lapth.cnrs.frlapth.cnrs.fr/conferences/raqis/raqis16/slides/derkachov.pdf · sl(2, c) spin magnet...

35
SL(2, C) spin magnet Yang-Baxter equation R-operators,Q-operators and Baxter equation Construction of eigenfunctions Iterative construction of eigenfunctions of the matrix elements of the monodromy matrix S. Derkachov PDMI, St.Petersburg RAQIS’16 Recent Advances in Quantum Integrable Systems 22-26 August 2016

Upload: others

Post on 25-Mar-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

SL(2, C) spin magnet Yang-Baxter equation R-operators,Q-operators and Baxter equation Construction of eigenfunctions

Iterative construction of eigenfunctions of the matrix elements

of the monodromy matrix

S. Derkachov

PDMI, St.Petersburg

RAQIS’16 Recent Advances in Quantum Integrable Systems22-26 August 2016

SL(2, C) spin magnet Yang-Baxter equation R-operators,Q-operators and Baxter equation Construction of eigenfunctions

Plan

• SL(2,C) spin magnet

• principal series representations of SL(2,C)I. M. Gelfand, M. I. Graev, N. Ya. Vilenkin (1966)

Generalized functions. Vol. 5: Integral geometry and representation theory

• monodromy matrix

• operators A(u) and B(u)

• Yang-Baxter equation

• Construction of eigenfunctions

• R-matrices and Q-operators

• Iterative construction

• Eigenfunctions and Q-operators

based onS. Derkachov, G. Korchemsky, A. Manashov Nucl.Phys. B617 (2001) 375-440

Noncompact Heisenberg spin magnets from high-energy QCD: 1. Baxter Q

operator and separation of variables

S. Derkachov, A.Manashov J.Phys. A47 (2014) 305204 Iterative construction of

eigenfunctions of the monodromy matrix for SL(2,C) magnet

SL(2, C) spin magnet Yang-Baxter equation R-operators,Q-operators and Baxter equation Construction of eigenfunctions

Motivation

• SL(2,C) spin magnet• principal series representations of SL(2,C) I. M. Gelfand, M. A. Naimark,

Unitary representations of the classical groups,Trudy Mat. Inst. Steklov., vol. 36, Izdat. Nauk SSSR, Moscow - Leningrad,1950; German transl.: Academie - Verlag, Berlin, 1957.

"In some sense infinite-dimensional representations in many respects aremore simple in comparison with finite-dimensional representations."

• the model describes high-energy behaviour in Yang-Mills theoryL. N. Lipatov, High-energy asymptotics of multicolor QCD andtwo-dimensional conformal field theories, Phys. Lett. B 309 (1993) 394.High-energy asymptotics of multicolor QCD and exactly solvable latticemodels,hep-th/9311037.

L. D. Faddeev and G. P. Korchemsky, High-energy QCD as a completelyintegrable model, Phys. Lett. B 342 (1995) 311.

• diagonalization of B(u) ↔ Sklyanin SOV representationE. K. Sklyanin, Quantum Inverse Scattering Method.Selected Topics, in

Quantum Groups and Quantum Integrable Systems, (Nankai lectures), ed.Mo-Lin Ge, pp. 63-97, World Scientific Publ., Singapore 1992, [hep-th/9211111]

Separation of variables - new trends, Prog.Theor.Phys.Suppl. 118 (1995) 35-60,

[solv-int/9504001]

• diagonalization of A(u)L. N. Lipatov, Integrability of scattering amplitudes in N=4 SUSY, J. Phys. A 42

(2009) 304020.

SL(2, C) spin magnet Yang-Baxter equation R-operators,Q-operators and Baxter equation Construction of eigenfunctions

SL(2,C) spin magnetThe quantum SL(2,C) spin magnet is a straightforward generalization of thestandard XXXs spin chain.XXXs spin chain

The Hilbert space of the XXXs model is given by the tensor product of the(2s + 1)-dimensional representations of the SU(2) group

HN = V1 ⊗ V2 ⊗ · · · ⊗ VN , Vk = C2s+1

, k = 1, . . . ,N.

To each site k we associate the quantum L-operators with subscript k actingnontrivially on the k−th space in the tensor product

Lk(u) =

(u + iS (k) iS

(k)−

iS(k)+ u − iS (k)

)

; [S(k)+ ,S

(k)− ] = 2S

(k), [S (k)

,S(k)± ] = ±S

(k)±

The monodromy matrix is defined as a product of L−operators

T (u) = L1(u)L2(u) . . . LN(u) =

(AN(u) BN(u)CN(u) DN(u)

)

SL(2,C) spin magnet

(2s + 1)-dimensional representations of the SU(2) group −→ unitary principalseries representations of the SL(2,C) group

Vk = C2s+1 → Vk = L2(C)

