationfrequencyimprovessignificantlythesignal-to-noiseratio,thusreducingthemeasurementerror.

    Dependingonthewayofdetectingmodulatedsignal,themost widespread methods are photoacoustic spectroscopytechniques, photothermal deflection spectroscopy (mirage-effect), thermal lens technique (thermal lens spectroscopy),photothermal radiometryandphotothermal interferometry,and thermoreflectance technique. All these methods weredescribedinanumberofreviewsandmonographs[2232].

    Inthispaperwewillnotgointodetailsofnumerousorig-inalstudies,as,forexample, in [2426],whereanextensivebibliography on different photothermal spectroscopy tech-niquescanbefound.Wewillrestrictourselvestobriefconsid-erationofthebasic(inouropinion)laserphotothermaltech-niques,whicharemostwidespreadandpromisingforpracti-calanalysisofphotoinducedabsorptioninvariousmedia.Wewillrefertotheoriginalstudiesthatwebelievetobeoffunda-mentalimportancefortheproblemunderconsiderationandtoanumberofnewstudiesthathavenotbeenconsideredin

    theaforementionedreviews.Emphasiswillbeonthespecificfeaturesofthetechniquespresentedandonthediscussionofthe latest results obtained generally with the use of newdesigns.

    Becauseofthelimitedvolumeofthepaper,theresultsaredescribed only briefly.Details can be found in the originalstudies, reviews, andmonographswe refer to; they containextensivedataonseparateaspectsoftheproblemundercon-sideration.

    2. Brief review of techniques based on the photothermal effect

    2.1. Photoacoustic technique

    The essence of the photoacoustic technique is as follows[33,34].Asampleunderstudyisplacedinaspecialcellandexposedtomodulatedlaserradiation,whichiscompletelyorpartiallyabsorbedinthesampletoheatit.Theheatreleasedistransferredtothegasmediumlocatedintheacousticcell,asaresultofwhichthepressureinthecellperiodicallychanges.Thethusexcitedacousticwavesarerecordedbyahighlysen-sitivemicrophone,built-inintothecell(Fig.1).Onecanalsoperform contact measurement of the photoacoustic signalwhenstudying,forexample,solidswiththeaidofapiezoelec-tric sensor, positioned directly on the sample surface.Currently open photoacoustic systems with a sensitive ele-mentintheformofaquartztuningforkhavebeendeveloped;theyareconsideredtobepromisingdevicesforremotedetec-tionofchemicalcompoundsonsurfacesofsolids.

    High sensitivityof photoacoustic spectroscopymakes itpossible to advance significantly in the study of weaklyabsorbingmedia[35,36].Highlysensitivephotoacousticmul-ticomponentgasanalysershavebeendevelopedtosolveenvi-ronmental protectionproblems [3740].Thephotoacousticeffect was used as a basis for measuring thermodynamicparametersofgaseous,liquid,andcondensedmedia[4144].Photoacousticmicroscopyandflawdetectionarewidelyusedinmodernmaterialsscience,biology,andmedicine[4548].Recentlymuchattentionhasbeenpaidtothephotoacousticspectroscopyasatoolofremotedetectionoftracesofchemi-cal compound [4951] etc.Many reviews andmonographsweredevoted to theapplicationofphotoacoustic techniqueforstudyingmatterindifferentaggregatestates[22,25,30].

    2.2. Photothermal defelction (mirage-effect) spectroscopy

    In this technique modulated excitation radiation heats thesurface of a sample studied. Heat transfer causes periodic

    Laser

    Microphone

    Gas

    DP

    Modulator

    Photoacoustic cell

    Figure 1. Schematicofthephotoacoustictechnique[34].

  • 3Laserphotothermalspectroscopyoflight-inducedabsorption

    heating of the surface layer of the medium contacting thesample. The formation of a temperature gradient in themediumnearthesurfaceandtherelatedchangeinitsrefractiveindexarerevealedbythedeviationoftheprobebeamfromtheplane parallel to the sample surface (the mirage effect) andrecordedbyaposition-sensitivephotodetector(Fig.2).

    Toincreasethesensitivityofthistechnique,thesampleisgenerallyplacedinacellcontainingatransparentliquid,therefractive indexofwhichdepends stronglyon temperature.Usingthisscheme,onecanmeasuretemperatureincrementsonthesamplesurfaceatalevelof104K,whichcorrespondtoaprobebeamdeviationangleof~109rad[52].Thissensi-tivitymakesitpossibletodetectabsorptionlossesinsolidsatalevelof~107cm1[53].Thistechniqueiswidelyappliedtomeasure optical (absorption coefficient [54, 55]), thermal(thermalconductivity[5658],temperature[59]),andelectri-cal [60]propertiesofmaterials.Extensivedataonthismea-surementtechniquecanbefoundinanumberofreviewsandmonographs[25,26].

    2.3. Thermal lens technique

    Ina simplified form, theessenceof this technique isas fol-lows. Irradiation of an absorbingmediumby a laser beamwithaGaussianintensitydistributioninthetransversecrosssection inducesa temperaturegradient in itdue tononuni-formheating.Inturn,achange intemperaturecauses localchangesintherefractiveindexofthemedium,incorrespon-dencewiththelaserbeamintensitydistribution.Theoccur-renceoftherefractiveindexgradientinthemediumleadstotheformationofanopticalelement,whichactsasascatter-ing/collectinglens;thiselementwasreferredtoasathermallens.Sincetherefractiveindexofmostmaterialsinthetrans-parencyrangedecreaseswithanincreaseinthetemperature,the thermal lens is generally scattering; i.e., the transverselaser-beamsizeincreaseswhenthemediumisheated.

    Inthemoregeneralcasevariationsintherefractiveindexofthemediumcanbecausedbychangesinboththetempera-tureTanddensityrofthemedium:

    n

    Tn T n

    P TrrD D D= +c cm m .

    The thermal lens technique can be implemented usingbothsingle-anddouble-beammeasurementschemes.Inthesingle-beamschemeradiationofonelaser issimultaneouslyusedforexcitation(generationofathermallens)andprob-ing.Beingabsorbed,laserradiationheatsthesample,andthe

    changeinitsintensityyieldsinformationaboutabsorptioninthemedium. Themeasurement technique generally impliesrecordingthetemporalshapeofphotothermalsignalfromaphotodetectorwithadiaphragm,locatedinthefar-fieldzone.

    Thedouble-beamschemeismoreuniversal.Here,ather-mallensinducedbyexcitation(pump)radiationisrecordedbymeasuring defocusing of an additional probe beam. Itsmain advantage is that it allows one to study the spectraldependence of the absorption of materials; this cannot bedonewithinthesingle-beamscheme.Oneofconfigurationsofthe classicaldouble-beammeasurement scheme is shown inFig.3.

    Thedouble-beamschemeisimplementedineitherlongi-tudinal (Fig. 3)or transverse [22, 61] configurations; in thelattercase,theexcitationbeamisfocusedintothesampleper-pendicularlytotheprobebeam.Inmostcasesthelongitudi-nal (collinear) version is used. In this case, applying, forexample,adichroicmirror,onemakesbothbeamspropagatecoaxiallyinthesample,duetowhichthemaximuminterac-tion length is provided. Here, the so-called mode-matchedand mode-mismatched configurations are distinguished. Intheformercasethewaistsofbothbeamscoincideinthemea-surementcell(sample),whereasinthelatterversiontheyarespatiallyseparated(Fig.4).

    Themeasurementschemebasedonthemode-mismatchedconfiguration provides higher sensitivity. In this case, theabsorptioncoefficientofthesampleatthepumpwavelength,whichisrelatedtothethermallyinducedphaseshift,isdeter-minedfromtheexperimentallyobserved(recordedbyapho-todetector) time dependence of the intensity of the centralpart of the probe beam transmitted through a round dia-phragmbyfittingittothetheoreticaldependenceorbycali-

    Laser

    Modulator

    Detector

    Detector

    Sample

    He Ne laser

    Position-sensitive detector

    Figure 2. Schematicofthedeflectiontechnique[52].

