laser-driven medicine: a preludeharnessing physical forces for medical applications symposium ucla...

45
Harnessing Physical Forces for Medical Applications Symposium UCLA Nov. 16, 2018 Laser-driven Medicine: A prelude Toshiki Tajima Norman Rostoker Chair Professor Department of Physics and Astronomy UCI In memory of and dedication to the late Profs. + J. M. Dawson and + N. Rostoker

Upload: others

Post on 08-Feb-2021

7 views

Category:

Documents


0 download

TRANSCRIPT

  • Harnessing Physical Forces for Medical Applications SymposiumUCLA

    Nov. 16, 2018

    Laser-driven Medicine:A prelude

    Toshiki TajimaNorman Rostoker Chair Professor

    Department of Physics and AstronomyUCI

    In memory of and dedication to the late Profs. +J. M. Dawson and +N. Rostoker

  • abstract1. History of laser accelerator, which drove the laser technology

    and vice versa2. Elements of laser acceleration: a novel path toward tiny

    radiobeams (electrons, ions, X-rays (gamma-rays), neutrons, and radio-isotopic beams)

    3. Convergence with nanotechnology, biotechnology4. Potentiality: portability, intra-operative, endoscopic,

    theranostics, ….

  • History of laser accelerator:Elements of innovation

  • Advent of collective acceleration (1956)

  • Prehistoric activities (1973-75, 78)Collective acceleration suggested:

    Veksler (1956)(ion energy)~ (M/m)(electron energy)Many experimental attempts (~’70s):

    led to no such amplification(ion energy)~ (several)x(electron)

    Mako-Tajima found its reason (1978)

    Introduction of wakefields (Tajima-Dawson, 1979)→ electron acceleration possible

    with trapping (with Tajima-Dawson field. 1979), more tolerant for sudden process

    However, requires relativistically strong laser (see next development)

    Professor N. Rostoker

    Professor J. Dawson

  • - --

    ---

    -

    ---- - -

    -

    --

    ----

    -

    --- - -

    ---

    ----

    --

    --

    ----

    - -

    -

    ----

    - - --

    ---

    ---

    ----

    ----

    --

    ----

    -----

    --- -

    ----

    --- ++

    ++++ +

    ++++

    ++

    +++ ++ ++--

    Laser wakefield (Tajima-Dawson, 1979 @UCLA)

    Superconducting linacrf- tubeFermilab

    Emax~32MV/m

    ~40cm

    Laser pulse

    plasma

    ~0.03mm

    Emax~100,000MV/m

    Thousand-fold Compactification over conventional accelerators

    0.1mm

    (gas tube)

  • The late Prof. Abdus Salam*

    !"#$%&'#()**+,#(-.//0#1234256#',/78#(909*#:)**/;+

  • 9

    Laser technology invented (1985)

    !"#$%&"'(%")"*'+#,"#,-

    -'./01'2#3%4'56'!78&59&

    :75";%*';,4&%')

  • !"#$%&"''$($%")*%#&+$,"-+$+&,*%$&("#$% .-/$-).*-#!"#$%&'()$*+,() -./012

    ! 3&45 *+,()$-*&6($+$7+&)$!" &48&9&8:+**52;(%%&@A()$-'5$':48*(,2

    B7&4$C&*D$!@D>)(,,&@4$-./0E2! (9(4$,7@)3()$>:*,($-#$2

    F@:)@:G;$H)@

  • Elements of laser acceleration

  • !"#$%&'"($)*$+,&-!'./01&&&&

    !"#$%!"#$%& "&%# '()%*"#$%+,$"-.%"/0%*"-$%'#$%& "&%#1'

    ! relativityregularizes

    (relativistic coherence)

    !"#$%&'"($%)$*+,-./%00%.'$12"*%(&$$3 4)&' 00%%).' 5 !"#$%&'()*%"+(,+-./'01(2+/.&+"(345((&%'$0%'$"(234$%$56&%$6(#73364 "07#/0#7+ /%#"+"(8"9$:%$"( %$6(6;%:;+$52$