SL(2, C) spin magnet Yang-Baxter equation R-operators,Q-operators and Baxter equation Construction of eigenfunctions

unitary principal series representations of SL(2,C)SL(2,C) spin magnet

g =

(a b

c d

)

∈ SL(2,C) ; g → T(s,s)(g) : L2(C)→ L2(C)

[T

(s,s)(g) φ](z, z) = (d − bz)−2s

(d − bz

)−2sφ

(−c + az

d − bz,−c + az

d − bz

)

〈φ |ψ〉 =

d2z φ(z, z)ψ(z, z) ; 〈T (s,s)(g)φ |T (s,s)(g)ψ 〉 = 〈φ |ψ〉

The spins s and s are parameterized as follows (ns ∈ Z , νs ∈ R)

s =1 + ns

2+ iνs ; s =

1− ns

2+ iνs

generators:

S− = −∂z , S = z∂z + s , S+ = z2∂z + 2s z

S− = −∂z , S = z∂z + s , S+ = z2∂z + 2s z

commutation relations:

[S+,S−] = 2S , [S,S±] = ±S± , [S+, S−] = 2S , [S, S±] = ±S±

conjugation:

S†± = −S± , S

† = −S

SL(2, C) spin magnet Yang-Baxter equation R-operators,Q-operators and Baxter equation Construction of eigenfunctions

Intertwining operator

There exists an operator W which intertwines a pair of principal seriesrepresentations T (s,s) and T (1−s,1−s) at generic complex s and s

W (s, s)T(s,s)(g) = T

(1−s,1−s)(g)W (s, s)

Integral operator

[W (s, s)Φ ] (z, z) = const

C

d2x

Φ(x , x)

(z − x)2−2s(z − x)2−2s

• The operator W is well-defined at generic s, s and the problems emergefor the discrete set of points 2s = −n , 2s = −n at n, n ∈ Z≥0

• At these special values of spins an (n + 1)(n + 1)-dimensionalrepresentation decouples from the general infinite-dimensional case

[

T(− n

2,− n

2)(g) Φ

]

(z, z) = (d − bz)n(d − bz

)nΦ

(−c + az

d − bz,−c + az

d − bz

)

The space of polynomials spanned by (n + 1)(n + 1) basis vectors zk z k ,where k = 0, 1, · · · , n and k = 0, 1, · · · , n is invariant subspace.

SL(2, C) spin magnet Yang-Baxter equation R-operators,Q-operators and Baxter equation Construction of eigenfunctions

Normalized intertwining operator[z]α ≡ zα zα – single valued function in the complex plane provided thatα− α ∈ Z

Fourier transformation I∫

d2z

e i(pz+pz)

[z]α= π i

α−αa(α)

1

[p]1−α

a(α) ≡ a(α, α) =Γ(1− α)

Γ(α), a(α,β, γ, . . .) = a(α)a(β)a(γ) . . .

Fourier transformation II

1

πiα−αa(1 + α)

d2x

eipx+i px

x1+αx1+α= p

αp

α

p → i∂z , p → i∂z

[i∂z ]α Φ(z, z) =

1

πiα−αa(1 + α)

d2x [z − x ]−1−α Φ(x , x)

normalized intertwining operator

[W (s, s)Φ ] (z, z) =i2s−2s

πa(2− 2s)

d2x [z − x ]2s−2 Φ(x , x)

W (s) = [i∂z ]1−2s

SL(2, C) spin magnet Yang-Baxter equation R-operators,Q-operators and Baxter equation Construction of eigenfunctions

SL(2,C) spin magnet

The Hilbert space of the SL(2,C) spin magnet is given by the tensor product ofthe unitary principal series representations of the SL(2,C) group

HN = V1 ⊗ V2 ⊗ · · · ⊗ VN , Vk = L2(C) , k = 1, . . . ,N.

The space HN is the space of functions Ψ(z1, z1 . . . , zN , zN).To each site k we associate the pair of quantum L-operators with subscript k

acting nontrivially on the k−th space in the tensor product

Lk(u) =

(u + iS (k) iS

(k)−

iS(k)+ u − iS (k)

)

, Lk(u) =

(u + i S (k) i S

(k)−

i S(k)+ u − i S (k)

)

,

where u is complex conjugate to u. The monodromy matrices TN(u) andTN(u) are defined as a product of L operators

T (u) = L1(u)L2(u) . . . LN(u) , T (u) = L1(u)L2(u) . . . LN(u)

T (u) =

(AN(u) BN(u)CN(u) DN(u)

)

, T (u) =

(AN(u) BN(u)CN(u) DN(u)

)

The operators AN(u) ,BN(u) are differential operators of N−th order in thevariables z1, . . . , zN and AN(u) , BN(u) are differential operators of N−th orderin the variables z1, . . . , zN .