    Pump laser

    Probelaser

    Filter Photodetector

    Sample DiaphragmDichroic mirror

    Mechanicalchopper

    Figure 3. Thermal lenstechnique(longitudinalversion):double-beammeasurementscheme;thepumpandprobebeamspropagatecoaxially[22].

    Pump radiation

    Probebeam

    Sample

    l/2 l/2

    L

    z2v0

    r

    0

    2r0

    2d

    Figure 4. Mode-mismatchedconfiguration(measurementschemewithshiftedwaists)[61].

  • L.A.Skvortsov4

    brating with the aid of a standard (reference) sample withknownabsorption.

    Thepumplasercanoperateinbothpulsedandcwmodes,whiletheproberadiationintensityisgenerallychosentobeconstant; thus, its change on the diaphragm can only becausedbyinducedmodulationfromthepumplaser.Inprac-tice,thethresholdsensitivityofthistechniqueismainlylim-ited by laser power fluctuations.At a fluctuation level notmorethan0.5%1%,themeasuredabsorptionthresholdis106107cm1.Thiscorrespondstothedetectionthresholdof~108 for refractive index variations and a temperaturevariationthresholdintherangeof106107K[22].Lateritwasshownthatonecanmeasuretheabsorptioncoefficientatalevelof~108cm1usingZscanning(scanninginthelongi-tudinaldirection),whichisakindofthermallenstechnique[62].

    Recently photothermal common-path interferometry(PCI)hasbecomeverypopular inmeasuringweakabsorp-tion in transparent media; this technique is based on thethermo-opticaleffectandisinessenceamodifiedthermallenstechnique[16,6367].ToprovidehighspatialresolutionofthePCItechnique,theprobeandpumpbeamsareintersectedinthesampleatasmallangle.Thisconfigurationalsomakesitpossibletoeliminatetheeffectofspurioussignalsfromthesurfacesofopticalelementsandthesample.Theradicaldif-ferenceofthismethodfromtheclassicalfar-fieldthermallenstechniqueisintheuseofnear-fieldsignaldetectionscheme.Inthiscase,perturbedandunperturbedpartsofthesamecol-limatedprobebeam interfere.Specifically thiscircumstancemakesthePCIsensitivitybeclosetothatofinterferometrictechniquesformeasuringabsorption.Inotherwords,PCIisathermallenstechniqueinwhichtheprobesignalisdetectedinthe near-field zone. A schematic of PCI measurements isshowninFig.5.

    Todate,thethermallenstechniqueanditsmodifications(mode-mismatched configuration, PCI, Z scanning) arewidelyusedtomeasureweakabsorptioninsolidsandliquids[6874],toanalysetraceamountsofmaterials[75]andkinet-icsofchemicalprocesses[7678],innonlinearspectroscopy[7981], etc. Details of the thermal lens technique and itsmodificationscanbefoundin[8285].

    2.4. Surface thermal lensing

    Thistechniqueisanalternativetothedeflectionphotother-malspectroscopy[86,87].Beinghighlysensitive,ithasaddi-

    tionallyatleasttwoimportantadvantagesovertheconven-tional deflection technique; they are related to the ratio ofprobe-beamandpump-beamdiameters(Fig.6).Ifthesizeoftheregionirradiatedwithaprobelaserbeamexceedsthesizeoftheregionheatedbypumpradiation,therearenostringentrequirementsontuning(aligning)themeasurementscheme.Moreover,whendetectingadiffractionpatternwithaCCDcamera, one can obtain much more complete informationaboutthecharacterofsurfacedeformation.Thisisanimpor-tant advantage over the conventional deflection technique,wheretheprobebeamisfocusedintoasmallsurfaceregionsubjected todeformation.Aconsequence isamuchshortertimenecessaryformappingasurfaceunderstudy,forexam-ple,whenmeasuringabsorptioninthin-filmcoatings,wherethesurfacethermallensingiswidelyused[87,88].

    2.5. Photothermal radiometry

    Foralongtimethetemperatureofaheatedbodywasdeter-minedbymeasuringtheradiationfluxfromthisbody.Thistechnique has certain advantages over others (for example,thosebasedontheuseofathermocouple),becauseitdoesnotrequire direct physical contact with the object studied.However,ithassomedrawbacks;themainonesaretheinflu-enceofreflectedradiationfluxesfromotherbodiesandthatonemusthavedataontheemissivepowerofthebodyanal-ysed.

    Photothermal radiometry (PTR) is an active method,whicheliminatestheinfluenceofbackgroundradiationfromforeignobjectssurroundingthebodystudied.Theessenceofthistechniqueisrathersimple(Fig.7).Duringmeasurementsa sample is exposed to cw laser radiationwith an intensitymodulatedaccording toaharmonic lawor is irradiatedbyperiodiclaserpulses.Partialabsorptionoflaserradiationandthecorrespondingheatreleaseleadtomodulationofthesam-ple surface temperature and the recorded heat flux at thepulse repetition (modulation) frequency. Having measuredthetimedependenceofthedynamiccomponentofrecordedthermalsignalanditsphase,onecanobtaindataondifferentphysicalpropertiesoftheobjectunderstudy.

    A modification of photothermal radiometry is the so-calledphoto-carrierradiometry(PCR),whichisusedtomea-

    Pumplaser

    Probelaser

    Chopper Sample

    Absorber

    Diaphragm

    Photodetector

    Figure 5. SchematicformeasuringabsorptionlossinopticalmaterialsbythePCItechnique[16].

    Ar laser

    HeNe laser Detector

    Mirror Mirror

    Power meter

    Power meter

    Modulator

    Sample

    Beamsplitter

    Diaphragm

    Sample

    Probe beam

    Pumpbeam

    a

    b

    Figure 6. (a)Schematicdiagramofmeasurementsbythesurfacether-mallensingand(b)aschematicoftheexperimentalsetup[87].

  • 5Laserphotothermalspectroscopyoflight-inducedabsorption

    sureelectricalcharacteristicsofsemiconductors,forexample,carrierlifetime,concentration,andmobility[89,90].Thereisnoestablishedtermthatwouldadequatelyrevealtheessenceof thisphenomenon in theRussian scientific literature.WewillrefertoitastheradiometryofnonequilibriumIRradia-tion fromphotoexcited carriers; inouropinion, thisdefini-tion reflects most exactly the essence of this technique, inwhichasampleisexposedtoradiationwithaphotonenergyexceedingthebandgapofthesamplematerial.Here,asignalrecordedcontainsbothathermalcomponentandanonequi-libriumplasmacomponent,whichisduetotherelaxationofphotoexcitedchargesintheconductionband.Obviously,tomeasurephotoinducedabsorption,itisnecessarytoconsideronlythethermalcomponent.Atlowfrequenciestheplasmacomponentissmall,andthesignalrecordedisproportionaltotheheatingtemperatureand,therefore,totheabsorptioncoefficient. Itwas reported in [91] thatmodification of thePCRtechniqueduetotheuseofthesecondlaserwithphotonenergylowerthanthebandgapimprovesthedetectingabilityforsubsurfacedefects.

    ConcerningPTR,itisusedtomeasurelowabsorptionnotonlyinbulkmaterialsbutalsointhinfilmsandsurfacelayers[33,9296].Thismethodisusedforremotemeasurementofthetemperatureofbodiesandtheirthermophysicalparame-ters(thermalconductivityandthermaldiffusivity)[97105],toinvestigateelectronicpropertiesofsemiconductormateri-alsandmonitortheirdefectstructure[103105],forremotespectral analysis in different technological problems whenstudyingsurfacesofmaterialsandcoatings[79,106],andinthermal-wavemicroscopyandthermography[107].

