lagrangian reduction - universidade do...

16
ROUTH REDUCTION AS AN EXAMPLE OF LAGRANGIAN REDUCTION KATARZYNA GRABOWSKA , PAWET URBANSKI arlkv : 1708.0976%1

Upload: others

Post on 12-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • ROUTH REDUCTION AS AN EXAMPLE

    OF LAGRANGIAN REDUCTION

    KATARZYNA GRABOWSKA,

    PAWET URBANSKI

    arlkv : 1708.0976%1

  • CALCULATIONS IN COORDINATES

    R"+m

    > ( q ,x , qi , .x ) ->L( q ,× , .q , .x)eR2L

    cyclic variables : q= 0

    212R( q ,×,p , .x)= poi - L(q ,x,oj,x

    .

    ) Jq=0

    edward ]°nnpwu+np=¥q=0gifts ftp.t?j.3I=o

    1831-1907 IP= a Ra( x. x. ) = aq.ca) - LA ,q .ca ) , .x )

    IRouthian depends only on ( xii )

    WHAT IS GEOMETRIC PICTURE BEHIND THESE CALCULATIONS ?

    I E. Marsden ,TSRatiu , Jsoneurle , F. Cantrijn , B. Langerock ,T . Metsdag ,E. Garcia . Toriano Andre 's

    ,] . Vankevschaver

    , Mcrampin . . .

  • WHY DO IT AGAIN ?

    D .

    BQ I do ,T*T*Q - TT*Q - T*TQ

    0¥pj'cdHA*a))=D=xaYdLGaD# ° "T*Q TQ

    a } + }I¥5u"itionEASY V INTERESTING

    RELATION

    ? ??_?

    ??_?

    ? ?? ?

    ?µHats ? ? ?

  • TOOLS :

    → SYMPLECTIC GEOMETRY : SYMPLECTIC REDUCTIONS,

    LAGRANGIAN

    SUBMANIFOLDS,

    GENERATING OBJECTS :

    GENERATING FUNCTION FUNCTION ON

    A SUBMANIFOLD

    f :Q→R QaCf→R

    df(Q)cT*Q { yeT*Q : VJETC ( df ,v>=< y ,v>]cT*QT LAGRANGIAN 7

    SUBMANIFOLD

    itGENERATING C={ MEM : drfcm) - 0 }FAMILY fM → R { yeT*Q : g*y(m)=dfCm) }etQ

  • SYMPLECTIC RELATIONS ARE LAGRANGIAN

    SUBMANIFOLDS 11

    g :B - Pz

    graph (g) c(Pz×Pz , Wz - 02 )¥2,13

    ARE COTANGENT BUNDLES

    WE CAN GENERATE THE GRAPH

    COMPOSING SYMPLECTIC RELATIONS

    MEANS ADDING GENERATING OBJECTS

    EXAMPLET * to # THTHQ SYMPLECTOMORPHISM

    L :TQ→R GENERATED BY

    DLCTQ )cT*TQ TQ×T*Q > TQ×aT*Q > ( rfp )1→ - ( p ,O ) ERT

    LAGRANGIAN

    SUBMANIFOLDWHAT GENERATES Va( OILCTQD ?

    TQ×aT*Q scrip ) - LCV ) - ( p ,v ) e R* * Q

  • TOOLS :

    → GEOMETRY OF AFFINE VALUES : AV - BUNDLES,

    AFFINE PHASE

    SPACES

    AFFINE PHASE SPACE :

    QXR( T.it ) ~ ( 9. g) ⇐ > d(q . g) (g) =O

    tgff-§¥r("

    '"

    drcq ) :=[ ( r ,qD

    PZ={ OITCQ ) ] ← AFFINE BUNDLE OVER QSYMPLECTIC

    / [ MODELED ON T*QMANIFOLD

    Wz=Z*Wa2 :P2→T*Q

    g-FZ -7 TQ 15 A BUNDLE

    ATIYAH ALGEBROID FZ = T #OF AFFINE VALUES

    n

    ,VECTOR BUNDLE OVER Q

  • ROUTH REDUCTION RELATION

    Q - CONFIGURATION MANIFOLD

    X - VECTOR FIELD ON Q - SYMMETRY

    L :TQ→lR dtX.lyGEOMETRIC VERSION

    OF A LAGRANGIAN WITHCYCLIC VARIABLE

    YIN FACT

    ,WHAT IS IMPORTANT IS THE DISTRIBUTION

    0×=< 04×7IT IS ONE DIMENSIONAL DISTRIBUTION

    ,DOUBLE

    VECTOR SUBBUNDLE OF

    TTQ

    Lead7¥aTQ

  • ROUTH REDUCTION RELATION VIA HAMILTONIAN MECHANICS

    8-+ * t * a

    #TT*Q ¥

    T*TQy)o, ,T*QyaTQ-7112 ( p ,v ) HLA )

    - < p ,v >✓

    to

    T¥Q

    → IN HAMILTONIAN MECHANICS SYMMETRY is GIVEN BY

    dt*X - COTANGENT LIFT OF XTHAMILTONIAN

    VECTOR FIELD FOR T*Q2pl-)i×(p)=(p , X(Ta( p ) ) )→ PHASE TRAJECTORIES LIE IN LEVEL SETS OF I×

    c×={ PET * Q : i×(p)=d } ~ WISOTROPIC SUBMANIFOLD , REDUCTIONWITH RESPECT TO Ca = DIVIDING BYT AFFINE SUBBUNDLE OFT*Q→Q LIFTED ( R ,t ) ACTION

    WTH MODEL Co → Q

  • ROUTH REDUCTION RELATION VIA HAMILTONIAN MECHANICS

    if =L MANIFOLD OF+ * Qsca -7 Pa Q→M=Q/p TRAJECTORIES

    -\

    / OF X) gympllAFFINE BUNDLE OVER M =CT1c MANIFOLDMODELED ON T*M REDUCED AFFINE PHASE

    SPACE

    BQ XQT*T*Q c- TT*Q - T*TQ

    µt*g HalB

    TQ

    txpa c- TB - ? ? ?( np.ec , , . .eu , ,oµ gene ... ,gx . , . - aBY A FUNCTION EQUAL ZERO ON

    T*Q×P.