    Relativistic coherence enhances beyond the Tajima-Dawson field E = m!pc /e (~ GeV/cm)

    807.$9(2+%&(:.;(-%"+7 %,+"(0.("%0#7%0'.$(%&)-'0#6+?((E = m!vph /e

    ,"

    @A$'9.BB. :*'6+(C$("++B=D("0%0+

  • Adiabatic (Gradual) Acceleration of Ions from #1 lesson of Mako-Tajima problem

    Inefficient if suddenly

    accelerated

    Efficient when

    gradually accelerated

    Accelerating structure (Shinkansen Nozomi model)!

    protons "! Accelerating structure (Shinkansen Kodama Model)!

    !"##$%&'()&*+,-.,/&,00"/"+,12$%&3&4"/"5,%1&6$+&2$%#

  • Laser -Thin Foil Interaction

    X. Yan et al., 2009

  • !"#$

    ) (( ) ( )

    %&'()$*"+,$-,./0123324

    !"#$"%$&'()*"+,-.(/-,++0-,(122,3,-"%$&'

  • Radiation (Laser) Pressure Acceleration

    Esirkepov et al. (2004)

    Radiation dominant regime

  • Nanometric target

  • !

    !

    Adiabatic acceleration (2) Thick metal target

    laser protons electrons

    Graded, thin (nm), or clustered target and/or circular polarization

    Most experimental configurations of laser

    proton acceleration(2000-2009)

    Innovation (“Adiabatic Acceleration”) by laser

    (2009-)"#$%&'()#&(#*+,%#&'%#%-%!&.(/0#

    12&'2/#2(/#&.+332/4#12)&'

  • !"#$"%&'("'"%)*(+,-($./01'",,(&2(2&/3

    4$"/'1"5--678/97 :;(2&%(/&'(700"3"%7$/&'(7$((

    !"#$%&'&()*+,%--'-*".%-'/)&('!"01(%#%,&'2**%.%#"&)1,'13'41,-'56'7"-%# 802479

    � ⇡ a0

    CHE"%/9"'$I(D#%(,/9#37$/&'

    J"07,5(678/97(:;

  • Nanostructured target

    (Habs, 2009)

  • !"!"R. H. Doremus, J. Chem. Phys. 40, 2389 (1964)A. Kawabata and R. Kubo, J. Phys. 40, 1765 (1966)

    Why is Laser-Cluster Interaction Strong?

    #$%&'()'*+,+-

    ./01(23/(345+60/'70,'+14*01'83(,

  • 04052 86 .

    .7 7 160

    4052 30

    4052

    30

    Pulse Strength .

    Maximum energy vs. laser intensity

    Consistent to the Theory by Yan et al. (2009),though it is based on thin film case

    Cluster target scaling

  • Ion Energy vs. Cluster Radius

    16173= 8 7.04 8

    . 281

    6173= 51

    6173=

    51

    Radius [nm]

    Cluster target scaling: ion energy ~1/(cluster radius)

    Kishimoto,Tajima(2009)

  • Compact beam therapy

  • Toward Compact Laser-Driven Ion Therapy

    Laser particle therapy (image-guided diagnosis→irradiation→dose verification)targeting at smaller pre-metastasis tumors with more accuracy

    PET or γray image of autoradioactivation

    Proton accelerator+gantry

    laser

  • 26

    Artist’s view of the Heavy Ion Therapy Center (HIT) in Heidelberg

  • 27

    Spot-scanning simulation of laser proton radiotherapy for eye melanoma (a,b) and ARMD (c,d).

    ba

    c d

    Spot-Scanning Simulation of Laser Proton Radiotherapy

    Particle-in-cell simulation (PIC) software which calculates the properties of laser-accelerated protons, Monte-Carlo simulation software, and visualization tools for the dose evaluation were used. Iso-dose curve:Blue: 25%, Sky blue: 50%, Yellow: 75%, Orange: 90%, Red: 110%.

