laboratory spectroscopy of h 3 + ben mccall oka ion factory tm university of chicago

33
Laboratory spectroscopy of H 3 + Ben McCall Oka Ion Factory TM University of Chicago

Post on 21-Dec-2015

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Laboratory spectroscopy of H 3 + Ben McCall Oka Ion Factory TM University of Chicago

Laboratory spectroscopy of H3+

Ben McCall

Oka Ion FactoryTM

University of Chicago

Page 2: Laboratory spectroscopy of H 3 + Ben McCall Oka Ion Factory TM University of Chicago

Motivations

Astronomical

– obtain frequencies for detection & use as probe

Quantum Mechanical

– study structure of this fundamental ion

– refine theoretical calculations of polyatomics

Page 3: Laboratory spectroscopy of H 3 + Ben McCall Oka Ion Factory TM University of Chicago

Formation of H3+

H2+ + H2 H3

+ + H

H2cosmic ray

interstellarmedium

H2e- impact

laboratoryplasma

Rate constant: k ~ 2 × 10-9 cm3 s-1

Exothermicity: H ~ 1.7 eV

H2 Proton Affinity:~ 4.4 eV~ 100 kcal/mol~ D(H2)

Page 4: Laboratory spectroscopy of H 3 + Ben McCall Oka Ion Factory TM University of Chicago

Laboratory Plasma

Page 5: Laboratory spectroscopy of H 3 + Ben McCall Oka Ion Factory TM University of Chicago

Types of Molecular Spectroscopy

Electronic (visible)e e

Rotational (microwave)

Vibrational (infrared)

Poster: Friedrich & Alijah××

Page 6: Laboratory spectroscopy of H 3 + Ben McCall Oka Ion Factory TM University of Chicago

Vibrational Modes of H3+

Degenerate

any linear combination

Infraredinactive

Infrared active

1 2x 2y

Page 7: Laboratory spectroscopy of H 3 + Ben McCall Oka Ion Factory TM University of Chicago

Vibrational Modes of H3+

1 2x 2y

2+

vibrationalangular

momentum

Page 8: Laboratory spectroscopy of H 3 + Ben McCall Oka Ion Factory TM University of Chicago

Angular momentum– I — nuclear spin

Quantum Numbers for H3+

I=3/2ortho

I=1/2para

– J — nuclear motion» k = projection of J ; K = |k|

– l2 — vibration

“l-resonance”: states with same |k-l2| mixed

– G |k-l2| — rotational part of J

Symmetry requirements– G=3n ortho, G3n para– Pauli: certain levels forbidden (J=even, G=0)

Page 9: Laboratory spectroscopy of H 3 + Ben McCall Oka Ion Factory TM University of Chicago

600

500

400

300

200

100

0

Ene

rgy

(cm

-1)

3210G

1

3

3

1

22

33

0

2

The 2 0 fundamental band

G0 1 2 3

grou

nd s

tate

2800

2700

2600

2500

Ene

rgy

(cm

-1)

0 11 21

2222

2 s

tate

ortho orthopara para

J (J,G) {u,l}

Q(1,0) R(1,0) R(1,1)l R(1,1)u P(3,3)

Page 10: Laboratory spectroscopy of H 3 + Ben McCall Oka Ion Factory TM University of Chicago

Experimental work on 2 0

Oka

1981

30

Wat

son

et a

l. 19

84

46

Initial Detection (Oka 1980)– search over two years, over 500 cm-1

– 15 lines, few percent deep

– assigned by Watson overnight 2 = 2521 cm-1

Maj

ewsk

iet

al.

1994

206

FTIR

emis

sion

Nak

anag

aet

al.

1990

FTIR

abso

rpti

on

McK

ella

r &

Wat

son

1998

FTIR

abs

orpt

ion

wid

e-ba

nd

Maj

ewsk

iet

al.

1987

113

FTIR

emis

sion

J=9

Uy

et a

l. 19

94

151J=15

Joo

et a

l. 20

00

207

Low

est f

requ

ency

1546

.901

cm

-1

Lin

dsay

et a

l. 20

00

217

Con

tinu

ous

scan

3000

– 3

600

cm-1

Oka

1980

15

Page 11: Laboratory spectroscopy of H 3 + Ben McCall Oka Ion Factory TM University of Chicago

The 2 0 band as a probe of H3+

Laboratory– H3

+ electron recombination rate (Amano 1988)

– spin conversion of H3+ in reactions (Uy et al. 1997)

– ambipolar diffusion in plasmas (Lindsay, poster)

Astronomy– probe of planetary ionospheres (Connerney, Miller)– confirmation of interstellar chemistry (Herbst)– measurements of interstellar clouds (Geballe)

