laporan percobaan newton cradle

11
LAPORAN PERCOBAAN NEWTON CRADLE (SWING BALL) I. TUJUAN Untuk mempertunjukan hukum kekekalan momentum dan energi dengan menggunakan swing ball. Untuk mengamati peristiwa tumbukan newton dan menetukan pengaruh gravitasi terhadap gerak bandul. II. DASAR TEORI Newton's cradle diciptakan dan diberi nama pada 1967 oleh aktor Inggris Simon Prebble . Pada mulanya dibuat dari kayu dan dijual di Harrods of London , kemudian dibuat dari chrome oleh Richard Loncraine . Dalam dunia pendidikan, Newton's cradle biasanya digunakan untuk menjelaskan hukum ketiga Newton mengenai aksi dan reaksi. Newton's cradle terbesar di dunia dibuat oleh Chris Boden dan dimiliki oleh The Geek Group di Kalamazoo, Michigan . Terdiri dari 20 bola bowling seberat masing-masing 6,8 kilogram, digantung dengan kabel sepanjang 6,1 meter sekitar 1 meter dari lantai. Peralatan ayunan Newton ini ditujukan untuk mendemonstasikan hukum kekekalan momentum dan energi. Dengan adanya redaman energi pada setiap kali ayunan dan bunyi yang terjadi pada setiap proses tumbukan antar bola, maka hukum kekekalan energi mekanik tidak digunakan dalam eksperimen ini. Jika ayunan menyimpang sebesar sudut q terhadap garis vertical maka gaya yang mengembalikan : F = - m . g . sin q Untuk q dalam radial yaitu q kecil maka sin q = q = s/l, dimana s = busur lintasan bola dan l = panjang tali , sehingga :

Upload: olvi-lakahina

Post on 28-Dec-2015

1.184 views

Category:

Documents


162 download

DESCRIPTION

ade

TRANSCRIPT

Page 1: Laporan Percobaan Newton Cradle

LAPORAN PERCOBAAN NEWTON CRADLE (SWING BALL)

I. TUJUAN

Untuk mempertunjukan hukum kekekalan momentum dan energi dengan menggunakan swing ball. Untuk mengamati peristiwa tumbukan newton dan menetukan pengaruh gravitasi terhadap gerak bandul.

II. DASAR TEORI

Newton's cradle diciptakan dan diberi nama pada 1967 oleh aktor Inggris Simon Prebble. Pada mulanya dibuat dari kayu dan dijual di Harrods of London, kemudian dibuat dari chrome oleh Richard Loncraine. Dalam dunia pendidikan, Newton's cradle biasanya digunakan untuk menjelaskan hukum ketiga Newton mengenai aksi dan reaksi. Newton's cradle terbesar di dunia dibuat oleh Chris Boden dan dimiliki oleh The Geek Group di Kalamazoo, Michigan. Terdiri dari 20 bola bowling seberat masing-masing 6,8 kilogram, digantung dengan kabel sepanjang 6,1 meter sekitar 1 meter dari lantai.

Peralatan ayunan Newton ini ditujukan untuk mendemonstasikan hukum kekekalan momentum dan energi. Dengan adanya redaman energi pada setiap kali ayunan dan bunyi yang terjadi pada setiap proses tumbukan antar bola, maka hukum kekekalan energi mekanik tidak digunakan dalam eksperimen ini.

Jika ayunan menyimpang sebesar sudut q terhadap garis vertical maka gaya yang

mengembalikan :

F = - m . g . sin q

Untuk q dalam radial yaitu q kecil maka sin q = q = s/l, dimana s = busur lintasan bola

dan l = panjang tali , sehingga :

F=−mgsl

Kalau tidak ada gaya gesekan dan gaya puntiran maka persamaan gaya adalah :

md2 sdt2

=mgls

atau md2 sdt 2

+ glg=0

Ini adalah persamaan differensial getaran selaras dengan periode adalah :

Page 2: Laporan Percobaan Newton Cradle

T=2π √ lx

Dengan bandul matematis maka percepatan gravitasi g dapat ditentukan yaitu dengan

hubungan :

T=2π √ lxg=4 π

2 lT 2

Harga l dan T dapat diukur pada pelaksanaan percobaan dengan bola logam yang cukup berat

digantungkan dengan kawat yang sangat ringan.