    (Simulation of dose distribution)

    Miyajima(JAEA)2005

  • prostate cancerrectum

    X-ray IMRT Proton IMRT

    Comparison of radiotherapy with the Bragg peak:Intensity Modulated Radio Therapy

  • Compact generation ofradioisotopes

  • Compact laser-driven isotope generation

    Some isotopes: so short life times that next door generation necessary

    Compact sources for energy-specific electrons, ions, radio-isotopic ions, neutrons,monoenergetic energy-sepctfic X-ray (and gamma) photons

    Technologies: *CPA lasers, CAN fiber lasers, TFC (Thin film Compression), CAIL acceleration of ions, wakefield acceleration

  • !"#$%&'()*" +,("*$%-.#))#'$*%

    !"#$%&'()*+#,*-%.)/#)0#123/4%.* 5&067*/#89:;########

  • !"#$%&'()*+,

    !"#$%$&'()(*+,-.&/-(&01+2222222222!"#$%$&'()(+,-.&/-(&01+

    34250/'&6+728+*016)26,29:;)+)2?@"A22222222B?

  • [18F]CHOLINE

    Prostate cancerD. Niculae, seminar at UCIrvine October 2016 33

  • !""#$%&'()&*

    !"#$%&'(')*+),&--).&./01#&)2%*'2%*-(2(3'

    40*$&(#)'"#$%&'('

    51$$"61,(3).&$1/*-('.

    [11C]Choline

    78)9(,:-1&;)'&.(#10)1$)0?(#& @,$*/&0)ABCD))))))))EF

  • Astrocytoma (no response)(courtesy by PET Centre St. Orsola Hospital, Bologna)

    After therapyBefore therapy

    [11C]Methionine

    D. Niculae, seminar at UCIrvine October 2016 35

  • Emerging radioisotopes and (alternative) production routes

    All medical radioisotopes now produced in reactors can be produced alternatively or can be replaced by isotopes which can be produced other than in a nuclear reactor

    Particle Accelerators Linear• Ge-68/Ga-68, and Sr-82/Rb-82, Zn-65, Mg-28, Fe-52, Rb-83 (200 MeV proton beam, 150 uA)Cyclotrons (10-100 MeV, up to 2 mA)• F-18, Sr-82, Cu-64,O-15, C-11, Br-77, I-124, Y-86, Ga-66/68, Cu-60/61, Zr-89, Tc-99m

    New routesCompact systems (Bench-scale electronic devices for achieving various high-energy nuclear reactions):

    proton accelerator: production of F-18, In-111, I-123, C-11, N-13, O-15 alpha linac: Sn-117m, Ac-225, As-73, Fe-55, At-211, Cd-109, Y-88, Se-75, Po-210 neutron sources

    Electron-beam accelerator• Bremsstrahlung 10-25 MeV electrons proposed for isotope production through: q Photo-fission of heavy elementsq (γ ,n) reactionsq Photo-neutron activation and (n,2n) reactions

    D. Niculae, seminar at UCIrvine October 2016 36

  • Emerging radioisotopes and (alternative) production routes

    Emerging medical radioisotopes: β-emitters and theragnostic agents – in preclinical and clinical research: Lu-177, Ho-166, Re-186/188, Cu-67, Pm-149, Au-199, Y-90

    Radionuclide

    Emission Half-life(hrs)

    Production Mechanism

    Particle/gammaEnergy (MeV)

    67Cu β (0.14 MeV)γ (0.18 MeV)

    62 68Zn(p, 2p)70Zn(p,α) 67Zn(n,p) 68Zn(γ,p)

    Ep (>> 30)Ep (>> 30) ReactorEγ (>19) σ = 0.03 barn

    47Sc β (0.16 MeV)γ (0.16 MeV)