    2.6. Photothermal reflectance technique

    Photothermalreflectancetechnique(photomodulationreflec-tancespectroscopy),beingoneofthemostwidespreadmeth-odsofmodulationspectroscopy [108], is intensivelyusedtostudytheenergystructureofsemiconductormaterials,includ-ingquantum-size structures [109119].Thismethod isverysensitive to theenergy structure; itallowsone todeterminethelevelenergieswithanerroroffewmillielectronvoltsandrecord changes in reflection [DR(l)/R(l)] or transmission

    [DT(l)/T(l)] spectra of this probe radiation that are due tophotomodulation:changeintheopticalstructuralparametersunderadditionalirradiationbylightwithawavelengthlyingintherangeofintrinsicabsorptionofsemiconductor(pumpradiation).Therelativechangeinthereflectioncoefficientisdefinedas

    RR

    RR R

    off

    off onD = - ,

    whereRoff andRon are the reflection coefficients of proberadiationintheabsenceandinthepresenceofpumpradia-tion, respectively. Application of phase-sensitive detectionmakesitpossibletorecordrelativechangesinthereflectioncoefficientatalevelof106107[25].OneofpossibleschemesofthephotothermalreflectancetechniqueisshowninFig.8.

    Along with the aforementioned original papers, moredetailsonthistechniqueandfieldsofitsapplicationcanbefoundin[25,26,118,120].

    2.7. Photothermal interferometry

    Aswasnotedabove,variationsintherefractiveindexofirra-diatedmediumchangethephaseofaradiationwavepassingthroughit.Themostsensitivemethodofphasechangedetec-tionistheinterferometric(phase)technique,whereamediumunderstudyisplacedinoneofinterferometerarms(Fig.9).AvariationintherefractiveindexbyDnleadstoachangeinthewavephaseinthisarmby

    Laser

    Sample IR detector

    Filter

    Thermal radiation

    Parabolic mirrors

    Chopper

    Power meter

    Splitter

    Figure 7. Schematicoftheexperimentalsetupformeasurementsbyla-serPTR[103].

    Halogen lamp

    Monochromator Pumplaser

    Modulator

    Filter

    Detector

    Sample

    DR, R

    VAC

    VDC

    Lock-in amplifier

    Figure 8. Oneofpossible schemesofmeasurementsbyphotothermalreflectancetechnique[118].

    Mirror

    Photodetector

    Probe laser

    Cell with a gas

    Pumpradiation

    Figure 9. Michelsoninterferometerwithamediumstudiedinacell(therearcellwallistransparentforthepumpradiationandmirror-reflectivefortheprobelaserradiation)[22].

  • L.A.Skvortsov6

    Dj =(2pL/lp)Dn,

    whereL is the lengthof the spatialalignment region in thesample for theexcitation (pump)radiationandprobewaveandlpistheprobewavelength.

    Achangeintheprobewavephaseshiftstheinterferencepatterninthedetectionplane;thisshiftisdetectedbymeasur-ingthechangeintheradiationpowerwiththeaidofaphoto-detectorwithadiaphragm.Dependingonthemeasurementconditions, one can determine variations Dn using manyknown interferometric schemeswith insignificantmodifica-tion(forexample,MachZehnder,FabryPerot,Michelson,andJamininterferometers)[121,122].Incomparisonwiththedeflection and thermal lens techniques, the phase methodprovideshighersensitivity[22,61].Forexample,thesensitiv-ity of the interferencemeasurements in gaseswas~10 ppt[123].Nevertheless,thephasemethodisrelativelycomplexinboth design and operation; in addition, it requires reliablevibroacoustic isolation.Apparently, ithasnotbecomeverypopularforthesereasons.

    3. Measurement of light-induced absorption by photothermal techniques (case of low intensities)

    3.1. Necessity of modified photothermal techniques to measure light-induced absorption

    Themechanismofinducedabsorptionisgenerallyrelatedtotheoccupationof trapsby electrons excitedby light to theconductionbandfromdeepdonorlevelsorfromthevalenceband.Withallowanceforthisphenomenon,measurementofinduced absorption calls formodifying photothermal tech-niquesinthefollowingway.

    Whenelectronsareexcitedfromthevalencebandtotheconductionband, the sample under studymust be exposedsimultaneouslytoatleasttwolightbeams.Oneofthem,withawavelengthfallingintherangeofintrinsicabsorptionofthematerial(pumpwave),generateselectronholepairsbothinthebulkofthesampleandonitssurface.Acwlaserisgener-allyusedasasourceofthisshort-wavelengthradiation.Thefreeelectronsformedintheconductionbandcanbecapturedby traps before recombination. The second radiation flux,withphotonenergybelowthebandgap(probewave),leadstotrapdepletion,heatreleasethroughrelaxationelectronsintheconductionband,andtheirfurtherrecombination.Thus,havingmeasured(atthelong-wavelengthpulserepetitionfre-quency) the variable (dynamic) component of the signalinducedbyperiodicvariationintemperature(orsomerelatedparameter,forexample,therefractiveindexofmaterial),onecanmeasuretheinducedabsorptionatthiswavelength.Thespectral dependence of photoinduced absorption is studiedusing such radiation sources as, for example, xenon lamps(whose light is transmitted through a monochromator) orwavelength-tunable lasers.The latterhaveahigher spectralbrightnessandthusprovidehighermeasurementsensitivity.Notethatinthecaseunderconsiderationthemodifiedphoto-thermaltechniquesaredesignedforstudyingthinfilmsandsurfacelayersofmaterials.Thisisduetothefactthatpumpradiation is absorbed at a depth la af1, where af 105106cm1 is theabsorptioncoefficientrelatedtofunda-mentalabsorption.

    Atthesametime,depletionofdeepdonorlevelsbypumpradiationalsoleadstooccupationofelectronictraps.Inthiscase,thepumpphotonenergymaybemuchlowerthanthebandgap;thissituationoccurs,forexample,whenstudyingthephotoinducedabsorption in thebulkofphotorefractivecrystalsandotheropticallytransparentmaterials.

    Thus, in both cases the above-considered conventionalschemes used to measure photoinduced absorption shouldcontainanadditionalpumpchannelinordertoformexcitedcentres,whoseabsorption is tobemeasured.Thechoiceofthepumpwavelengthisdeterminedtoagreatextentbynotonlythenatureofmaterialsbutalsobythespecificconditionsoftheirapplication.

    3.2. Modified photoacoustic technique

    Asfarasweknow,themodifiedphotoacoustictechniquewasappliedforthefirsttimein[5],wherethespectraldependenceofphotoinducedabsorption inpowder samplesof titaniumdioxide(amaterialpromisingforphotocatalysis)wasinvesti-gated.Thisstudyrevealedastrongphotochromiceffectinthesamples:reversiblechangeinabsorptionunderirradiationbyUVlight.Afterswitchingoffpumping,thephotoacousticsig-nalrelaxedtoits darkvalueforseveralminutes.Basedontheanalysisofthemeasuredspectraldependencesofphotoin-duced absorption in the range 3501000 nm (Fig. 10), thenatureofthedefectsresponsibleforthiseffect(Ti3+ions)wasrevealedandtheirconcentrationwasestimatedin[5].

    These investigationsweredeveloped in [6],whereanewmethod fordeterminingquantitatively the concentrationofdefects(Ti3+ions)inpowdertitaniumdioxidewaselaboratedbasedonmodifiedphotoacousticspectroscopy.Itwasstatedin[6]thatthismethodisarealalternativetothephotochemi-cal and electron spin resonance (ESR)methods, which aretraditionallyusedforthesepurposes.

    3.3. Modified photothermal radiometry

    The fruitfulnessofphotothermal techniques in thestudyofthe photochromic effect in thin films and surface layers ofvariousmaterialswasalsodemonstratedby theexampleofmodifiedphotothermalradiometry[79].Aschematicoftheexperimental setup formeasuring photoinduced absorptionbymodified photothermal radiometry is shown in Fig. 11.Theobjectsofstudyintheaforementionedworksweresingle-

    0

    0.2

    0.4

    0.6

    0.8

    1.0

    1

    2

    300 500 700 900 l/nm

    1 only probe beam (UV filter, 530 nm)2 probe beam + UV excitation

    Nor

    mal

    ised

    pho

    toab

    sorp

    tion

    sig

    nal

    Figure 10. Spectral dependence of photoinduced absorption in TiO2films[5].