SL(2, C) spin magnet Yang-Baxter equation R-operators,Q-operators and Baxter equation Construction of eigenfunctions

Eigenfunctions of AN(u) and AN(u)

AN(u) , AN(u) are polynomials of degree N in u and u correspondingly

AN(u) = uN + iu

N−1S +

N∑

k=2

uN−k

ak , S =

N∑

k=1

S(k)

AN(u) = uN + i u

N−1S +

N∑

k=2

uN−k

ak , S =

N∑

k=1

S(k)

by construction [AN(u), AN(v)] = 0→ [S, S] = [ak , aj ] = 0

RTT → [AN(u),AN(v)] = 0 , [AN(u), AN(v)] = 0→ [ak , aj ] = [ak , aj ] = 0

conjugation rules for generators → AN(u) = (AN(u))† → a

†k = ak

AN(u) , AN(u) generate the set of commuting self-adjoint operators

{

i(S + S), S − S, ak + ak , i(ak − ak), k = 2, . . .N}

and can be diagonalized simultaneously

SL(2, C) spin magnet Yang-Baxter equation R-operators,Q-operators and Baxter equation Construction of eigenfunctions

Eigenfunctions of AN(u) and AN(u)

AN(u)ΨA(x |z) = (u − x1) · · · (u − xN)ΨA(x|z)

AN(u)ΨA(x |z) = (u − x1) · · · (u − xN)ΨA(x|z)

The eigenfunctions ΨA(z1, z1 . . . , zN , zN) are labeled by zeroes of polynomialeigenvalues

x = {x1, . . . , xN}, xk = (xk , xk)

z = {z1, . . . , zN}, zk = (zk , zk )

Further, the operator AN(u) is a hermitian adjoint of AN(u), AN(u) = (AN(u))†

and it results in the following relation for the eigenvalues(

N∏

k=1

(u − xk )

)∗

=

N∏

k=1

(u∗ − xk)

that, in its turn, implies that x∗k = xk . Together with the condition

(s − ixk )− (s − i xk) = −i(xk − xk) + ns ∈ Z

it results in the following parametrization: nk ∈ Z , νk ∈ R

xk = −ink

2+ νk , xk =

ink

2+ νk

SL(2, C) spin magnet Yang-Baxter equation R-operators,Q-operators and Baxter equation Construction of eigenfunctions

Simplest example N = 1

L(u) = i

(s − iu + z∂ −∂z2∂ + 2sz −s − iu − z∂

)

=

(A1(u) B1(u)C1(u) D1(u)

)

eigenfunctions

ΨA(x|z) = [z]ix−s ≡ zix−s

zi x−s

[z]α ≡ zα zα – single valued function in the complex plane provided thatα− α ∈ Z→ (s− ix)−(s− i x) = −i(x− x)+ns ∈ Z→ x = − in

2+ν , x = in

2+ν

A1(u) zix−s

zi x−s = i (s − iu + z∂) z

ix−sz

i x−s = (u − x) zix−s

zi x−s

A1(u) zix−s

zi x−s = i

(s − i u + z∂

)z

ix−sz

i x−s = (u − x) zix−s

zi x−s

orthogonality x1 = − in12+ ν1 , x1 = in1

2+ ν1 , x2 = − in2

2+ ν2 , x2 = in2

2+ ν2

d2z ΨA(x1|z)ΨA(x2|z) = 2π2

δ2(x1 − x2) , δ

2(x1 − x2) = δn1n2 δ(ν1 − ν2)

completeness x = − in2+ ν , x = in

2+ ν

Dx ΨA(x|z1)ΨA(x|z2) = 2π2δ

2(z1 − z2) ,

Dx =∑

n∈Z

∫ +∞

−∞

SL(2, C) spin magnet Yang-Baxter equation R-operators,Q-operators and Baxter equation Construction of eigenfunctions

Eigenfunctions of BN(u) and BN(u)

BN(u) , BN(u) are polynomials of degree N − 1

BN(u) = iuN−1

S− +

N∑

k=2

uN−k

bk , S− =

N∑

k=1

S(k)−

BN(u) = i uN−1

S− +

N∑

k=2

uN−k

bk , S− =

N∑

k=1

S(k)−

Eigenfunctions ΨB(x|z)

BN(u)ΨB(x|z) = p(u − x1) · · · (u − xN−1)ΨB(x|z)

BN(u)ΨB(x|z) = p(u − x1) · · · (u − xN−1)ΨB(x|z)

are parameterized by the momenta p, p – eigenvalues of the S−, S− operatorsand the roots xk , xk , k = 1, . . . ,N − 1

x = {x1, . . . , xN−1, xN = (p, p)}

SL(2, C) spin magnet Yang-Baxter equation R-operators,Q-operators and Baxter equation Construction of eigenfunctions

Simplest example N = 1

L(u) = i

(s − iu + z∂ −∂z2∂ + 2sz −s − iu − z∂

)

