large-scale similarity and distance metric...

31
Large-Scale Similarity and Distance Metric Learning Aur´ elien Bellet el´ ecom ParisTech Joint work with K. Liu, Y. Shi and F. Sha (USC), S. Cl´ emen¸conand I. Colin (T´ el´ ecom ParisTech) eminaire Criteo March 31, 2015

Upload: others

Post on 04-Jun-2020

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Large-Scale Similarity and Distance Metric Learningresearchers.lille.inria.fr/abellet/talks/large_scale_metric_learning.pdfLarge-Scale Similarity and Distance Metric Learning Aur elien

Large-Scale Similarity and

Distance Metric Learning

Aurelien BelletTelecom ParisTech

Joint work with K. Liu, Y. Shi and F. Sha (USC), S. Clemencon andI. Colin (Telecom ParisTech)

Seminaire CriteoMarch 31, 2015

Page 2: Large-Scale Similarity and Distance Metric Learningresearchers.lille.inria.fr/abellet/talks/large_scale_metric_learning.pdfLarge-Scale Similarity and Distance Metric Learning Aur elien

A bit about me

I PhD in Computer Science (Dec 2012)I Universite Jean Monnet, Saint-EtienneI Advisors: Marc Sebban, Amaury Habrard

I Postdoc in 2013–2014 (18 months)I University of Southern California, Los AngelesI Working with Fei Sha

I Joined Telecom ParisTech in OctoberI Chaire “Machine Learning for Big Data”I Working with Stephan Clemencon

Page 3: Large-Scale Similarity and Distance Metric Learningresearchers.lille.inria.fr/abellet/talks/large_scale_metric_learning.pdfLarge-Scale Similarity and Distance Metric Learning Aur elien

Outline of the talk

1. Introduction to Metric Learning

2. Learning (Infinitely) Many Local Metrics

3. Similarity Learning for High-Dimensional Sparse Data

4. Scaling-up ERM for Metric Learning

Page 4: Large-Scale Similarity and Distance Metric Learningresearchers.lille.inria.fr/abellet/talks/large_scale_metric_learning.pdfLarge-Scale Similarity and Distance Metric Learning Aur elien

Introduction

Page 5: Large-Scale Similarity and Distance Metric Learningresearchers.lille.inria.fr/abellet/talks/large_scale_metric_learning.pdfLarge-Scale Similarity and Distance Metric Learning Aur elien

Metric learningMotivation

I How to assign a similarity score to a pair of objects?I Basic component of many algorithms: k-NN, clustering, kernel

methods, ranking, dimensionality reduction, data visualizationI Crucial to performance of the aboveI Obviously problem-dependent

I The machine learning way: let’s learn it from data!I We’ll need some examples of similar / dissimilar thingsI Learn to approximate the latent notion of similarityI Can be thought of as representation learning

Metric Learning

Page 6: Large-Scale Similarity and Distance Metric Learningresearchers.lille.inria.fr/abellet/talks/large_scale_metric_learning.pdfLarge-Scale Similarity and Distance Metric Learning Aur elien

Metric learningBasic recipe

1. Pick a parametric form of distance or similarity functionI (Squared) Mahalanobis distance

d2M(x , x ′) = (x−x ′)TM(x−x ′) with M ∈ Rd×d symmetric PSD

I Bilinear similarity

SM(x , x ′) = xTMx ′ with M ∈ Rd×d

2. Collect similarity judgments on data pairs/tripletsI x i and x j are similar (or dissimilar)I x i is more similar to x j than to xk

3. Estimate parameters such that metric best satisfies themI Convex optimization and the like

Page 7: Large-Scale Similarity and Distance Metric Learningresearchers.lille.inria.fr/abellet/talks/large_scale_metric_learning.pdfLarge-Scale Similarity and Distance Metric Learning Aur elien

Metric learningA famous algorithm: LMNN [Weinberger et al., 2005]

Large Margin Nearest Neighbors

minM∈Sd+,ξ≥0

(1− µ)∑

(xi ,xj )∈S

d2M(xi , xj) + µ

∑i ,j ,k

ξijk

s.t. d2M(xi , xk)− d2

M(xi , xj) ≥ 1− ξijk ∀(xi , xj , xk) ∈ R,

S = {(xi , xj) : yi = yj and xj belongs to the k-neighborhood of xi}R = {(xi , xj , xk) : (xi , xj) ∈ S, yi 6= yk}