  • 7Laserphotothermalspectroscopyoflight-inducedabsorption

    layertitaniumdioxidecoatings~100nmthick,depositedonfused silica substrates by electron-beam evaporation. Thesource of modulated probe 1064-nm radiation was a cwYAG:Nd3+ laser with an average power of 20 W.Simultaneouslythesamplewasexposedtoshort-wavelengthnitrogenlaserradiationwithawavelengthof337nm(pumpwave). The maximum average pump power was 3 mW.Measurementswereperformedbothinairandinvacuum.Aheaterwasusedtovarythesubstratetemperatureintherangefrom290to500K.

    Notethefollowingmainfeaturesofphotoinducedabsorp-tion in the near-IR spectral range for the objects studied.First,theoccurrenceofphotoinducedabsorptionisarevers-ibleprocess.AfterswitchingoffUVlight,theabsorptioninthenear-IRrangerelaxestoitsinitialdarkvalue(Fig.12).Notethatthecharacteristicrelaxationtimeinvacuumexceedsthatinairbyafactorof5.

    Second,photoinducedabsorptiondependsontheshort-wavelengthradiationintensityandtheenvironmentpressure,reachingsaturationathighpumppowers(Fig.13a).Finally,thetemperaturedependenceofinducedabsorptionisofspe-cialinterest(Fig.13b).Uponsampleheatingto~150Cthe

    absorptiondecreasestothedarkvalue,whichisconstantintheentiretemperaturerange.

    Apossiblemechanismoftheoccurrenceofphotoinducedabsorption in polycrystalline titanium dioxide films in thenear-IRspectralrange(l=1064nm)wasproposedin[9].ThedecisiveroleoftheenergylevelsassociatedwithTi3+ionswasindicated.Theprocesswasconsideredwithin themonomo-lecularrecombinationapproximation;thismodelwasfoundtobe ingoodagreementwiththeexperimentaldata.Itwasshownin[8]thatmodifiedphotothermalradiometrymakesitpossibletorevealnonstoichiometricdefectswithaconcentra-tionNmin1015cm3inthinlayers.

    3.4. Modified deflection technique

    Deflectionspectroscopywasalsousedtostudyphotoinducedabsorption [2]. It was modified in the following way.Frequency-tunable radiation was obtained using a 1000-Wxenonlamp,whoselightwasfocusedontheinputslitofthemonochromator.Thewidthofthespectrallineattheoutputwas20nm.Theradiationwasmodulatedinamplitudeusingamechanicalchopperandfocusedonthesurfaceofasampleplaced in a cell filled with liquid carbon tetrachloride. Torecord photoinduced absorption, the measurement scheme[124] was supplementedwith a pump radiation source; thepumpphotonenergyexceededthebandgapofthematerialunderstudy(Fig.14).

    Theobjectsstudiedin[2]weresamplesofthinhydroge-nated amorphous silicon (a-Si:H) films deposited on glasssubstrates. Films were obtained by decomposition of puresilaneinahigh-frequencyglowdischarge.Thefilmthicknesswas10mm,thebandgapofthefilmmaterialwas1.75eV,andthevolumehydrogencontentwas510at%.Figure15showsaroom-temperaturedependenceoftherelativevalueofpho-toinduced absorption in undoped a-Si:H samples on theprobe photon energy. Analysis of this dependencemade it

    Modulator

    Lock-inamplifier

    IR la

    ser

    UV laser

    Computer

    Cell withan evacuationsystem and heater

    SampleIR objective

    IR detector

    Preamplifier

    Ge windows

    Figure 11. Schematicof theexperimental setup formeasuringphoto-induced absorption in thin films and surface layers of materials bymodifiedphotothermalradiometry[9].

    0 50 100 150 200 250 t/s

    A(%)

    0.05

    0.10

    0.15

    0.20

    0.30

    0.25

    Figure 12. Time dependence of photoinduced absorption in titaniumdioxide filmsafter switchingoff thepumpradiation (airatmosphere,roomtemperature)[9].

    0

    0

    200 400 600 800

    0.2

    0.2

    0.1

    0.3

    0.4

    0.4

    0.6

    0.8

    1.0

    A (%)

    A (%)

    P/mW cm2

    275 325 425375 T/K

    a

    b

    1

    2

    Figure 13. (a)DependencesoftheinducedabsorptionontheUVradia-tionintensityforasubstrateplacedin(1)airand(2)vacuumand(b)thetemperaturedependenceofphotoinducedabsorption[9].

  • L.A.Skvortsov8

    possible todetermine theenergy levelsof thedefects corre-spondingtotheneutralandnegativelychargedstates.Itwasnoted in [2] that the sensitivity of the proposed techniqueexceedsthatofconventionalabsorptionspectroscopymeth-odsbyatleastfourordersofmagnitude.

    3.5. Modified thermal lens technique

    Thermallenstechniqueinamodifiedform(specifically,mod-ifiedPCI)ismostwidelyusedtostudythemechanismsandnature of photoinduced absorption in transparent opticalmaterialsandcoatings.Wewillrestrictourselvestothecon-sideration of only few (most characteristic in our opinion)examplesofapplicationof this techniquefor theaforemen-tionedpurposes.

    Inparticular,thismethodwasusedtostudythephotoin-duced absorption in magnesium-doped lithium niobate(LiNbO3) crystals, as well as in lithium tantalate (LiTaO3)andpotassiumtitanylphosphate(KTiOPO4,TP)crystals,whicharewidelyusedinlasertechnique[1517].Green-light-inducedinfraredabsorption(GLIIRA)inthesematerialswasinvestigated.Later, the effectofblue-light-induced infraredabsorption (BLIIRA)was revealed inmostof ferroelectrics[14]. A scheme for measuring photoinduced absorption bymodifiedPCIispresentedinFig.16.

    Itcanbeseenthatthisversionisbasedontheuseoftwopump beams. In particular, in the case of lithium niobatecrystal, the dynamics of absorption of IR pump radiation(1064nm)wasstudiedinthepresenceofaweakerpumpbeamatthesecond-harmonicwavelength(532nm)ofaNd:YAGlaser.Periodicinterruptionofthegreenlightbeamwasper-

    formedmanually.AHeNelaserservedasaprobeone.TheGLIIRAdynamics for lithiumniobate crystals is shown inFig.17.Thesignalrise(falloff)timewaslessthan30ms.

    WeshouldnotesuccessfulapplicationofthethermallenstechniqueinthestudyofGLIIRinKTPcrystals[17].Inthiscase,measurementswere also performed using a common-pathinterferometer.However,theconfigurationofthemea-surement schemewas such that all threebeams (twopumpbeams and one probe beam) propagated collinearly in thecrystals.Aswasstatedin[17],thistechniquecanbeusedtomeasureinducedabsorptionatalevelof~105cm1.

    AlongwithPCI,thereareothertechniquesbasedonthethermal lenseffect.Forexample, thephotoinducedabsorp-tioninphotorefractiveBaTiO3crystalsexposedtolaserradi-ation at differentwavelengthswas investigated in [12] by atechnique inwhich twowavespropagating inacrystalatasmallanglewithrespect toeachotheraremixed.Themea-surementswereperformedaccordingtoasomewhatmodifiedscheme,similartothatdescribedin[71].Itwasstatedin[12]that photoinduced absorption may significantly affect therecordingofholographicgratingsinphotorefractivecrystals.

    3.6. Measurement of light-induced absorption by the photothermal reflectance technique

    Therelativechangeinthereflectioncoefficientofproberadi-ation,measuredbythistechnique,DR(l)/R,isdirectlyrelatedtothepermittivityperturbation:

    ComputerLock-inamplifier

    Xe lamp

    Position-sensitive detector

    Modulator

    Monochromator

    Pum

    pla

    ser

    Pro

    bela

    ser

    Sample holder

    CCl4

    Sample

    Figure 14. Schematicformeasuringthespectraldependenceofphoto-inducedabsorptionbydeflectionspectroscopy[2,124].