Page 12: Laboratory spectroscopy of H 3 + Ben McCall Oka Ion Factory TM University of Chicago

1.0

0.8

0.6

0.4

0.2

0.0

Rel

ativ

e In

tens

ity

3200300028002600240022002000Frequency (cm

-1)

1234567 1 2 3 4 5 6

1 2 3 4 5 6 7 8

0 1R(J)

u

R(J)l

Q

P(J)u

The fundamental band

No R(0) line three equivalent spin 1/2 fermions

equilateral triangle geometry

T=400 K

2:1 intensity ratiosreflect spin statisticalweights (ortho/para)

Spacing illustrates large rotational constants

(B ~ 44 cm-1)

QR(J)u

R(J)l

P(J)u

Page 13: Laboratory spectroscopy of H 3 + Ben McCall Oka Ion Factory TM University of Chicago

Understanding the 2 Spectrum

For low energies, use perturbation approach:– E” = BJ(J+1) + (C-B)K2 - DJKJ(J+1)K2 + ...

– E’ = 2 + B’J’(J’+1) + (C’-B’)K’2 - 2C’K’l + ...

– use observed transitions to fit molecular constants

– For higher vibrational energies, this approach completely breaks down

Variational calculations based on an ab initio potential energy surface!

Page 14: Laboratory spectroscopy of H 3 + Ben McCall Oka Ion Factory TM University of Chicago

Variational Calculations

10000

5000

0

Ene

rgy

(cm

-1)

3.02.52.01.51.00.5(rad)

0

2

22

32

42

52

1+2

1+22

1

1+32

1+42

21+2

21

21+22

31

31+2

21+32

ZeroPointVibrationalEnergy

RR

Page 15: Laboratory spectroscopy of H 3 + Ben McCall Oka Ion Factory TM University of Chicago

Vibrational Band Types

10000

5000

0

Ene

rgy

(cm

-1)

3.02.52.01.51.00.5(rad)

0

2

22

32

42

52

1+2

1+22

1

1+32

1+42

21+2

21

21+22

31

31+2

21+32

Fundamental: 2 0

Overtones: n2 0

Hot band: 22 2

Forbidden: 1 0

Combination: 1 + 22 0

Page 16: Laboratory spectroscopy of H 3 + Ben McCall Oka Ion Factory TM University of Chicago

100008000600040002000

Frequency (cm-1

)

0.001

0.01

0.1

1

Rel

ativ

e In

tens

ityVibrational Overview

2 0

22 0

32 0

42 0

52 0

1+22 0

21+2 01+2 0

1 2

22 2

1+2 1

32 2

Page 17: Laboratory spectroscopy of H 3 + Ben McCall Oka Ion Factory TM University of Chicago

100008000600040002000

Frequency (cm-1

)

0.001

0.01

0.1

1

Rel

ativ

e In

tens

ityVibrational Overview

2 0

22 0

32 0

42 0

52 0

1+22 0

21+2 01+2 0

1 2

22 2

1+2 1

32 2

Ti:Sapphire (1 W)

Diodes (8 mW)FCL (30 mW)

D.F. (LiNbO3) (0.1 mW)

D.F. (LiIO3) (20 µW)

Page 18: Laboratory spectroscopy of H 3 + Ben McCall Oka Ion Factory TM University of Chicago

100008000600040002000

Frequency (cm-1

)

0.001

0.01

0.1

1

Rel

ativ

e In

tens

ityVibrational Overview

2 0

22 0

32 0

42 0

52 0

1+22 0

21+2 01+2 0

1 2

22 2

1+2 1

32 2

Ti:Sapphire (1 W)

Diodes (8 mW)FCL (30 mW)

D.F. (LiNbO3) (0.1 mW)

D.F. (LiIO3) (20 µW)

Page 19: Laboratory spectroscopy of H 3 + Ben McCall Oka Ion Factory TM University of Chicago

Hot Bands

At 600 K, ~200 times weaker than fundamental He dominated discharge only 50 times weaker Bawendi et al. (1990)

– 72 lines of 222 2

– 14 lines of 220 2

– 21 lines of 1+2 1

Variational calculations essential in assignment– Sutcliffe 1983; Miller & Tennyson 1988, 1989

0

2

22

32

1+2

1+22

1

21+2

21

Page 20: Laboratory spectroscopy of H 3 + Ben McCall Oka Ion Factory TM University of Chicago