Page 8: Large-Scale Similarity and Distance Metric Learningresearchers.lille.inria.fr/abellet/talks/large_scale_metric_learning.pdfLarge-Scale Similarity and Distance Metric Learning Aur elien

Metric learningLarge-scale challenges

I How to efficiently learn multiple metrics?I Multi-task learningI Local linear metrics

I How to efficiently learn a metric for high-dimensional data?I Full d × d matrix not feasible anymore

I How to deal with large datasets?I Number of terms in the objective can grow as O(n2) or O(n3)

Page 9: Large-Scale Similarity and Distance Metric Learningresearchers.lille.inria.fr/abellet/talks/large_scale_metric_learning.pdfLarge-Scale Similarity and Distance Metric Learning Aur elien

Learning (Infinitely) Many Local Metrics[Shi et al., 2014]

Page 10: Large-Scale Similarity and Distance Metric Learningresearchers.lille.inria.fr/abellet/talks/large_scale_metric_learning.pdfLarge-Scale Similarity and Distance Metric Learning Aur elien

Learning (infinitely) many local metricsMain idea

I Assume we are given a basis dictionary B = {bk}Kk=1 in Rd

I We will learn d2w (x , x ′) = (x − x ′)TM(x − x ′) where

M =K∑

k=1

wkbkbTk , w ≥ 0

I Use sparsity-inducing regularizer to do basis selection

Page 11: Large-Scale Similarity and Distance Metric Learningresearchers.lille.inria.fr/abellet/talks/large_scale_metric_learning.pdfLarge-Scale Similarity and Distance Metric Learning Aur elien

Learning (infinitely) many local metricsGlobal and multi-task convex formulations

C ={x i , x+

i , x−i : d2

w (x i , x+i ) should be smaller than d2

w (x i , x−i )}Ci=1

SCML-Global

minw∈RK

+

1

C

C∑i=1

[1 + d2

w (x i , x+i )− d2

w (x i , x−i )]

++ β‖w‖1,

where [·]+ = max(0, ·)

mt-SCML : extension to T tasks

minW∈RT×K

+

T∑t=1

1

Ct

Ct∑i=1

[1 + d2

w t(x i , x+

i )− d2w t

(x i , x−i )]

++β‖W ‖2,1

I ‖W ‖2,1 : induce column-wise sparsity

I Metrics are task-specific but regularized to share features

Page 12: Large-Scale Similarity and Distance Metric Learningresearchers.lille.inria.fr/abellet/talks/large_scale_metric_learning.pdfLarge-Scale Similarity and Distance Metric Learning Aur elien

Learning (infinitely) many local metricsLocal metric learning

I Learn multiple local metrics : more flexibilityI One metric per region or classI One metric per training instance

I Many issuesI How to define the local regions?I How to generalize at test time?I How to avoid a growing number of parameters?I How to do avoid overfitting?

I Proposed approach : learn a metric for each point in space

Page 13: Large-Scale Similarity and Distance Metric Learningresearchers.lille.inria.fr/abellet/talks/large_scale_metric_learning.pdfLarge-Scale Similarity and Distance Metric Learning Aur elien

Learning (infinitely) many local metricsLocal nonconvex formulation

I We use the following parameterization :

dw (x , x ′) = (x − x ′)T(

K∑k=1

wk(x)bkbTk

)(x − x ′),

I wk(x) = (aTk φ(x) + ck)2 : weight of basis k

I φ(x) ∈ Rd′: (nonlinear) projection of x (e.g., kernel PCA)

I ak ∈ Rd′and ck ∈ R : parameters to learn for each basis

SCML-Local

minA∈R(d′+1)×K

+

1

C

C∑i=1

[1 + d2

w (x i , x+i )− d2

w (x i , x−i )]

++ β‖A‖2,1

I A : stack A = [a1 . . . aK ]T and cI If A = 0, recover the global formulation

Page 14: Large-Scale Similarity and Distance Metric Learningresearchers.lille.inria.fr/abellet/talks/large_scale_metric_learning.pdfLarge-Scale Similarity and Distance Metric Learning Aur elien

Learning (infinitely) many local metricsEfficient optimization

I Nonsmooth objective with large number of termsI Use stochastic proximal methods

I SCML-Global and mt-SCML are convexI Regularized Dual Averaging [Xiao, 2010]

I SCML-Local is nonconvexI Forward-backward algorithm [Duchi and Singer, 2009]I Initialize with solution of SCML-Global

Page 15: Large-Scale Similarity and Distance Metric Learningresearchers.lille.inria.fr/abellet/talks/large_scale_metric_learning.pdfLarge-Scale Similarity and Distance Metric Learning Aur elien