    3.35 d 48Ti(γ,p) Eγ (>27) σ = 0.01 barn

    186Re β (0.35 MeV)γ (0.14 MeV)

    3.7 d 187Re(γ,n) Eγ (>15) σ = 0.6 barn

    149Pm β (1.072 MeV) 53.08 150Nd(γ,n)149Nd Eγ (>12.5) σ =0.22 barn152/155/

    161Tbβ+ (1.08 MeV)EC (0.86, 0.10 MeV)β- (0.154 MeV), Auger

    17.5/127,2165.3

    152Tb/155Tb proton-induced spallation 160Gd(n,γ)161Gd

    Neutron sourceReactor

    D. Niculae, seminar at UCIrvine October 2016 37

  • Emerging radioisotopes and (alternative) production routes

    Emerging medical radioisotopes: α-emitters and Auger-electrons emitters

    Radionuclide

    Emission Half-life(hrs)

    Production Mechanism Particle Energy (MeV)

    211At α 7.2 210Bi(α,2n) Eα (30)

    225Ac α (5.8 MeV)β (0.1 MeV)

    240 229Thorium generator Ion exchange from 225Ra 226Ra(p,2n)226Ra(γ,p)

    Reactor Ep (25–8) Eγ (>19) σ = 0.02 barn

    224Ra/212Pb/212Bi

    α (5.7 MeV)/β- (0.1 MeV)/α (6.0 MeV), β (0.77 MeV)

    3.7/ 10.64 h/60 .6 m

    226Ra(γ,2n) Eγ (>16) σ = 0.1 barn

    165Er A (0.038 MeV)γ (0.05 MeV)

    10.3 166Er(γ,n) Eγ (>13) σ = 0.3 barn

    149Tb α (3.967 MeV)β (0.7MeV)

    4.12 152Gd(p,4n)149Tb, Ta(p, X)149Tb

    D. Niculae, seminar at UCIrvine October 2016 38

  • !"#$%'()*!'+*,+)-)./.0$!*%)('1*"02$('3/)('1*"32'(!'%$&0*%'#.)

    !"#$%&'()*+#,*-%.)/#)0#123/4%.* 5&067*/#89:;########

  • Compact monoenergtic X-rays

  • !"!"

    #$%#&'()*+&$,-+.

    /0*0(%1230'-2#$%#&'230$4%(*0*250-+()-260(7*.

    %('8$,2-0**)&2#(%-$0%*2#(,,$4&%2906'0,*20%2'&4),$':2+&;$4(%$,?@$6*

    !"#$$%#&'$()*%+#,)-.#//(+0&')1!2*!3

    A?2A(,,*B2C$7$%2D7'2EF

  • !"#$%!$&'()%#*+,(-.((-)/,0.+!1'2'333&'1$$,&44,-",5-+-,(5+!14()%#*+,(-.((-) !"#$%&'%%&(#&)#*+",#$-./"#0&1"#2'3+"#45,#6758#95::;<

    6$%$-7"(7$1-7%)$'89 ,1%0-7!"#$)%0$'$":";)%,1

  • 43

    Early tumor detection:

    • Less chance of metastasis

    • Higher Quality-of-Life (QoL)

    • Fit for laser acceleration approach

    (compact laser accelerator:

    not good for large dose)

    Small tumor detection and therapy(by such method as Phase Contrast Imaging)

  • Conclusions1. Laser acceleration introduced: compact, innovative,

    broad radio-sources (electrons, ions, neutrons, gamma/X-rays)

    2. Wakefield: plasma’s unique robust high energy state3. Convergence of laser and nanotechnology (and

    biotechnology): matches well to produce new innovative radio-sources (s.a. ions, neutrons, X-rays)

    4. Modes of compact radio-sources: intra-operative, fiber, portable, ultrafast, endoscopic, short-lived isotopes, theranostics

  • !"#$%&'()*

    !"#$%&'(