Beban yang diikat pada ujung tali ringan yang massanya dapat diabaikan disebut bandul. Jika

beban ditarik kesatu sisi, kemudian dilepaskanmaka beban akan terayun melalui titik keseimbangan

menuju ke sisi yang lain. Bila amplitudo ayunan kecil, maka bandul sederhana itu akan melakukan

getaran harmonik. Bandul dengan massa m digantung pada seutas tali yang panjangnya l. Ayunan

mempunyai simpangan anguler θ dari kedudukan seimbang. Gaya pemulih adalah komponen gaya

tegak lurus tali.

F = - m g sin θ

F = m a

maka

m a = - m g sin θ

a = - g sin θ

Untuk getaran selaras θ kecil sekali sehingga sin θ = θ. Simpangan busur s = l θ atau θ=s/l , maka

persamaan menjadi: a= gs/l . Dengan persamaan periode getaran harmonik

T=2π √−s

a maka didapat menjadi:

T=2π √ −s−gs / l atau

T=2π √ lgDimana :

Page 3: Laporan Percobaan Newton Cradle

l = panjang tali (meter)

g= percepatan gravitasi (ms-2)

T= periode bandul sederhana (s)

Dari rumus di atas diketahui bahwa periode bandul sederhana tidak bergantung pada massa dan

simpangan bandul, melaikan hanya bergantung pada panjang dan percepatan gravitasi, yaitu:

g= 4π2 l

T 2

Gerak osilasi yang sering dijumpai adalah gerak ayunan. Jika simpangan osilasi tidak terlalu

besar, maka gerak yang terjadi dalam gerak harmonik sederhana. Ayunan sederhana adalah suatu

sistem yang terdiri dari sebuah massa dan tak dapat mulur. Ini dijunjukkan pada gambar dibawah ini.

Jika ayunan ditarik kesamping dari posisi setimbang, dan kemudian dilepasskan, maka massa m akan

berayun dalam bidang vertikal kebawah pengaruh gravitasi. Gerak ini adalah gerak osilasi dan

periodik. Kita ingin menentukan periode ayunan. Pada gambar di bawah ini, ditunjukkan sebuah

ayunan dengan panjang 1, dengan sebuah partikel bermassa m, yang membuat sudut θ terhadap

arah vertical. Gaya yang bekerja pada partikel adalah gaya berat dan gaya tarik dalam tali.

Kita pilih suatu sistem koordinat dengan satu sumbu menyinggung lingkaran gerak (tangensial) dan

sumbu lain pada arah radial. Kemudian kita uraikan gaya berat mg atas komponen-komponen pada

arah radial, yaitu mg cos θ, dan arah tangensial, yaitu mg sin θ.

Komponen radial dari gaya-gaya yang bekerja memberikan percepatan sentripetal yang diperlukan

agar benda bergerak pada busur lingkaran.Komponen tangensial adalah gaya pembalik pada benda

m yang cenderung mengembalikan massa keposisi setimbang. Jadi gaya pembalik adalah :

F=−mg sinθ

Perhatikan bahwa gaya pembalik di sini tidak sebanding dengan θ akan tetapi sebanding dengan sin

θ. Akibatnya gerak yang dihasilkan bukanlah gerak harmonic sederhana. Akan tetapi, jika sudut θ

adalah kecil maka sin θ ≈ θ (radial). Simpangan sepanjang busur lintasan adalah

x=lθ ,

dan untuk sudut yang kecil busur lintasan dapat dianggap sebagai garis lurus. Jadi kita peroleh

Page 4: Laporan Percobaan Newton Cradle

F=−mg sin θ≈−mgθ=−mg( xl )F=−mg

lx

Gambar. 1. Gaya-gaya yang bekerja pada ayunan sederhana adalah gaya tarik T dan gaya berat mg pada massa m

Jadi untuk simpangan yang kecil, gaya pembalik adalah sebanding dengan simpangan, dan

mempunyai arah berlawanan. Ini bukan laian adalah persyaratan gerak harmonic sederhana.