=

(A1(u) B1(u)C1(u) D1(u)

)

eigenfunctions

ΨB(p|z) = eipz+i pz

B1 eipz+i pz = −i∂ e

ipz+i pz = p eipz+i pz

B1 eipz+i pz = −i ∂ e

ipz+i pz = p eipz+i pz

orthogonality∫

d2z ΨB(p1|z)ΨB(p2|z) = π

2(p1 − p2)

completeness∫

d2p ΨB(p|z1)ΨB(p|z2) = π

2(z1 − z2)

everything is based on well known formula∫ +∞

−∞

dp eipx = 2πδ(x)

SL(2, C) spin magnet Yang-Baxter equation R-operators,Q-operators and Baxter equation Construction of eigenfunctions

R-matrix and Yang-Baxter equation

R(u, u) is SL(2,C)-invariant solution of Yang-Baxter equation

Yang-Baxter equation V1 ⊗ V2 ⊗ V3

R12(u − v , u − v)R13(u, u)R23(v , v) = R23(v , v)R13(u, u)R12(u − v , u − v)

SL(2,C)-invariance

Rij(u, u) : Vi ⊗ Vj → Vi ⊗ Vj ,

T(si ,si )(g) ⊗ T

(sj ,sj )(g)Rij(u, u) = Rij(u, u)T(si ,si )(g) ⊗T

(sj ,sj )(g)

RLL-relation

V1 ,V2 generic and V3 - two-dimensional: there are two variants

• s3 = − 12, s3 = 0: invariant subspace with basis {1, z3}

R12(u − v , u − v)L1(u)L2(v) = L2(v) L1(u)R12(u − v , u − v)

• s3 = 0 , s3 = − 12: invariant subspace with basis {1, z3}

R12(u − v , u − v) L1(u) L2(v) = L2(v) L1(u)R12(u − v , u − v)

SL(2, C) spin magnet Yang-Baxter equation R-operators,Q-operators and Baxter equation Construction of eigenfunctions

L-operator

L(u) = i

(z∂ + s − iu −∂z2∂ + 2s z −z∂ − s − iu

)

=

= i

(1 0z 1

)(s − iu − 1 −∂

0 −s − iu

)(1 0−z 1

)

restrictions

• s3 = − 12, s3 = 0

R13(u, u)→ L1(u) = L1(u1, u2) =

(1 0z1 1

)(u1 −∂1

0 u2

)(1 0−z1 1

)

R23(v , v)→ L2(v) = L2(v1, v2) =

(1 0z2 1

)(v1 −∂2

0 v2

)(1 0−z2 1

)

• s3 = 0 , s3 = − 12

R13(u, u)→ L1(u) = L1(u1, u2) ; R23(v , v)→ L2(v) = L2(v1, v2)

u, s1 −→ u1 = s1 − iu − 1 , u2 = −s1 − iu ; v , s2 −→ v1 = s2 − iv − 1 , v2 = −s2 − iv

SL(2, C) spin magnet Yang-Baxter equation R-operators,Q-operators and Baxter equation Construction of eigenfunctions

RLL-relations

RLL-relation in a matrix form

R12

(z1∂1 + s1 − iu −∂1

z21∂1 + 2s1z1 −z1∂1 − s1 − iu

)(z2∂2 + s2 − iv −∂2

z22∂2 + 2s2z2 −z2∂2 − s2 − iv

)

=

(z2∂2 + s2 − iv −∂2

z22∂2 + 2s2z2 −z2∂2 − s2 − iv

)(z1∂1 + s1 − iu −∂1

z21∂1 + 2s1z1 −z1∂1 − s1 − iu

)

R12

RLL-relation – compact notations

R12(u − v) L1(u)L2(v) = L2(v) L1(u)R12(u − v)

RLL-relation – explicit notations

R12(u1, u2|v1, v2) L1(u1, u2)L2(v1, v2) = L2(v1, v2)L1(u1, u2)R12(u1, u2|v1, v2)

R-operator The full-fledged notation would be R12(u − v , u − v |s1, s1, s2, s2)

SL(2, C) spin magnet Yang-Baxter equation R-operators,Q-operators and Baxter equation Construction of eigenfunctions

R-operatorgenerators are first order differential operators with respect to the variables z1

and z2 acting on the function ψ(z1, z2)It is useful to extract operator of permutation from R-operator

P12 : P12 ψ(z1, z2) = ψ(z2, z1)

R12 = P12 R12 ,

R12(u1, u2|v1, v2) L1(u1, u2)L2(v1, v2) = L1(v1, v2)L2(u1, u2)R12(u1, u2|v1, v2)

u ≡ (v1, v2, u1, u2)←→ group of permutations S4

R12(u)↔ σ = σ2σ1σ3σ2 ; σ(v1, v2, u1, u2) = (u1, u2, v1, v2)

elementary transpositions σ1, σ2 and σ3 – generators in S4

σ1u = (v2, v1, u1, u2) ; σ2u = (v1, u1, v2, u2) ; σ3u = (v1, v2, u2, u1)