Learning (infinitely) many local metricsExperiments

Dataset Euc LMNN BoostML SCML-Global

Vehicle 29.7±0.6 23.5±0.7 19.9±0.6 21.3±0.6

Vowel 11.1±0.4 10.8±0.4 11.4±0.4 10.9±0.5Segment 5.2±0.2 4.6±0.2 3.8±0.2 4.1±0.2Letters 14.0±0.2 11.6±0.3 10.8±0.2 9.0±0.2USPS 10.3±0.2 4.1±0.1 7.1±0.2 4.1±0.1BBC 8.8±0.3 4.0±0.2 9.3±0.3 3.9±0.2

Avg. rank 3.3 2.0 2.3 1.2

Dataset M2LMNN GLML PLML SCML-Local

Vehicle 23.1±0.6 23.4±0.6 22.8±0.7 18.0±0.6Vowel 6.8±0.3 4.1±0.4 8.3±0.4 6.1±0.4

Segment 3.6±0.2 3.9±0.2 3.9±0.2 3.6±0.2Letters 9.4±0.3 10.3±0.3 8.3±0.2 8.3±0.2USPS 4.2±0.7 7.8±0.2 4.1±0.1 3.6±0.1BBC 4.9±0.4 5.7±0.3 4.3±0.2 4.1±0.2

Avg. rank 2.0 2.7 2.0 1.2

Page 16: Large-Scale Similarity and Distance Metric Learningresearchers.lille.inria.fr/abellet/talks/large_scale_metric_learning.pdfLarge-Scale Similarity and Distance Metric Learning Aur elien

Learning (infinitely) many local metricsExperiments

123

(a) Classmembership (b) Trainedmetrics (c) Testmetrics

50 400 700 1000 20000

100

200

300

400

Size of basis set

Num

berofselected

basis

SCML−GlobalSCML−Local

50 400 700 1000 20003

3.5

4

4.5

5

5.5

Size of basis set

Testingerrorrate

SCML−GlobalSCML−LocalEuc

Page 17: Large-Scale Similarity and Distance Metric Learningresearchers.lille.inria.fr/abellet/talks/large_scale_metric_learning.pdfLarge-Scale Similarity and Distance Metric Learning Aur elien

Similarity Learning for High-DimensionalSparse Data[Liu et al., 2015]

Page 18: Large-Scale Similarity and Distance Metric Learningresearchers.lille.inria.fr/abellet/talks/large_scale_metric_learning.pdfLarge-Scale Similarity and Distance Metric Learning Aur elien

Similarity learning for high-dimensional sparse dataProblem setting

I Assume data points are high-dimensional (d > 104) butD-sparse (on average) with D � d

I Bags-of-words (text, image), bioinformatics, etc

I Existing metric learning algorithms failI Intractable: training cost O(d2) to O(d3), memory O(d2)I Severe overfitting

I Practitioners use dimensionality reduction (PCA, RP)I Poor performance in presence of noisy featuresI Resulting metric difficult to interpret for domain experts

I Contributions of this workI Learn similarity in original high-dimensional spaceI Time/memory costs independent of dI Explicit control of similarity complexity

Page 19: Large-Scale Similarity and Distance Metric Learningresearchers.lille.inria.fr/abellet/talks/large_scale_metric_learning.pdfLarge-Scale Similarity and Distance Metric Learning Aur elien

Similarity learning for high-dimensional sparse dataA very large basis set

I We want to learn a similarity function SM(x , x ′) = xTMx ′

I Given λ > 0, for any i , j ∈ {1, . . . , d}, i 6= j we define

P(ij)λ =

· · · · ·· λ · λ ·· · · · ·· λ · λ ·· · · · ·

N(ij)λ =

· · · · ·· λ · −λ ·· · · · ·· −λ · λ ·· · · · ·

Bλ =

⋃ij

{P(ij)λ ,N(ij)

λ

}M ∈ Dλ = conv(Bλ)

I One basis involves only 2 features:

SP(ij)λ

(x , x ′) = λ(xix′i + xjx

′j + xix

′j + xjx

′i )

SN(ij)λ

(x , x ′) = λ(xix′i + xjx

′j − xix

′j − xjx

′i )

Page 20: Large-Scale Similarity and Distance Metric Learningresearchers.lille.inria.fr/abellet/talks/large_scale_metric_learning.pdfLarge-Scale Similarity and Distance Metric Learning Aur elien