First Overtone Band: 22 0

First overtone (22 0) usually orders of magnitude weaker than fundamental

In H3+, only about 7 times weaker

Discovery:– (in hindsight) Majewski et al. (1987)– Jupiter (Trafton et al. 1989, Drossart et al. 1989)– Assigned by Watson (with aid of hot bands)– Majewski et al. (1989) – 47 transitions, FTIR– Xu et al. (1990) – transitions observed in absorption

0

2

22

32

1+2

1+22

1

21+2

21

Page 21: Laboratory spectroscopy of H 3 + Ben McCall Oka Ion Factory TM University of Chicago

Absolute Energy Levels

Fundamental: G = 0

G=0 G=1 G=2

01

2

G=3

P(2,1)

Q(1,1)

nP(2,2)

E12

Hot bands: G = 0

Overtone band: G = ±3– (n G = -3, t G = +3)

Absolute energy levels

0

122

2

0

12

Page 22: Laboratory spectroscopy of H 3 + Ben McCall Oka Ion Factory TM University of Chicago

Second Overtone Band: 32 0

~ 200 times weaker than fundamental Band origin ~ 7000 cm-1

Tunable diode lasers Lee et al. (1991), Ventrudo et al. (1994) 15 transitions observed

Assigned based on variational calculations– Miller & Tennyson (1988, 1989)

0

2

22

32

1+2

1+22

1

21+2

21

Page 23: Laboratory spectroscopy of H 3 + Ben McCall Oka Ion Factory TM University of Chicago

Forbidden Band 1 0

1 mode totally symmetric infrared inactive

1 0 very forbidden since 1 & 2 not coupled

First mixing term: “Birss resonance”– mixes levels in 1 & 2 with same J, G=3

– effective for accidental degeneracies (fairly high J) Xu et al. (1992)

– 9 lines 1 = 3178 cm-1

Lindsay et al. (2000)– 10 new lines

4000

3000

2000

1000

0

6543210 543210

J=5

J=5G=2 G=5

ground stateJ=4

2 state1 state

Page 24: Laboratory spectroscopy of H 3 + Ben McCall Oka Ion Factory TM University of Chicago

Forbidden Band 1+2 2

Not as forbidden as 1 0

– anharmonicity of potential mixes 1+2 withother states (e.g. 22

2)

1+2 2 can “borrow” intensity from allowed bands (e.g. 22

2 2)

Xu et al. (1992) observed 21 lines

0

2

22

32

1+2

1+22

1

21+2

21

Page 25: Laboratory spectroscopy of H 3 + Ben McCall Oka Ion Factory TM University of Chicago

Combination Bands

1+222 0

0

2

22

32

1+2

1+22

1

21+2

21 Highest energy band Weakest allowed band

– 270 times weaker than 2

Tunable diode laser– 7780 – 8168 cm-1

Page 26: Laboratory spectroscopy of H 3 + Ben McCall Oka Ion Factory TM University of Chicago

Observed Spectrum

1.0

0.8

0.6

0.4

0.2

Re

lativ

e In

ten

sity

8100800079007800Frequency (cm

-1)

tQ(1,0)

tR(1,0)

tR(3,3)

tR(2,2) t

R(1,1)nP(3,3)

nP(2,2)

nQ(1,1) t

R(2,1)tR(3,0)

nQ(3,3)

nQ(2,2)

tQ(3,0)

nP(1,1)

nR(1,1)

tR(3,2)t

R(4,3)

nQ(2,1)

nP(4,4)

l

P(6,6) P(5,5)

nQ(3,2)

u

28 transitions of 1+222 0

2 of 21+21 0

Page 27: Laboratory spectroscopy of H 3 + Ben McCall Oka Ion Factory TM University of Chicago