Tetapan mg/l menggantikan tetapan k pada F=-kx.

Perioda ayunan jika amplitude kecil adalah:

Contoh dari kategori ayunan mekanis, yaitu pendulum. Kita akan memulai kajian kita dengan

meninjau persamaan gerak untuk sistem yang dikaji seperti dalam gambar 2.

Gambar 2.Pendulum, gaya pemulih yang timbul berkaitan dengan pengaruh gravitasi pada massa M. Dapat anda menyebutkan kondisi apa saja yang berlaku untuk pendulum sederhana seperti di samping.

Page 5: Laporan Percobaan Newton Cradle

Gaya pemulih muncul sebagai konsekuensi gravitasi terhadap bola bermassa M dalam bentuk gaya

gravitasi Mg yang saling meniadakan dengan gaya Mdv/dt yang berkaitan dengan kelembaman.

Adapun frekuensi ayunan tidak bergantung kepada massa M.

Dalam kasus sistem ayunan seperti yang disajikan dalam gambar di atas, maka gerakan massa M

terbatasi atau ditentukan oleh panjang pendulum L, dan persamaan gerak yang berlaku adalah :

MLd2θdt 2

=−mg sin θ

dimana dalam hal ini kecepatan bola sepanjang lintasannya yang berupa busur lingkaran adalah

v (t )=Lθ ( t ) . Faktor sinθ merupakan komponen yang searah dengan gravitasi dari gaya yang

bekerja pada bola dalam arah θ. Selanjutnya dengan membuang M dari kedua sisi persamaan di

atas, diperoleh bentuk

d2θdt2

+ gLsin θ=0

, yang merupakan persamaan diferensial tak linear untuk

θ.

Jika dianggap simpangan awal ayunan cukup kecil , maka berlaku sin θ=θ sehingga

persamaan dapat diubah menjadi bentuk linear sebagai berikut,

d2θdt2

+ gLθ=0

persamaan merupakan gambaran untuk ayunan sinusuidal dengan frekuensi diberikan oleh:

ω=√ gl maka T=2π √ lg

Pada bandul matematis, berat tali diabaikan dan panjang tali jauh lebih besar dari pada

ukuran geometris dari bandul. Pada posisi setimbang, bandul berada pada titik A. Sedangkan pada

titik B adalah kedudukan pada sudut di simpangan maksimum (θ). Kalau titik B adalah kedudukan

dari simpangan maksimum, maka gerakan bandul dari B ke A lalu ke B’ dan kemudian kembali ke A

dan lalu ke B lagi dinamakan satu ayunan. Waktu yang diperlukan untuk melakukan satu ayunan ini

disebut periode (T). Seperti pada gambar 3. di bawah ini

f = komponen w menurut garis singgung

pada lintasan bandul

P= gaya tegang tali

N= komponen normal dari W=mg

l= panjang tali

θ = sudut simpangan

Page 6: Laporan Percobaan Newton Cradle

Gambar 3. bandul matematis, berat tali diabaikan dan panjang tali dan panjang tali yang memiliki ukuran lebih besar.

Dengan mengambil sudut θ cukup kecil sehingga BB’= busur BAB’, maka dapat dibuktikan bahwa

T=2π √ lgDengan mengetahui panjang tali dan periode, maka percepatan gravitasi bumi dapat dihitung.

Cara sederhana mengukur g adalah dengan menggunakan bandul matematis sederhana.