Similarity learning for high-dimensional sparse dataProblem formulation and algorithm

Optimization problem (smoothed hinge loss `)

minM∈Rd×d

f (M) =1

C

C∑i=1

`(

1− xTi Mx+

i + xTi Mx−i

)s.t. M ∈ Dλ

I Use a Frank-Wolfe algorithm [Jaggi, 2013] to solve it

Let M(0) ∈ Dλfor k = 0, 1, . . . do

B(k) = arg minB∈Bλ

⟨B,∇f (M(k))

⟩M(k+1) = (1− γ)M(k) + γB(k)

end for

Figure adapted from [Jaggi, 2013]

Page 21: Large-Scale Similarity and Distance Metric Learningresearchers.lille.inria.fr/abellet/talks/large_scale_metric_learning.pdfLarge-Scale Similarity and Distance Metric Learning Aur elien

Similarity learning for high-dimensional sparse dataConvergence and complexity analysis

Convergence

Let L = 1C

∑Ci=1 ‖x i (x+

i − x−i )T‖2F . At any iteration k ≥ 1, the

iterate M(k) ∈ Dλ of the FW algorithm:

I has at most rank k + 1 with 4(k + 1) nonzero entries

I uses at most 2(k + 1) distinct features

I satisfies f (M(k))− f (M∗) ≤ 16Lλ2/(k + 2)

I An optimal basis can be found in O(CD2) time and memory

I An approximately optimal basis can be found in O(mD2) withm� C using a Monte Carlo approximation of the gradient

I Or even O(mD) using a heuristic (good results in practice)

I Storing M(k) requires only O(k) memory

I Or even the entire sequence M(0), . . . ,M(k) at the same cost

Page 22: Large-Scale Similarity and Distance Metric Learningresearchers.lille.inria.fr/abellet/talks/large_scale_metric_learning.pdfLarge-Scale Similarity and Distance Metric Learning Aur elien

Similarity learning for high-dimensional sparse dataExperiments

I K -NN test error on datasets with d up to 105

Datasets identity rp+oasis pca+oasis diag-`2 diag-`1 hdsl

dexter 20.1 24.0 9.3 8.4 8.4 6.5dorothea 9.3 11.4 9.9 6.8 6.6 6.5

rcv1 2 6.9 7.0 4.5 3.5 3.7 3.4rcv1 4 11.2 10.6 6.1 6.2 7.2 5.7

I Sparsity structure of the matrices

(a) dexter (20, 000×20, 000matrix, 712 nonzeros)

(b) rcv1 4 (29, 992×29, 992matrix, 5263 nonzeros)

Page 23: Large-Scale Similarity and Distance Metric Learningresearchers.lille.inria.fr/abellet/talks/large_scale_metric_learning.pdfLarge-Scale Similarity and Distance Metric Learning Aur elien

Similarity learning for high-dimensional sparse dataExperiments

0 2000 4000 6000 8000 100000

50

100

150

200

250

iteration

Num

ber

of S

elec

ted

Fea

ture

s

(a) dexter dataset

0 2000 4000 6000 80000

500

1000

1500

2000

iterationN

umbe

r of

Sel

ecte

d F

eatu

res

(b) rcv1 4 dataset

Page 24: Large-Scale Similarity and Distance Metric Learningresearchers.lille.inria.fr/abellet/talks/large_scale_metric_learning.pdfLarge-Scale Similarity and Distance Metric Learning Aur elien

Similarity learning for high-dimensional sparse dataExperiments

101

102

103

104

5

10

15

20

25

30

35

40

101

102

103

104

5

10

15

20

25

30

35

40

45

50

projection space dimension

Err

or r

ate

HDSLRPRP+OASISPCAPCA+OASISIdentity

(a) dexter dataset

projection space dimension

Err

or r

ate

HDSLRPRP+OASISPCAPCA+OASISIdentity

(b) dorothea dataset

101

102

103

104

5

10

15

20

25

30

35

40

projection space dimension

Err

or r

ate

HDSLRPRP+OASISPCAPCA+OASISIdentity

(c) rcv1 2 dataset

101

102

103

104

5

10

15

20

25

30

35

40

projection space dimension

Err

or r

ate

HDSLRPRP+OASISPCAPCA+OASISIdentity

(d) rcv1 4 dataset

Page 25: Large-Scale Similarity and Distance Metric Learningresearchers.lille.inria.fr/abellet/talks/large_scale_metric_learning.pdfLarge-Scale Similarity and Distance Metric Learning Aur elien