(

S1︷ ︸︸ ︷v1 , v2, u1, u2) : S1(u) L2(v1, v2) = L2(v2, v1) S1(u)

(v1

S2︷︸︸︷v2, u1, u2) : S2(u) L1(u1, u2)L2(v1, v2) = L1(v2, u2) L2(v1, u1) S2(u)

(v1, v2,

S3︷ ︸︸ ︷u1 , u2) : S3(u)L1(u1, u2) = L1(u2, u1)S3(u)

SL(2, C) spin magnet Yang-Baxter equation R-operators,Q-operators and Baxter equation Construction of eigenfunctions

R-operator

S1 and S3 – intertwining operators

u1 ⇄ u2 ←→ s ⇄ 1− s

W L(u1, u2) = L(u2, u1)W←→W = [i∂]1−2s = [i∂]u2−u1

S1(u) = [i∂2]v2−v1 ; S3(u) = [i∂1]

u2−u1

Defining equation for the last operator S2(u) in explicit form (zij = zi − zj )

S2

(1 0z1 u2

)(u1 −∂z1

0 1

)(1 0

z21 1

)(1 −∂z2

0 v2

)(v1 0−z2 1

)

=

=

(1 0z1 u2

)(v2 −∂z1

0 1

)(1 0

z21 1

)(1 −∂z2

0 u1

)(v1 0−z2 1

)

S2

[S2, z1] = [S2, z2] = 0←→ S2(u) = [z12]u1−v2

σ = σ2σ1σ3σ2 → R12(u) = S2(σ1σ3σ2u) S1(σ3σ2u) S3(σ2u)S2(u) =

= [z12]u2−v1 [i∂2]

u1−v1 [i∂1]u2−v2 [z12]

u1−v2

SL(2, C) spin magnet Yang-Baxter equation R-operators,Q-operators and Baxter equation Construction of eigenfunctions

R-operator

R-operator

R12(u − v , u − v) = [z12]u2−v1 [i∂2]

u1−v1 [i∂1]u2−v2 [z12]

u1−v2

RLL-relation – explicit check

[z12]u2−v1 [i∂2]

u1−v1 [i∂1]u2−v2 [z12]

u1−v2 L1(u1, u2)L2(v1, v2) =

[z12]u2−v1 [i∂2]

u1−v1 [i∂1]u2−v2 L1(v2, u2)L2(v1, u1) [z12]

u1−v2 =

[z12]u2−v1 [i∂2]

u1−v1 L1(u2, v2)L2(v1, u1) [i∂1]u2−v2 [z12]

u1−v2 =

[z12]u2−v1 L1(u2, v2)L2(u1, v1) [i∂2]

u1−v1 [i∂1]u2−v2 [z12]

u1−v2 =

L1(v1, v2)L2(u1, u2) [z12]u2−v1 [i∂2]

u1−v1 [i∂1]u2−v2 [z12]

u1−v2

Yang-Baxter relation: braided form ←→ star-triangle relation

R23(u − v , u − v)R12(u, u)R23(v , v) = R12(v , v)R23(u, u)R12(u − v , u − v)

SL(2, C) spin magnet Yang-Baxter equation R-operators,Q-operators and Baxter equation Construction of eigenfunctions

Star-triangle relation

[i∂1]a [z12]

a+b [i∂1]b = [z12]

b [i∂1]a+b [z12]

a,

[i∂2]a [z12]

a+b [i∂2]b = [z12]

b [i∂2]a+b [z12]

a

These identities are equivalent to the star-triangle relation

[i∂z ]a [z]a+b [i∂z ]

b = [z]b [i∂z ]a+b [z]b

A.P. Isaev Nucl.Phys. B662 (2003) 461-475 Multiloop Feynman integrals and

conformal quantum mechanics

equivalent form – integral identity

d2w

1

[z − w ]α [w − x ]β [w − y ]γ=

πa(α,β, γ)

[z − x ]1−γ [z − y ]1−β [y − x ]1−α

α+ β + γ = α+ β + γ = 2

SL(2, C) spin magnet Yang-Baxter equation R-operators,Q-operators and Baxter equation Construction of eigenfunctions

R-operator

factorization of L-operator

L(u1, u2) = i

(u1 + 1 + z∂ −∂

z2∂ + (u1 − u2 + 1) z v2 − z∂

)

= iZ

(u1 −∂0 u2

)

Z−1

Z =

(1 0z 1

)

, u1 = s − 1− iu , u2 = −s − iu .