Bandul ini terdiri dari beban yang diikatkan pada ujung benang (tali ringan) dan ujung lainnya

dogantungkan pada penyangga tetap. Beban dapat berayun dengan bebas. Ketika disimpangkan,

bandul bergerak bolak-balik. Waktu satu kali gerak bolak-balik disebut satu periode. Kita nyatakan

periode dengan symbol T. Periode bandul memenuhi rumus :

T 2=4 π

2 Lg

T= periode bandul (s)

L= panjang penggantung (m)

g= percepatan gravitasi (m/s2)

Gambar 4. bandul yang diikat pada tali

Page 7: Laporan Percobaan Newton Cradle

III. ALAT BAHAN

Alat :1. Gunting2. Gergaji3. Palu4. Tang5. Kuas6. Penggaris7. Gelas plastik8. Pensil tukang9. Spidol

Bahan :

1. Vernis2. Kelereng3. Benang4. Lem (plastic steel dan alteco)5. Kayu6. Paku7. Sedotan8. Gantungan skrup

IV. LANGKAH KERJA

1. Siapkan alat dan bahan.2. Buat gambar pola penampang bandul.3. Potong kayu sesuai ukuran ( P=45cm, l=20cm, t=25cm).4. Gabung kan kayu sehingga membentuk penampang dudukan (bentuk balok).5. Vernis kayu sehingga terlihat lebih bersih dan mengkilat.6. Setelah kering pasang gantungan skrup pada rusuk atas dengan jarak masing-masing

2cm.7. Pasang sedotn sebagai tempat tali8. Cat kelereng9. Pasang tali pada kelereng dan pasang pada penampang bandul tsb10. Bandul siap dipakai

V. GAMBAR PROSES PEMBUATAN

Page 8: Laporan Percobaan Newton Cradle
Page 9: Laporan Percobaan Newton Cradle

VI. ANALISAPada percobaan ini yang kami buat adalah swing ball. Swing ball ini dipengaruhi oleh

jarak antara kelereng dengan penampang (gravitasi), ketegangan tali , sudut pada kelereng , dan massa kelereng .

Semakin tinggi jarak antara kelereng dengan penampang maka semakin besar pula gaya gravitasi yang ditimbulkanya sehingga menyebabkan ayunan lebih cepat berhenti karena dari rumus periode itu didapat rumus :

T = 2π √lg

Dari rumus tersebut, dapat kita lihat bahwa percepatan gravitasi berbanding terbalik dengan waktu periode. Dengan kata lain, semakin besar percepatan gravitasi , maka waktu periode akan semakin kecil, begitupun sebaliknya.

Sudut penempatan bola/kelereng haruslah sama. Jika sudut yag satu berbeda dari yang lain, maka tidak terjadi keseimbangan. Tali juga mempengaruhi, semakin besar tegangan tali, maka semakin seimbang bola/kelereng. Sudut pelemparan juga berpengaruh terhadap percobaan ini. Semakin besar sudut pelemparan atau pelepasannya, maka semakin besar tumbukannya sehingga pemantulannya semakin lama.keseimbangan penampang juga mempengaruhi karena itu dapat menyebabkan ke tidak stabilan ayunan.

VII. KESIMPULAN

Dari percobaan yang kami lakukan terbukti Hukum Newton ke-3, yaitu jika ada aksi maka timbul reaksi. Seperti halnya pada percobaan kami. Jika salah satu kelereng yang berada di ujung diberi aksi maka kelereng pada ujung satunya akan bereaksi. Dan bila kita beri 2 kelereng aksi maka 2 kelereng yang berada di sisi satunya akan bereaksi, jadi jumlah reaksi akan sama dengan jumlah aksi.

Pada percobaan yang kami lakukan tidak sempurna karena adanya ralat seperti ralat penggaris untuk panjang tali (0,1 cm) dan ralat sudut (1˚).