Scaling-up ERM for Metric Learning[Clemencon et al., 2015]

Page 26: Large-Scale Similarity and Distance Metric Learningresearchers.lille.inria.fr/abellet/talks/large_scale_metric_learning.pdfLarge-Scale Similarity and Distance Metric Learning Aur elien

Scaling-up ERM for metric learningEmpirical Minimization of U-Statistics

I Given an i.i.d. sample X1, . . . ,Xn, the U-statistic of degree 2with kernel H is given by

Un(H; θ) =2

n(n − 1)

∑i<j

H(Xi ,Xj ; θ)

I Can be generalized to higher degrees and multi-samples

I Empirical Minimization of U-statistic: minθ∈Θ Un(H; θ)I Applies to metric learning for classificationI Also pairwise clustering, ranking, etc

I Number of terms quickly becomes hugeI MNIST dataset : n = 60000→ 2× 109 pairs

Page 27: Large-Scale Similarity and Distance Metric Learningresearchers.lille.inria.fr/abellet/talks/large_scale_metric_learning.pdfLarge-Scale Similarity and Distance Metric Learning Aur elien

Scaling-up ERM for metric learningMain idea and results

I Approximate Un(H) by an incomplete version UB(H)I Uniformly sample B terms (with replacement)

I Main result : if B = O(n), the learning rate is preservedI O(1/

√n) convergence in the general case

I Objective function has only O(n) terms v.s. O(n2) initiallyI Due to high dependence in the pairs

I Naive strategy : use complete U-statistic with fewer samplesI Uniformly sample O(

√n) samples

I Form all possible pairs : O(n) termsI Learning rate is only O(1/n1/4)

I Can use similar ideas in mini-batch SGDI Reduce variance of gradient estimates

Page 28: Large-Scale Similarity and Distance Metric Learningresearchers.lille.inria.fr/abellet/talks/large_scale_metric_learning.pdfLarge-Scale Similarity and Distance Metric Learning Aur elien

Scaling-up ERM for metric learningExperiments

I MNIST dataset : n = 60000→ 2× 109 pairs

I Mini-batch SGDI Step size tuningI 50 random runs

Page 29: Large-Scale Similarity and Distance Metric Learningresearchers.lille.inria.fr/abellet/talks/large_scale_metric_learning.pdfLarge-Scale Similarity and Distance Metric Learning Aur elien

Conclusion and perspectives

I Metric learning: useful in a variety of setting

I Ideas to overcome some key limitationsI Large datasetsI High dimensionalityI Learn many local metrics

I Details and more results in the papers

I One interesting challenge : distributed metric learningI Existing work [Xie and Xing, 2014] too restrictive

Page 30: Large-Scale Similarity and Distance Metric Learningresearchers.lille.inria.fr/abellet/talks/large_scale_metric_learning.pdfLarge-Scale Similarity and Distance Metric Learning Aur elien

References I

[Clemencon et al., 2015] Clemencon, S., Bellet, A., and Colin, I. (2015).Scaling-up Empirical Risk Minimization: Optimization of Incomplete U-statistics.Technical report, arXiv:1501.02629.

[Duchi and Singer, 2009] Duchi, J. and Singer, Y. (2009).Efficient Online and Batch Learning Using Forward Backward Splitting.JMLR, 10:2899–2934.

[Jaggi, 2013] Jaggi, M. (2013).Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization.In ICML.

[Liu et al., 2015] Liu, K., Bellet, A., and Sha, F. (2015).Similarity Learning for High-Dimensional Sparse Data.In AISTATS.

[Shi et al., 2014] Shi, Y., Bellet, A., and Sha, F. (2014).Sparse Compositional Metric Learning.In AAAI, pages 2078–2084.

[Weinberger et al., 2005] Weinberger, K. Q., Blitzer, J., and Saul, L. K. (2005).Distance Metric Learning for Large Margin Nearest Neighbor Classification.In NIPS, pages 1473–1480.

Page 31: Large-Scale Similarity and Distance Metric Learningresearchers.lille.inria.fr/abellet/talks/large_scale_metric_learning.pdfLarge-Scale Similarity and Distance Metric Learning Aur elien

References II

[Xiao, 2010] Xiao, L. (2010).Dual Averaging Methods for Regularized Stochastic Learning and OnlineOptimization.JMLR, 11:2543–2596.

[Xie and Xing, 2014] Xie, P. and Xing, E. (2014).Large Scale Distributed Distance Metric Learning.Technical report, arXiv:1412.5949.