    > Caxpa f. ( Pitt > LG ) - < p ,v )Pa

  • ROUTH REDUCTION RELATION VIA HAMILTONIAN MECHANICS

    HERE COMES AV - GEOMETRY !

    Q×R : ( q ,v)~ ( yscq ) , ntsx )R ' 9 ' "

    y |=nQFLOW Ot X Ys

    Z&e= Q×lR/~ Z&→M[ qiiftt :=[q ,n+t]=[ys( g) irtttsa ]

    BEPZ , Lv

    BTxp c- TB - PFZa ×

    WHAT is it ? ?

  • FZ &= TZ%pp) ATIYAH ALGEBROID

    TZ,

    → TM AV - BUNDLEg-

    FUNDAMENTAL VECTOR

    FIELD OF R - ACTIONWETZ

    . [w]ts= [ wts } ] ON Z×

    PFZ.

    - AFFINE DIFFERENTIALS OF SECTIONS OF FZ,

    → TM

    ROUTHIAN is NOT A FUNCTION ONTM BUT A SECTIONOF AN AV - BUNDLE

    AFFINE ANALOG OF A MAP T*QXaTQ 3 ( p ,v ) - ) ( p ,v > EIR

    PZ, XMTM a ( p ,v ) 1- < p ,v > e FZ ,

    >

    2,

    ftp=dr( m ) < pie > =[ Trcv ) ]

    mm

  • B a

    T*pZa-

    TPZ. - PFZ

    ,

    -Txtpzaepfza

    SYMTPLECTOMORPHISMGENERATED BY A SECTION OVER A

    SUBMANIFOLD

    Pzaxtmo Pzxmtm - FZ , ( p . ,w ) - > < Pa ,w >

    C&×aTQ → R

    TM×mCx×aTQ

    - FZ×

    | ( Rr ) - La - < p ,v > |v .P tm ( w ,P,o)1→ Le )

    - < p ,v > + Cpa ,w >a

    TTGENERATING FAMILY

    WITH PARAMETERS PIV. .

  • BQ XQT*T*Q c- TT*Q - T*TQ

    to t ? ?B aTxpz- TPZ. - PFZ×

    QUESTIONS :

    2.

    15 IT POSSIBLE to g|µpL , ,=y TMXMCYQTQ

    - FZ×

    y Fm ( w ,p,o)l→LH- < p ,v > + Cpa ,w >

    YES, BUT NOT ALWAYS TO ONE ROUTHIAN

    SECTION → EXAMPLE

    2. 15 IT POSSIBLE TO GO DIRECTLY FROM T*TQ TO PFZ× ?^

    ,YES

    ,BUT YO HAVE TO INCLUDE VALUES

    OF GENERATING OBJECTS

    ↳LAGRANGIAN REDUCTION

  • ANSWER TO QUESTION 1 WITH AN EXAMPLE :

    TQ -

    FZ×TM×mG×aTQ - FZ×/ → / vi→L(v ) - < p ,v > + < p . ,w ). vtm ( w ,p,o)t

    > La ) - < pie > + Cpa ,w > TM

    TQ 20h > WETM

    FORMULA DOES NOT DEPEND ON P ,ANY PEG OVER to ( v ) IS OK !

    EXAMPLE :

    Q=R2a(×,y ) L :TQ > ( x ,y ,x.

    ,j ) 1- x. y.

    -

    y'

    er M=R⇒( y )

    X=2*f PARAMETER

    ROUTHIAN FAMILY READS ( y , .x , g.) 1- x. y.

    -

    y'

    . xx.

    ER

    T*Tm > { ( yijioyb ) : j=& , a= -2g }TT*Mo{ ( yip , jip ) : j=x , p= -2g } Xn(y,p)=&3J

    - 2yFp

    h(y,p)=Lp+y2

  • ANSWER TO QUESTION 2

    RTHE RELATION T*TQ - DPFZ

    ,15 THE AFFINE PHASE LIFT OF THE

    REDUCED TANGENT RELATION F(Q×lR ) → 72£ OF THE PROJECTION

    Q×1R→Z:QXIR - Za ( q ,r)1→[q ,v]={ ( yscq ) , Ntsd ) } AV - BUNDLE MORPHISMTsaFCQXIRFTQHR - FZ , ( v ,t)i→[yt]={ ( Tyscv )+sX( q ) , ttxs ) ]AV - BUNDLE MORPHISM

    ROUTH REDUCTION R IS PF }× . IT IS GENERATED BYNONTRIVIAL SECTION OF CERTAIN AV - BUNDLE

    T*T*Q-D T* PZ,

    PHASE LIFT GENERATED

    T*Q3G→ PZ , ✓ By FUNCTON ZERO ON CLXMPZL

  • FINAL COMMENT ON ( NOT REALLY ) A GENERALISATION

    LAGRANGIAN WITH SYMMETRY of,

    X.L=O

    DTX -3 OECDTX ) DLCTQ) c 0×05

    weather.INT?hNesaur..3YIsEEutoINt0tva#

    ↳ONE CAN SHOW THAT IT DEFINES X UP TO

    MULTIPLICATION BY NUMBERS

    NO DISTINGUISHED PARAMETERIZATION OF {Cd } BY x. . .