Table of Results

Predictionsfrom

J. K. G. Watson

Symbol Obs Calc o-c J' <G'> o/p n' <v1'> <v2'> <l2'> J" k"tQ(3,0) 7785.233 7785.264 -0.032 3 3.0 - o 12 1.0 2.0 -2.0 3 0tQ(1,0) 7785.701 7785.340 0.361 1 3.0 - o 5 1.0 2.0 -2.0 1 0tR(3,3) 7789.878 7790.025 -0.147 4 5.9 + o 9 1.0 2.0 -2.0 3 3nP(1,1) 7805.893 7805.851 0.043 0 2.0 + p 5 1.0 2.0 2.0 1 1nP(2,2) 7820.239 7819.980 0.259 1 1.0 - p 12 1.0 2.0 2.0 2 2tR(2,2) 7822.375 7822.250 0.125 3 5.0 - p 18 1.0 2.0 -2.0 2 2nP(3,3) 7826.739 7826.679 0.060 2 0.0 + o 6 1.0 2.0 2.0 3 3nP(4,4)l 7833.249 7833.444 -0.195 3 1.1 - p 21 1.0 2.0 1.8 4 4tR(1,1) 7850.959 7850.677 0.283 2 4.0 + p 15 1.0 2.0 -2.0 1 1tR(4,3) 7880.921 7881.443 -0.522 5 5.9 + o 13 1.0 2.0 -2.0 4 3nQ(1,1) 7894.711 7894.378 0.333 1 2.0 + p 5 1.0 2.0 2.0 1 1nQ(2,1) 7898.371 7898.187 0.183 2 2.0 + p 17 1.0 2.0 2.0 2 1nQ(3,1) 7905.717 7905.891 -0.174 3 2.0 + p 17 1.0 2.0 1.9 3 1tR(3,2) 7912.047 7912.196 -0.148 4 4.9 - p 18 1.0 2.0 -2.0 3 2tR(2,1) 7939.619 7939.499 0.120 3 4.0 + p 15 1.0 2.0 -2.0 2 1tR(1,0) 7970.413 7970.124 0.288 2 3.0 - o 5 1.0 2.0 -2.0 1 0nQ(2,2) 7998.890 7998.754 0.136 2 1.0 - p 12 1.0 2.0 2.0 2 2tR(4,2) 8005.582 8006.441 -0.858 5 4.8 - p 30 1.0 2.0 -1.9 4 2

nQ(3,2)u 8007.410 8007.628 -0.218 3 1.0 - p 22 1.0 2.0 1.9 3 2nQ(4,2)u 8022.012 8022.693 -0.681 4 1.0 - p 22 1.0 2.0 1.7 4 2tR(3,1) 8027.840 8028.337 -0.497 4 3.5 + p 26 1.0 2.0 -1.8 3 1nR(3,1)l 8037.673 8038.191 -0.518 4 2.4 + p 27 0.9 2.1 1.7 3 1P(6,6) 8053.382 8054.810 -1.428 5 5.5 - o 17 1.8 1.2 -1.2 6 6

nR(1,1) 8071.617 8071.414 0.203 2 2.0 + p 17 1.0 2.0 2.0 1 1nQ(4,3) 8089.406 8090.282 -0.876 4 0.1 + o 11 1.0 2.0 2.0 4 3nQ(3,3) 8110.069 8110.202 -0.133 3 0.0 + o 11 1.0 2.0 1.8 3 3P(5,5) 8123.128 8123.985 -0.857 4 4.8 + p 30 1.9 1.1 -1.1 5 5tR(4,1) 8128.280 8129.331 -1.051 5 3.4 + p 27 0.9 2.1 -1.8 4 1nR(2,1) 8163.129 8163.294 -0.165 3 2.0 + p 17 1.0 2.0 1.9 2 1tR(3,0) 8162.653 8163.319 -0.666 4 2.9 - o 12 1.0 2.0 -1.9 3 0

Page 28: Laboratory spectroscopy of H 3 + Ben McCall Oka Ion Factory TM University of Chicago

Table of Results

Predictionsfrom

J. K. G. Watson

Symbol Obs Calc o-c J' <G'> o/p n' <v1'> <v2'> <l2'> J" k"tQ(3,0) 7785.233 7785.264 -0.032 3 3.0 - o 12 1.0 2.0 -2.0 3 0tQ(1,0) 7785.701 7785.340 0.361 1 3.0 - o 5 1.0 2.0 -2.0 1 0tR(3,3) 7789.878 7790.025 -0.147 4 5.9 + o 9 1.0 2.0 -2.0 3 3nP(1,1) 7805.893 7805.851 0.043 0 2.0 + p 5 1.0 2.0 2.0 1 1nP(2,2) 7820.239 7819.980 0.259 1 1.0 - p 12 1.0 2.0 2.0 2 2tR(2,2) 7822.375 7822.250 0.125 3 5.0 - p 18 1.0 2.0 -2.0 2 2nP(3,3) 7826.739 7826.679 0.060 2 0.0 + o 6 1.0 2.0 2.0 3 3nP(4,4)l 7833.249 7833.444 -0.195 3 1.1 - p 21 1.0 2.0 1.8 4 4tR(1,1) 7850.959 7850.677 0.283 2 4.0 + p 15 1.0 2.0 -2.0 1 1tR(4,3) 7880.921 7881.443 -0.522 5 5.9 + o 13 1.0 2.0 -2.0 4 3nQ(1,1) 7894.711 7894.378 0.333 1 2.0 + p 5 1.0 2.0 2.0 1 1nQ(2,1) 7898.371 7898.187 0.183 2 2.0 + p 17 1.0 2.0 2.0 2 1nQ(3,1) 7905.717 7905.891 -0.174 3 2.0 + p 17 1.0 2.0 1.9 3 1tR(3,2) 7912.047 7912.196 -0.148 4 4.9 - p 18 1.0 2.0 -2.0 3 2tR(2,1) 7939.619 7939.499 0.120 3 4.0 + p 15 1.0 2.0 -2.0 2 1tR(1,0) 7970.413 7970.124 0.288 2 3.0 - o 5 1.0 2.0 -2.0 1 0nQ(2,2) 7998.890 7998.754 0.136 2 1.0 - p 12 1.0 2.0 2.0 2 2tR(4,2) 8005.582 8006.441 -0.858 5 4.8 - p 30 1.0 2.0 -1.9 4 2