    0.5 1.0 1.5 2.0Photon energy/eV

    DA/A

    Figure 15. Dependenceof the relativeabsorption induced in thinhy-drogenatedamorphoussiliconfilmsontheprobephotonenergy[2].

    Pumplaser 2

    Pumplaser 1

    Probe laser

    Absorber

    Modulator

    Sample Diaphragm

    Photodetector

    Figure 16. Schematic for measuring photoinduced absorption usingmodifiedPCItechnique[16].

    8

    6

    4

    2

    2

    0

    0

    0 10 20 30 40 t/s

    532 nm on off offon

    IR a

    bsor

    ptio

    n co

    effi

    cien

    t /10

    3 cm

    1

    1

    3

    Dnn /108

    Figure 17. GLIIRinaLiNbO3crystalwithaclose-to-stoichiometriccomposition[16]forpumpintensitiesof3.6kWcm2(l=532nm)and21.0kWcm2(l=1064nm).

  • 9Laserphotothermalspectroscopyoflight-inducedabsorption

    R/R=a(e1,e2)e1+b(e1,e2)e2,

    where a and b are the Seraphin coefficients [125], whichdependonthepermittivitye(l)=e1(l)+ie2(l);e1ande2are,respectively,thechangesintherealandimaginarypartsofthepermittivity,whicharelinkedbytheKramersKronigrelation.

    Figure 18 shows as an example the photomodulationreflectionspectraR/R; thetransmissionspectraT/T;andthe spectral dependence of the variation in absorption,(aL) (calculated in correspondence with the results of[111]) [112].These spectra are typical of the InGaAs/GaAsquantumwell.Analysisof the reflection spectrummakes itpossibletoobtainthephotomodulationabsorptionspectrumofthestructureunderstudy:a=a(l)/a;itisnothingbutthe relative change in the pump-induced absorption.Therefore,itisnotnecessarytomodifythistechniquetomea-surephotoinducedabsorption.Moreover,accordingto[112],the intensity of the photoreflectance peak and its spectralpositioncanbeusedtodeterminetheinhomogeneityofquan-tumwellwidthandcomposition.

    4. Measurement of light-induced absorption by photothermal techniques (case of high intensities)

    4.1. Induced absorption under multiphoton effect

    Insomematerialsphotoinducedabsorptionarisesasaresultof multiphoton (in particular, two-photon) absorption oflight [126128]. Thesematerials arewidely used as opticallimiters [129], in laser microlithography at two-photonrecording[130],intwo-photonfluorescentmicroscopy[131],

    intwo-photonphotodynamictherapy[132],etc.Two-photonabsorptioncanbemeasuredusingseveralconventionalmeth-ods,forexample,two-photonexcitationfluorescenceornon-lineartransmissiontechnique.

    Inducedmultiphoton absorption spectroscopy,which isbasedonapplicationofphotothermaltechniques,isanalter-native to theconventional techniques.The theoryofmulti-photonthermallensspectroscopywasdevelopedin[133]andin the later study [134]. In turn, the theory of two-photondeflection spectroscopywas considered for the first time in[135].Thehighsensitivityofthethermallensanddeflectiontechniquesmakesthempromisingformeasuringweaktwo-photon absorption in optically transparent materials[136144]. The measurement of two-photon absorption inmaterialsisgenerallyhinderedduetotheabsenceofnonlin-earreferencesandcomplexityindeterminingthelightinten-sityinthesampleregionstudied.Anumberofmeasurementschemesbasedondifferentversionsofthethermallenstech-niqueweredevelopedtoovercomethesedifficulties[145148].

    4.2. Measurement of induced absorption under two-photon excitation using the thermal lens technique

    Toincreasethesensitivityofmeasuringnonlinearabsorption,anewflexibleschemebasedonthedouble-beamthermallenstechniquewasproposedin[148].Incomparisonwiththepre-vious Z-scanning schemes [145], the probe beam in it isstrongly focused into the sample, whereas the pump beamremainscollimated(Fig.19).

    Nonlinearabsorptionplaysanimportantroleintheopti-cal breakdown of transparent materials. The thermal lenstechniquewasusedin[126]tomeasurethecoefficientsoftwo-photonabsorptionforanumberofborosilicateglasses,whicharegenerallyappliedasopticalcomponentsoflasersoperat-inginthevisiblespectralrange.

    The measurements in [126] were performed using thesametechniqueasin[136],wheretwo-photonabsorptioninbenzenewasstudied.Thecoefficientsoftwo-photonabsorp-tionweredeterminedfromtheslopeofthedependencesofphotothermal signal on the squared light intensity. Theobservedlineardependenceindicatestwo-photoncharacterofabsorption.The two-photonabsorptioncoefficientbofBK-7 glass, measured at a wavelength of 532 nm, wasfoundtobe71011cmW1.

    AsanexampleFig.20showstheabsorptionspectrumofBK-7glass,inducedbytwo-photonirradiation.Itcanbeseen

    5

    10

    5

    0

    0

    0

    5

    5

    5

    10

    10

    0.98 1.00 1.02 1.04 1.06 l/mm

    D(aL)/104

    DTT /10

    4

    DRR /10

    4

    Figure 18. Typical photomodulation reflection (DR/R) and transmis-sion(DT/T )spectraandthecalculated(accordingto[111])spectralde-pendenceof the change inabsorption [D(aL)] foran InGaAs/GaAsquantumwell[112].

    Pump laserProbe laser

    Detector

    Filter

    MirrorMirror

    Mirror

    Diaphragm

    Sample

    AmplifierOscilloscope

    zDichroic mirror

    AO

    mod

    ulat

    or

    Figure 19. Schematicoftheexperimentalsetupformeasuringnonlin-earabsorptionbythethermallenstechnique[148].

  • L.A.Skvortsov10

    that induced absorption manifests itself in a wide spectralrangeandhasalongtail,extendingtothenear-IRrange.Itwassuggestedin[126]thattwo-photonabsorptionatawave-length of 532 nm induces some types of optical-absorption(colour)centresinthesamplesstudied.

    4.3. Measurement of induced absorption under two-photon excitation using the deflection technique

    Insomeioniccrystalsnonlinearabsorptionwasmeasuredbypulseddeflectionspectroscopy[127].ThemeasurementswereperformedusingexcimerXeCl laser radiationwithawave-lengthof308nmandpowerdensityclosetothelaserdamagethresholdofthecrystalinthetransversemeasurementscheme:theprobeHeNelaserbeampropagatedparalleltothesur-faceofthesampleunderstudy(perpendicularlytothepumpbeam) at a distance of several micrometers from it. Thedependencesofthephotodeflectionsignalonthelaserinten-sityforanumberofmaterialsareshowninFig.21.

    It can be seen that the experimental data obtained areapproximated well by a straight line. The correspondingdependence for CaF2 crystals (is omitted) exhibits a kink,whichwas explained in [127] by the dominant influence ofthree-photon absorption at radiation intensities above50MWcm2.Inaddition,colourcentreswereinducedinthecrystals under study, which were assigned to defects andimpurities.Itwasnotedin[127]thatphotothermaltechniquesare a unique tool, allowing one to measure multiphoton

    absorptioncoefficientsforwide-gapcrystalswithahighaccu-racy.

    5. Conclusions

    Theaboveexamplesoftheuseofphotothermaltechniquestoanalysethespectraldependenceofphotoinducedabsorptionindicate their efficiency for studying the defect structure ofthin films, surface layers, and bulk materials, which isextremelyimportantforimprovingtechnologiesofmanufac-turingmaterialsandmonitoring theirqualityduringmanu-facture.