R-operator interchange u2 ↔ v2 in the product of L−operators

R12 L1(u1, u2)L2(v1, v2) = L1(u1, v2)L2(v1, u2)R12 ,

R12 L1(u1, u2)L2(v1, v2) = L1(u1, v2)L2(v1, u2)R12

explicit expression

[R12 Φ](z1, z2) =

d2w1

[z1 − z2]u2−u1

[w1 − z1]1+u2−v2 [w1 − z2]v2−u1Φ(w1, z2)

The main building block is the operator R12(x) which interchanges the secondparameters u2 = −s − iu and v2 = ix − iu in the product of two L-operators

R12(x) L1(u1, u2) L2(u1, ix − iu) = L1(u1, ix − iu) L2(u1, u2)R12(x)

SL(2, C) spin magnet Yang-Baxter equation R-operators,Q-operators and Baxter equation Construction of eigenfunctions

R-operator

[R12(x)Φ] (z1, z2) =

d2w1

[z1 − z2]1−2s

[w1 − z1]1−s−ix [w1 − z2]1−s+ixΦ(w1, z2)

Let us define operator

R12...N0(x) = R12(x)R23(x) · · ·RN−1 N(x)RN0(x)

Using the defining relation for R12(x) it is possible to prove the followingrelations

• commutation relation with operator AN(u) + z0BN(u)

R12...N0(x) (AN(u) + z0BN(u)) = (AN(u) + z0BN(u)) R12...N0(x)

• mutual commutativity

R12...N0(u)R12...N0(v) = R12...N0(v)R12...N0(u)

• Baxter relations

(AN(u) + z0BN(u)) R12...N0(u, u) = (u + is)NR12...N0(u + i , u)

(AN(u) + z0BN(u)

)R12...N0(u, u) = (u + i s)N

R12...N0(u, u + i)

SL(2, C) spin magnet Yang-Baxter equation R-operators,Q-operators and Baxter equation Construction of eigenfunctions

Commutativity

R12(x) L1(u1, u2) L2(u1, ix − iu) = L1(u1, ix − iu) L2(u1, u2)R12(x)

R12...N0(x) L1 (u1, u2) · · · LN (u1, u2) L0 (u1, ix − iu) =

= L1 (u1, ix − iu) L2 (u1, u2) · · · LN (u1, u2)L0 (u1, u2) R12...N0(x)

v2 = ix − iu enters the second row of the matrix L1 (u1, ix − iu) only

R12...N0 (x)(

AN(u) + z0BN(u) BN(u))(

s − iu − 1 −∂0

0 ix − iu

)

=

=(

AN(u) + z0BN(u) BN(u))(

s − iu − 1 −∂0

0 −s − iu

)

R12...N0 (x)

as a consequence we obtain the commutation relation

R12...N0 (x) (AN(u) + z0BN(u)) = (AN(u) + z0BN(u)) R12...N0 (x)

The commutativity

R12...N0(u)R12...N0(v) = R12...N0(v)R12...N0(u)

can be proved diagrammatically.

SL(2, C) spin magnet Yang-Baxter equation R-operators,Q-operators and Baxter equation Construction of eigenfunctions

Baxter equation

R12(x) L1(u1, u2) L2(u1, ix − iu) = L1(u1, ix − iu) L2(u1, u2)R12(x)

Z−11 R12(x) L1(u1, u2)Z2 =

((x + is)R12(x + i) + (u − x)R12(x) −iR12(x)∂1

−(u − x) z12 R12(x) (x − is)R12(x − i) + (u − x)R12(x)

)

Note the important property: for x = u we obtain triangular matrix

Z−11 R12(u)R23(u) · · ·RN0(u) L1(u)L2(u) · · · LN(u)Z0 =

(

(u + is)R12(u + i) −iR12(u)∂1

0 (u − is)R12(u − i)

)

· · ·

(

(u + is)RN0(u + i) . . .

0 . . .

)

As a consequence of this matrix relation we derive Baxter equation

R12...N0(u, u) (AN(u) + z0BN(u)) = (u + is)NR12...N0(u + i , u) .

SL(2, C) spin magnet Yang-Baxter equation R-operators,Q-operators and Baxter equation Construction of eigenfunctions

Diagram technique: main rules

w z

α

= [z − w]−α

Figure: The diagrammatic representation of the propagator.

= π(−1)γ−γa(α, β, γ)α β

= π a(α, β, γ)

α + β − 1

α

βγ

1− α

1− β 1− γ

Figure: The chain and star– triangle relations, α + β + γ = 2.

SL(2, C) spin magnet Yang-Baxter equation R-operators,Q-operators and Baxter equation Construction of eigenfunctions

Diagram technique: cross relation and commutativity

=

α

1− α′

β

1− β ′

α′−α

1− α

α′ β ′

1− β

β−β′

a(α, β)a(α′, β′)

Figure: The cross relation, α + β = α′ + β′.