nQ(3,2)u 8007.410 8007.628 -0.218 3 1.0 - p 22 1.0 2.0 1.9 3 2nQ(4,2)u 8022.012 8022.693 -0.681 4 1.0 - p 22 1.0 2.0 1.7 4 2tR(3,1) 8027.840 8028.337 -0.497 4 3.5 + p 26 1.0 2.0 -1.8 3 1nR(3,1)l 8037.673 8038.191 -0.518 4 2.4 + p 27 0.9 2.1 1.7 3 1P(6,6) 8053.382 8054.810 -1.428 5 5.5 - o 17 1.8 1.2 -1.2 6 6

nR(1,1) 8071.617 8071.414 0.203 2 2.0 + p 17 1.0 2.0 2.0 1 1nQ(4,3) 8089.406 8090.282 -0.876 4 0.1 + o 11 1.0 2.0 2.0 4 3nQ(3,3) 8110.069 8110.202 -0.133 3 0.0 + o 11 1.0 2.0 1.8 3 3P(5,5) 8123.128 8123.985 -0.857 4 4.8 + p 30 1.9 1.1 -1.1 5 5tR(4,1) 8128.280 8129.331 -1.051 5 3.4 + p 27 0.9 2.1 -1.8 4 1nR(2,1) 8163.129 8163.294 -0.165 3 2.0 + p 17 1.0 2.0 1.9 2 1tR(3,0) 8162.653 8163.319 -0.666 4 2.9 - o 12 1.0 2.0 -1.9 3 0

Page 29: Laboratory spectroscopy of H 3 + Ben McCall Oka Ion Factory TM University of Chicago

1+222 Energy Levels

9000

8800

8600

8400

8200

8000

Up

pe

r S

tate

En

erg

y (c

m-1)

876543210<G>

0 12

11 3

24

222 3

33 4

33 3

44 5

4

454

5

2.00 -2.00

-2.00

2.002.00 -1.99

-2.00

-1.981.991.99

1.97 -1.99

-1.961.81 -1.99

1.931.76 1.89

-1.811.67 -1.98

-1.91

2.00-1.92

1.75

-1.79

6

6

5 54

4

5

-1.96

-1.93

1.51 2.00

1.84

1.81

-1.96

2 3

4

21 5

3

620

1 4

31 5

20 1

42 6

3

05

1

4

7

8

2 3

2

1

7

JG*

<l2>

Page 30: Laboratory spectroscopy of H 3 + Ben McCall Oka Ion Factory TM University of Chicago

Breaking the Barrier to Linearity

10000

5000

0

Ene

rgy

(cm

-1)

3.02.52.01.51.00.5(rad)

0

2

22

32

42

52

1+2

1+22

1

1+32

1+42

21+2

21

21+22

31

31+2

21+32

Page 31: Laboratory spectroscopy of H 3 + Ben McCall Oka Ion Factory TM University of Chicago

Future Prospects

Improvements in Theory– Hyperspherical coordinates for linearity (Watson)– Relativistic effects (Jaquet)– Non-adiabatic effects (Polyansky & Tennyson 1999)

Experimental Advances– Titanium:Sapphire laser, Dye laser– New techniques (heterodyne, cavities?)

– 42 0, 52 0 on the horizon

– ... 102 0 in the future??

Page 32: Laboratory spectroscopy of H 3 + Ben McCall Oka Ion Factory TM University of Chicago

Acknowledgements

Oka

J. K. G. Watson

Fannie and John Hertz Foundation

NSF

NASA

Page 33: Laboratory spectroscopy of H 3 + Ben McCall Oka Ion Factory TM University of Chicago

Column Density of H3+

(concentration) × (path length) Column Density

Laboratory: 1011 cm-3 103 cm 1014 cm-2× =

MolecularCloud:

10-4 cm-3 1018 cm 1014 cm-2× =

Laboratory and astronomical spectroscopy progressing together!