    However,thephotothermaltechniquesconsideredabovehaveanumberofdrawbacks.Inouropinion,themainonesare as follows. In photoacoustic spectroscopy, a hermeticacousticcellmustbeusedandcontactmeasurementsmustbeperformed toobtainhigh sensitivity. Inphotothermal radi-ometry,onemustusephotodetectorscooledtoliquidnitro-gentemperatureandhigherpowerradiationsources.Ascom-pared with the other photothermal techniques consideredabove, photothermal radiometry has the least sensitivity atroomtemperature.Inthedeflectiontechnique,samplesmustbeplacedinacellwithaliquidhavingextremelylowabsorp-tion and high thermo-optical coefficient in order to reachhighsensitivity.Thephotothermalinterferometryisnotonlydifficultinoperationbutalsocallsforcarefulvibroacousticprotection.Concerningthethermallenstechnique,whenitisappliedtostudyphotoinducedabsorption,onehastouse(asinthecaseofGLIIRA)threeradiationsources,whichleadstoobviouscomplicationofthemeasurementscheme.

    Nevertheless,asfollowsfromthisreview,muchattentionis currentlypaid to thedevelopmentofphotothermal tech-niques of nondestructive diagnostics of materials and theequipment necessary for their realisation. Advances in thisfieldarerelatedtoacertainextenttothesuccessfulapplica-tion of photothermal technologies in the semiconductorindustry[anexampleistheTherma-ProbeTMmetrologytools(KLA-TencovCorporation)]andtotheproductionofPCI-based photothermal measurement systems by the SPTS(StanfordPhoto-ThermalSolutions)corporation.

    Table1containsalistofthemostwidespreadphotother-maltechniques,themain(inouropinion)fieldsoftheirappli-cation,andmanufacturersofequipmentforthetechnologiesbasedonthesetechniquesanddesignedtomeasurephotoin-duced absorption. Unfortunately, we have to admit that,despitea largenumberof laboratory studies,photothermaltechnologies and the corresponding commercial equipmentare not so widespread in the market of control-measuringequipmentasexpectedtobe.Alikelyreasonisthecomplexityoftheseprecisetechniques,despitetheseemingsimplicityofdesignsproposed.

    6. References 1. EmelineA.,SakinaroA.,RyabchukV.,SerponeN.Int

    Photoenergy,3,1(2001). 2. ChenY.,DaiY.,ChouH.,ChangI.Chin. J. Phys.,31,767(1993). 3. KitaoJ.,KasuyaY.,KuniiT.,YoshidaN.,NonomuraS.Anal.

    Sci.,17,302(2001). 4. NigroM.A.,GagliardiM.,CorteF.G.D.Opt. Mater.,30,1240

    (2008). 5. HighfieldJ.G.,GrtzelM.J. Phys. Chem.,92,464(1988). 6. MurakamiN.,MahaneyO.,TorimotoT.,OhtaniB.Chem. Phys.

    Lett.,426,204(2006). 7. SidoryukO.,SkvortsovL.Zh. Prikl. Spektrosk.,53,641(1990).

    l = 532 nm

    200 400 600 800 1000 l/nm0

    0.05

    0.15

    0.10

    0.20P

    hoto

    indu

    ced

    abso

    rpti

    onco

    effi

    cien

    t (r

    el. u

    nits

    )

    Figure 20. PhotoinducedabsorptionspectrumofBK-7glass[126].

    KBrNaClKCl

    10

    1000

    2030

    50

    100

    200300

    500

    Intensity/GW cm2

    Pho

    tode

    flec

    tion

    sig

    nal (

    rel.

    unit

    s)

    0.01 0.10.03 0.3 1

    Figure 21. Dependencesofthesignalsrecordedbydeflectionspectros-copyontheradiationintensityforanumberofioniccrystals[127].

  • 11Laserphotothermalspectroscopyoflight-inducedabsorption

    8. SidoryukO.,SkvortsovL.Poverkhnost,11,91(1996). 9. SkvortsovL.,MaksimovE.,TuchkovA.Kvantovaya Elektron.,

    38,983(2008)[Quantum Electron.,38,983(2008)].10. GnterP.,HuignardJ.-P.(Eds)Photorefractive Materials and

    their Applications(Berlin:SpringerVerlag,1988)Vols61,62.11. YangC.-X.,ZhuY.,ZhangD.-F.,NiuX.-J.,ZhouT.,WuX.,

    LiuH.-B.Chin. Phys. Lett.,15,574(1998).12. RavinderK.B.,RaghavendraP.B.J. Indian Inst. Sci.,83,61(2003).13. StankevichA.,TolstikA.,KhaiderKh.Pisma Zh. Tekh. Fiz.,37

    (16),7(2011).14. HirohashiJ.,PasiskeviciusV.,WangS.,LaurellF.J. Appl. Phys.,

    101,033105(2007).15. FurukavaY.,KitamuraK.,AlexandrovskiA.,RouteR.K.,Fejer

    M.M.,FoulonG.Appl. Phys. Lett.,2,1970(2001).16. AlexandrovskiA.,FoulonG.,MyersL.E.,RouteR.K.,Fejer

    M.M.Proc. SPIE Int. Soc. Opt. Eng.,3610,44(1999).17. WangS.,PasiskeviciusV.,LaurellF.J. Appl. Phys.,15,2023(2004).18. KaoK.,DaviesT.W.J. Phys. E., Sci. Instrum.,1,1063(1968).19. PinnowD.,RichT.Appl. Opt.,12,984(1973).20. OKeefeA.,DeaconD.A.G.Rev. Sci. Instr.,59,2544(1988).21. BukhshtabM.A. Izmereniya malykh opticheskikh poter

    (MeasurementsofLowOpticalLosses)(Leningrad:Energoatomizdat,1988).

    22. ZharovV.P.,LetokhovV.S.Lazernaya optikooakusticheskaya spektroskopiya (LaserPhotoacousticSpectroscopy)(Moscow:Nauka,1984).

    23. MandelisA.,inPhotoacoustic, Photothermal and Photochemical Processes at Surfaces and Thin Films(NewYork:Springer-Verlag,1989).

    24. MandelisA.Principles and Perspectuves of Photothermal and Photo acoustic Phenomena(NewYork:Elsivier,1992).

    25. BialkowskiS.Photothermal Spectroscopy Methods for Chemical Analysis(NewYork:JohnWiley,1996).

    26. AlmondP.,PatelP.Photothermal Science and Technique (London:ChapmanandHall,1996).

    27. KozintsevV.,BelovM.,GorodnichevV.,FedotovYu.Lazernyi optikooakusticheskii analiz mnogokomponentnykh gazovykh smesei (LaserPhotoacousticAnalysisofMulticomponentGasMixtures)(Moscow:Izd-voMGTUim.N.Baumana,2003).

    28. SnookR.,LoweR.Analyst,120,2051(1995).

    29. ChebotarevaG.Laser Phys.,8,941(1998).30. ProskurninM.,KononetsM.Usp. Khim.,73,1235(2004).31. MuratikovK.L.,GlazovA.L.Opt. Zh.,73,92(2006).32. SkvortsovL.Recent Patents on Eng.,3,129(2009).33. KreuzerL.B.J. Appl. Phys.,42,2934(1971).34. RosencwaigA,GershoA.J. Appl. Phys.,47,64(1976).35. BennettH.,FormanR.Appl. Opt.,16,2834(1977).36. KanstadS.,NordalP.Appl. Sur. Sci.,6,372(1980).37. SigristM.Air Monitoring by Spectroscopic Techniques (NewYork:

    JohnWiley&Sons,1994).38. HarrenF.,CottiG.,OomensJ.,HekkertS.,inEncyclopedia of

    Analytical Chemistry(Chichester:JohnWiley&Sons,2000).39. SigristM.Environmental Trace Species Monitoring: Introduction in

    Applications of Instrumental Methods, Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation(Chichester:JohnWiley&Sons,2000)pp18871892.