The kernel of the integral operator R12...N0(x) is given by the followingexpression

R12...N0(z1, . . . , zN , z0|w1, . . . ,wN) =

N−1∏

k=1

[zk − zk+1]−γ [wk − zk ]

−α[wk − zk+1]−β

[zN − z0]−γ [wN − zN ]

−α[wN − z0]−β

whereα = 1− s − ix , β = 1− s + ix , γ = 2s − 1

SL(2, C) spin magnet Yang-Baxter equation R-operators,Q-operators and Baxter equation Construction of eigenfunctions

Diagram technique: cross relation and commutativity

z1

z2

z3

z0

w1

w2

w3

γ

α

β

α1

α2

β1

β2

α1

1− α1

β2 − β1

β1 1− β2

α1 1− α2

β1

1− α2

1− β2γ

γ 1− γ

1− γ

γ

z0

z0

z0

z0

Figure: Diagrammatic proof of commutativity

commutativity

R12...N0(u)R12...N0(v) = R12...N0(v)R12...N0(u)

SL(2, C) spin magnet Yang-Baxter equation R-operators,Q-operators and Baxter equation Construction of eigenfunctions

Q-operators

In two special cases z0 → 0 and z0 →∞ we obtain two operators:

R12...N0(u)z0→0−→ QA(u)

R12...N0(u)z0→∞−→ [z0]

−s−iuQB(u)

with all characteristic properties of Q-operators

QA-operator

[QA(v) ,QA(u)] = [QA(v) ,AN(u)] = 0

AN(u)QA(u, u) = (u + is)NQA(u + i , u)

AN(u)QA(u, u) = (u + i s)NQA(u, u + i)

QB-operator

[QB(v) ,QB(u)] = [QB(v) ,BN(u)] = 0

BN(u)QB(u, u) = (u + is)NQB(u + i , u)

BN(u)QB(u, u) = (u + i s)NQB(u, u + i)

SL(2, C) spin magnet Yang-Baxter equation R-operators,Q-operators and Baxter equation Construction of eigenfunctions

Iterative construction of eigenfunctions

The operatorR12...N(x) = R12(x)R23(x) · · ·RN−1 N(x)

moves v2 = ix − iu from the right hand side of the product of L-operators tothe left hand side

R12...N(x)L1 (u1, u2) · · · LN−1 (u1, u2)LN (u1, ix − iu) =

= L1 (u1, ix − iu) L2 (u1, u2) · · · LN (u1, u2)R12...N(x)

Relation for the first row

iR12...N (x) (AN−1(u) BN−1(u))

(s − iu + zN∂N −∂N

z2N∂N + (s − ix) zN ix − iu − zN∂N

)

=

= (AN(u) BN(u)) R12...N (x)

B-operator

action on the function Ψ(z1 . . . zN−1) which does not depend on zN

BN(u)R12...N (x)Ψ(z1 . . . zN−1) = (u − x)R12...N (x)BN−1(u)Ψ(z1 . . . zN−1)

SL(2, C) spin magnet Yang-Baxter equation R-operators,Q-operators and Baxter equation Construction of eigenfunctions

Iterative construction of eigenfunctionsNext we continue up to the last step

BN(u)R12...N (x1) · · ·R12...k(xk−1) · · ·R12(xN−1)Ψ(z1) =

= (u − x1) · · · (u − xN−1)R12...N (x1) · · ·R12...k(xk−1) · · ·R12(xN−1)B1(u)Ψ(z1)

where R12...k(x) = R12(x)R23(x) · · ·Rk−1,k(x). The eigenfunction of the lastoperator B1(u) is e

ipz1+i pz1

ΨB(x|z) ∼ R12...N (x1) · · ·R12(xN−1) eipz1+i pz1

A-operator

action on the function Ψ(z1 . . . zN−1)z−s+ixN with special dependence on zN

AN(u)R12...N (x)Ψ(z1 . . . zN−1)z−s+ixN =

(u − x)R12...N (x) z−s+ixN AN−1(u)Ψ(z1 . . . zN−1)

Iterative procedure

AN(u)R12...N (x1) z−s+ix1N · · ·R12 (xN−1) z

−s+ixN−1

2 Ψ(z1) =

= (u − x1) · · · (u − xN−1)R12...N (x1) z−s+ix1N · · ·R12 (xN−1) z

−s+ixN−1

2 A1(u)Ψ(z1)

The eigenfunction of the last operator A1(u) = u + i(s + z1∂1) is z−s+ixN1

ΨA(x|z) ∼ R12...N (x1) · · ·R12(xN−1) [zN ]−s+ix1 [zN−1]

−s+ix2 · · · [z1]−s+ixN

SL(2, C) spin magnet Yang-Baxter equation R-operators,Q-operators and Baxter equation Construction of eigenfunctions