    40. BelovM.,GorodnichevV.,KozintsevV.Biomed. Radioelektron.,No.9,38(2001).

    41. CharpentierP.,LepoutreF.,BertrandL.J. Appl. Phys.,53,608(1982).

    42. AnV.,IzarraC.ENS'2007(Paris:EDAPubl.,2007,p.49).43. RajiP.,SanjeevirajaC.,RamachandranK.J. Mater. Sci.,41,

    5907(2006).44. BamaG.,AnithaR.,RamachandranK.Nondestructive Testing

    and Evaluation,25,67(2010).45. ZhangH.,MaslovK.,StoicaG.,WangL.Nature Biotechnol.,24

    (7),848(2006).46. XuM.,WangL.Rev. Sci. Instrum.,77(4),041101(2006).47. XieZ.,ChenS.-L.,LingT.,GuoL.,CarsonP.,WangX.Opt.

    Express,19,9027(2011).48. XieZ.,JiaoS.,ZhangH.,PuliafitoC.Opt. Lett.,34,1771(2009).49. VanNesteC.W.,SenesacL.R.,ThundatT.Appl. Phys. Lett.,92,

    234102(2008).50. VanNesteC.W.,SenesacL.R.,ThundatT.Anal. Chem.,81(5),

    1952(2009).51. ChienH.-T.,WangK.,SheenS.-H.,RaptisA.C.Proc. SPIE Int.

    Soc. Opt. Eng.,8358,83581K(2012).52. BoccaraA.,FournierD.,BadozJ.Appl. Phys. Lett.,47,130

    (1980).

    Table 1. Photothermaltechniques,mainfieldsoftheirapplication,andtheexistenceofcommercialequipment.

    ExistenceExistence

    ExistenceofBasic

    Mainfields ofpublications

    ofcommercial commercialequipment

    photothermalofapplication

    onmeasuringequipmentfor

    formeasuring Manufacturertechniques photoinduced

    basicmethods photoinduced

    absorption absorption

    Photoacoustic AnalysisofweaklyYes

    Yes

    Nodata

    technique absorbingmedia

    Deflection AnalysisofweaklyYes

    No

    Nodata

    technique absorbingmedia

    Thermallens AnalysisofweaklyYes(PCI)

    Yes(PCI)

    Yes(PCI)

    StatfordPhoto-technique absorbingmedia ThermalSolution

    Surface Surface thermallensing absorption Nodata No Nodata mapping

    Remoteanalysis ofabsorbingmedia, Photothermal measurementand radiometry monitoringof Yes Yes Nodata semiconductor parameters

    Photothermal Studyof reflectance semiconductor

    Yes

    Yes

    Nodata

    technique materials

    Visualisation Interferometric ofthermaland

    Nodata

    No

    Nodata

    technique acousticfields

  • L.A.Skvortsov12

    53. FournierD.,BoccaraA.,AmerN.,GerlachR.Appl. Phys. Lett.,37,519(1980).

    54. GorisL.,HaenenK.,NesldekM.,WagnerP.,VanderzandeD.,SchepperL.,DhaenJ.,LutsenL.,MancaJ.J. Mater. Sci.,40,1413(2005).

    55. TanakaK.,GotohT.,YoshidaN.,NonomuraS.J. Appl. Phys.,91,125(2002).

    56. XiaoL.,ChangyoungL.,ZhangL.,ZhaoY.,JiaS.,ZhouG.Chinese.J. Lasers,B9,538(2000).

    57. SalazarA.,Sanches-LavegaA.Rev. Sci. Instrum.,70,98(1999).58. BertolottiM.,LiakhouG.,LiVotiR.,PaoloniS.,SibiliaC.Appl.

    Phys. B,67,641(1998).59. LiY.,GuptaR.Appl. Phys. B.: Lasers and Optics,75,103(2002).60. MoriK.,NatsuharaH.,OhashiT.,SakakiyamaR.,ItohT.,

    YoshidaN.,NonomuraS.,FukawaM.,SatoK.Rev. Sci. Instrum.,74,863(2003).

    61. LukyanovA.,NovikovM.Zh. Tekh. Fiz.,70(11),99(2000).62. GupteS.,MarcanoA.,PradhanR.,DesaiC.F.,MelikechiJ.

    J. Appl. Phys.,89,4939(2001).63. AlexandrovskiA.,RouteR.,FejerM.Legal Sub. Com.Meeting

    (Hanford,WA,2001,LIGO-GJ10352-00Z).64. FurukavaY.,KitamuraK.,AlexandrovskiA.,RouteR.,

    FejerM.,FoulonG.Appl. Phys. Lett.,78,1970(2001).65. AlexandrovskiA.,FejerM.,MarkosyanA.,RouteR.Proc. SPIE

    Int. Soc. Opt. Eng.,7193,71930D(2009).66. GaumeR.,HeY.,MarkosyanA.,BayerR.J. Appl. Phys.,111,

    093104(2012).67. HarryG.,AbernathyM.,Becerra-ToledoA.,ArmandulaH.,

    BlackE.,DooleyK.,EichenfieldM.,NwabugwuC.,VillarA.,CrooksD.,CagnoliG.,HoughJ.,HowC.,MacLarenI.,MurrayP.,ReidS.,RowanS.,SneddonP.,FejerM.,RouteR.,PennS.,GanauP.,MackowskiJ.,MichelC.,PinardL.,RemillieuxA.Class. Quantum Grav.,24,405(2007).

    68. CabreraH.,MarcanoA.,CastellanosY.Condensed Matter Phys.,9,385(2006).

    69. ShenJ.,LoweR.,SnookR.Chem. Phys.,165,385(1992).70. ShenJ.,BaessoM.L.,SnookR.D.J. Appl. Phys.,75,3738(1994).71. MarcanoA.,LoperC.,MelikechiN.Appl. Phys. Lett.,78,3415(2001).72. MarcanoA.,LoperC.,MelikechiN.J. Opt. Soc. Am. B,19,119

    (2002).73. JacintoC.,CatundaT.J. Phys. IV,125,229(2005).74. GupteS.,MarcanoA.,PradhanR.,DesaiC.F.,MelikechiJ.

    J. Appl. Phys.,89,4939(2001).75. BrusnichkinA.,NedosekinD.,GalanzhaE.,VladimirovY.,

    ShevtsovaE.,ProskurninM.,ZharovV.J. Biophoton.,3(12),791(2010).

    76. CamdronR.,HarrisJ.J. Phys. Chem.,97,13598(1993).77. ProskurninM.Rev. Sci. Instr.,74,343(2003).78. AstrathN.,AstrathF.,ShenJ.,ZhouJ.,MichaelianK.,

    FairbridgeC.,MalacarneL.,PedreiraP.,MedinaA.,BaessoM.Opt. Lett.,34,3460(2009).

    79. BialkowskiS.Appl. Opt.,32,3177(1993).80. ChartierA.,BialkowskiS.Appl. Spectr.,55,84(2001).81. BialkowskiS.Photochem. Photobiol. Sci.,2,779(2003).82. KligerD.S.Ultrasensitive Laser Spectroscopy(NewYorkNorth

    Holland:Acad.Press,1983).83. SnookR.D.,LoweR.D.Analyst,120,2051(1995).84. LimaS.M.,SampaioJ.A.,CatundaT.,BentoA.C.,Miranda

    L.C.M.,BaessoM.L.J. Non-Cryst. Sol.,273,215(2000).85. JacintoC.,MessiasD.,AndradeA.,LimaS.,BaessoM.,Catunda

    T.J. Non-Cryst. Sol.,352,3582(2006).86. SaitoH.,IrikuraM.,HaraguchiM.,FukuiM.Appl. Opt.,31,

    2047(1992).87. ChowR.,TaylorJ.,WuZ.,KrupkaR.,YangT.High Reflector

    Absorptance Measurtments by the Surface Thermal Lensing Tech nique(UCRL-JC-125736Preprint,LLN,1996).

    88. WuZ.,StolzC.J.,WeakleyS.C.,HughesJ.D.,ZhaoQ.Appl. Opt.,20,1897(2001).

    89. MandelisA.,RiopelY.J. Vac. Sci. Technol. A,18,705(2000).90. ChristofidiesC.,NestorosM.,OthonosA.Proc. SPIE Int. Soc.

    Opt. Eng.,4,4(2000).91. ShaughnessyD.,MandelisA.,BatistaJ.,TolevJ.,LiB.Semicond.

    Sci. Technol.,21,320(2006).

    92. LopatkinV.N.,SidoryukO.E.,SkvortsovL.A.Kvantovaya Elektron.,12,339(1985)[Sov. J. Quantum Electron.,15,216(1985)].

    93. KolodnyiG.Ya.,NovopashinV.A.,SkvortsovL.A.Elektron. Tekh./Lazer. Tekh. Optoelektron. Ser. 11,No.4,100(1988).

    94. SidoryukO.E.,SkvortsovL.A.Zh. Prikl. Spektrosk.,56(5-6),781(1992).

    95. SidoryukO.E.,SkvortsovL.A.Zh. Prikl. Spektrosk.,64(1),82(1997).

    96. WatkinsS.E.,HeimlichR.,ReisR.Proc. SPIE Int. Soc. Opt. Eng.,1624,246(1992).

    97. LoarerT.,GreffetJ.J.,Heutz-AubertM.Appl. Opt.,29,979(1990).

    98. SkvortsovL.A.,KirillovV.M.Kvantovaya Elektron.,33,1113(2003)[ Quantum Electron.,33,1113(2003)].

    99. KirillovV.M.,SkvortsovL.A.Kvantovaya Elektron.,36,797(2006)[Quantum Electron.,36,797(2006)].

    100.BrousselyM.,LevickA.,EdwardsG.Intern. J. Thermophys.,26(1),221(2005).

    101.MartinsonsC.,LevickA.,EdwardsG.Analyt. Sci.,17,114(2001).

    102.FuenteR.,ApianizE.,MendiorozA.,SalazarA.J. Appl. Phys.,110,033515(2011).

    103.LeungW.,TamA.Appl. Phys. Lett.,51,2085(1987).104.KondyurinA.,SviridovA.Kvantovaya Elektron.,38,641(2008)

    [Quantum Electron.,38,641(2008)].105.KondyurinA.,SviridovA.,ObrezkovaM.,LuninV.Zh. Fiz.

    Khim.,83,1575(2009).106.ZverevG.M.,SkvortsovL.A.Izv. AN SSSR, Ser. Fiz.,45(3),644

    (1981).107.SkvortsovL.A.,KirillovV.M.Kvantovaya Elektron.,37,1076

    (2007)[Quantum Electron.,37,1076(2007)].108.CardonaM.Modulation Spectroscopy(NewYork:Academic,

    1969;Moscow:Mir,1972).109. RosencwaigJ.,OpsalW.,SmithW.,WillenborgD.Appl. Phys.

    Lett.,46,1013(1985).110. VitkinI.,CristofidiesC.,MandelisA.Appl. Phys. Lett.,54,2392

    (1989).111.SelaI.,WatkinsD.,LaurichB.,SmithD.,SubbanaS.,

    KroemerH.Phys. Rev. B,43,11884(1991).112.AvrutskiiI.,OsaulenkoO.,PlotnichenkoV.,PyrkovYu.Fiz.

    Tekh. Poluprovodn.,26(11),1907(1992).113.AmatoG.,BoarinoL.,BenedettoG.,SpagnoloR.Thin Sol.

    Films,255,111(1995).114.OthonosA.,CristofidiesC.Appl. Phys. Lett.,82,904(2002).115.ZhaoY.,ZhuC.,WangS.,TianJ.,YangD.,ChenC.,ChengH.,

    HingP.J. Appl. Phys.,98,4563(2004).116.ShanW.,WalukiewichW.,HallerE.J. Appl. Phys.,84,4952

    (1998).117.TalaatH.,El-BrolossyT.,NegmS.J. Phys.: Conf. Ser.,214,

    012100(2010).118.MisiewiczJ.,SitarekP.,SekG.,KudraviecR.Mater. Sci.,21(3),

    263(2003).119.PollakF.H.,ShenH.Mat. Sci. Eng.,R10,275(1993).120.VorobevL.E.,FirsovD.A.,ShalyginV.A.,PanevinV.Yu.,

    SafronovA.N.,YakimovA.I.,DvurechenskiiA.V.,TonkikhA.A.,WernerP.Fiz. Tekh. Poluprovodn.,46,1566(2012).

    121.CampilloA.,PetuchowskiS.,DavisC.,LinH.Appl. Phys. Lett.,41,327(1982).

    122. CournoyerA.,BaulaigueP.,LazaridesE.,BlancherH.,BertrandL.,OccelliR.Appl. Opt.,36,5252(1997).

    123.PellegrinoP.,FellN.,Jr.,GillespieJ.Proc. SPIE Int. Soc. Opt. Eng.,4205,4205441(2001).

    124.NonomuraS.,NishiwakiT.,NittaS.Philos. Mag. B,29,335(1994).

    125.SeraphinB.,BottkaN.Phys. Rev.,145,628(1966).126.WhiteW.,HenesianM.,WeberM.J. Opt. Soc. Am. B,2,1402

    (1985).127. PetrocelliG.,ScudieriF.,MartellucciS.Appl. Phys. B,52,123

    (1991).128.EvaE.,MannK.Appl. Phys. A,62,143(1996).

  • 13Laserphotothermalspectroscopyoflight-inducedabsorption

    129.PerryJ.,MansourK.,LeeI.,WuX.,Bedworth,P.,ChenC.,NgD.,MarderS.,MilesP.,WadaT.,TianM.,SasabeH.Science,273,1533(1996).

    130.KaatzP.,SheltonD.J. Opt. Soc. Am. B,16,998(1999).131.DenkW.,StricklerJ.,WebbW.Science,248,73(1990).132.BhawalkarJ.,KumarN.,ZhaoC.,PrasadP.J. Clin. Laser. Med.

    Surg.,15,201(1997).133.TwarowskiA.,KligerD.Chem. Phys.,20,253(1977).134.KamadaK.,MatsunagaK.,YoshinoA.,OhtaK.J. Opt. Soc.

    Am. B,20,529(2003).135.AlahmedZ.,GuptaR.Appl. Phys. B,79,741(2004).136.TwarowskiA.,KligerD.Chem. Phys.,20,259(1977).137.FangH.,GustafsonT.,SwoffordR.J. Chem. Phys.,78,1663

    (1983).138.KurianA.,LeeS.,UnnikrishnanK.,GeorgeD.,NampooriV.,

    VallabhanC.J. Nonlinear Opt. Phys. Mater.,12,75(2003).139.HalvorsonC.,HeegerA.Chem. Phys. Lett.,216,488(1993).140.HanJ.,RosensheinJ.,WuZ.,YeW.,ThomsenM.,ZhaoQ.Opt.

    Eng.,40,303(2001).141.LiB.,MartinS.,WelshE.Proc. SPIE Int. Soc. Opt. Eng.,82,4347

    (2001).142.CastilloJ.,KozichV.,MarcanoO.Opt. Lett.,19,171(1994).143. ImangholiB.,HasselbeskM.,Sheik-BahaeM.Opt. Commun.,

    227,337(2003).144.GaneevR.,RyasnyanskyA.,TigushevR.,KodirovM.,

    AkhmedjanovF.,UsmanovT.Opt. Quantum Electron.,36,807(2004).

    145.Sheik-BahaeM.,SaidA.,WeiT.,HaganD.,VanStrylandE.IEEE Quantum Electron.,26,760(1990).

    146. SilvaD.,AzekaL.,ZilloS.,MisogutiL.,MendoncaC.Opt. Commun.,251,423(2005).

    147.RodrigezL.,EchevarriaL.,FernandezA.Opt. Commun.,277,181(2007).

    148.MarcanoA.,WilliamsK.,MelikechiN.Opt. Commun.,281,2598(2008).