Eigenfunctions and Q-operators

ΨB(x|z) = QA (x1) · · ·QA(xN−1) eipz1+i pz1 =

=

N−1∏

k=1

(πa(αk , βk , γ + 1)

)kR12...N (x1) · · ·R12(xN−1) e

ipz1+i pz1

• symmetry with respect any permutations of parameters xk = (xk , xk) dueto commutativity of Q-operators

• Baxter equation for Q-operators → AN(xk) is a shift operator

AN(xk)ΨB(. . . xk , xk . . . |z) = (xk + is)N ΨB(. . . xk + i , xk . . . |z)

AN(xk)ΨB(. . . xk , xk . . . |z) = (xk + i s)N ΨB(. . . xk , xk + i . . . |z)

ΨB(x|z) is eigenfunction of the operator QB(u)

QB(u, u)ΨB(x|z) = qB(u, x)ΨB(x|z) ,

qB(u, x) = πa(1− s − i u)[p]−s−iu

N−1∏

k=1

πa(1− s − iu, s + ixk , iu − ixk ) .

exchange relation

Q(N)B (u)R12...N (x) = πa(1− s − iu, s + ix , iu − ix)R12...N (x) Q

(N−1)B (u)

SL(2, C) spin magnet Yang-Baxter equation R-operators,Q-operators and Baxter equation Construction of eigenfunctions

Eigenfunctions and Q-operators

ΨA(x |z) = QB (x1) · · ·QB(xN) [zN ]−2s · · · [z1]

−2s =

=

N∏

k=1

(πa(αk , βk , γ + 1)

)kR12...N (x1) · · ·R12(xN−1) [zN ]

−s+ix1 · · · [z1]−s+ixN

• symmetry with respect any permutations of parameters xk = (xk , xk) dueto commutativity of Q-operators

• Baxter equation for Q-operators → BN(xk) is a shift operator

BN(xk)ΨB(. . . xk , xk . . . |z) = (xk + is)N ΨB(. . . xk + i , xk . . . |z)

BN(xk)ΨB(. . . xk , xk . . . |z) = (xk + i s)N ΨB(. . . xk , xk + i . . . |z)

QA(u)ΨA(x|z) = q(u, x)ΨA(x|z) ,

q(u, x) =

N∏

k=1

πa(1− s − iu, s + ixk , ixk − iu) .

exchange relation

Q(N)A (u)R12...N (x) [zN ]

−s+ix =

πa(1− s − iu, s + ix , iu − ix)R12...N (x) [zN ]−s+ix

Q(N−1)A (u)

SL(2, C) spin magnet Yang-Baxter equation R-operators,Q-operators and Baxter equation Construction of eigenfunctions

Orthogonalityorthogonality

d2N

z ΨA(x ′|z)ΨA(x|z) = µA−1(x) δN(x − x

′)

d2N

z ΨB(x ′|z)ΨB(x|z) = µB−1(x) δ2(~p − ~p′) δN−1(x − x

′)

Here the delta function δN(x − x ′) is defined as follows:

δN(x − x′) =

1

N!

SN

δ(x1 − x′k1) . . . δ(xN − x

′kN) ,

where summation goes over all permutations of N elements and

δ(xk − x′m) ≡ δnk n′

mδ(νk − ν

′m)

Sklyanin measure

µA(x) = (2π)−Nπ

−N2 ∏

k<j≤N

[xk − xj ]

µB(x) = 2(2π)−Nπ

−N2

[p]N−1∏

k<j≤N−1

[xk − xj ]

[xk − xj ] =∏(

(νk − νj)2 +

1

4(nk − nj)

2)

SL(2, C) spin magnet Yang-Baxter equation R-operators,Q-operators and Baxter equation Construction of eigenfunctions

Completeness

completeness

Dx µ(x)Ψ(x|z)Ψ(x|z ′) =

N∏

k=1

δ2(~zk − ~z

′k)

DNx∏

k<j

[xk − xj ] ΨA(x|z)ΨA(x|z ′) = 2Nπ

N2+N

N∏

k=1

δ2(~zk − ~z

′k )

d2pDN−1x [p]N−1

k<j

[xk−xj ] ΨB(x|z)ΨB(x|z ′) = 2N−1π

N2+N

N∏

k=1

δ2(~zk−~z

′k)

The symbol DNx stands for

DNx =

N∏

k=1

(∞∑

nk=−∞

∫ ∞

−∞

dνk

)

SL(2, C) spin magnet Yang-Baxter equation R-operators,Q-operators and Baxter equation Construction of eigenfunctions

Open problems

• appropriate proof of the completeness

• generalization of Sklyanin SOV representation to the higher rank SL(N,C)

• SOV for the modular magnetAndrei G. Bytsko, Jorg Teschner Quantization of models with non-compact

quantum group symmetry: Modular XXZ magnet and lattice sinh-Gordon model

J.Phys. A39 (2006) 12927-12981