laboratorio 06 - modelos de transporte y asignación

17
Modelos de Transporte y Asignación I OBJETIVOS Conocer y aplicar los principales conceptos del modelo de transporte y Asignación. Aprender a solucionar problemas de transporte y de asignación. Utilizar el LINDO, WINQSB o POMQM como herramientas de desarrollo de problemas de Transporte y Asignación. II TEMAS A TRATAR Conceptos generales. Solución aplicando programación lineal. Modelo de transporte. Modelo de Asignación. III MARCO TEORICO EJEMPLO Nro 1: Modelo de Transporte Una compañía tiene dos sucursales. Una ubicada en Camaná que puede producir 3000 docenas de cajas y los costos de enviar cada docena de cajas a las ciudades de Cuzco, Tacna, Moquegua y Puno son de 5, 8, 3 y 6 dólares respectivamente, la sucursal de Mollendo puede producir 4000 Sesión 6

Upload: mauricio

Post on 08-Dec-2015

65 views

Category:

Documents


9 download

DESCRIPTION

Practica 5 Gestion de Proyecto 2015

TRANSCRIPT

Page 1: Laboratorio 06 - Modelos de Transporte y Asignación

Modelos deTransporte y Asignación

I

OBJETIVOS

Conocer y aplicar los principales conceptos del modelo de transporte y Asignación. Aprender a solucionar problemas de transporte y de asignación. Utilizar el LINDO, WINQSB o POMQM como herramientas de desarrollo de

problemas de Transporte y Asignación.

II

TEMAS A TRATAR

Conceptos generales. Solución aplicando programación lineal. Modelo de transporte. Modelo de Asignación.

III

MARCO TEORICO

EJEMPLO Nro 1: Modelo de Transporte

Una compañía tiene dos sucursales. Una ubicada en Camaná que puede producir 3000 docenas de cajas y los costos de enviar cada docena de cajas a las ciudades de Cuzco, Tacna, Moquegua y Puno son de 5, 8, 3 y 6 dólares respectivamente, la sucursal de Mollendo puede producir 4000 docenas de cajas y los costos de enviar a las ciudades de Cuzco, Tacna, Moquegua y Puno son de 6, 2, 4 y 5 dólares respectivamente, la fábrica principal ubicada en la ciudad de Arequipa puede producir 5000 docenas de cajas y los costos de enviar a las ciudades de Cuzco, Tacna, Moquegua y Puno son de 4, 5, 7 y 4 dólares respectivamente. Los consumos para las cuatro ciudades son de 2500, 1500, 4500 y 3500 docenas de cajas respectivamente. Determinar el mínimo costo de transporte desde los centros de abastecimientos a los consumidores.

SOLUCIÓNEl problema del caso estudio puede ser representado gráficamente del modo siguiente:

Sesión

6

Page 2: Laboratorio 06 - Modelos de Transporte y Asignación

Los datos y variables incógnitas quo representan al problema podemos representarlos en la gráfica siguiente:

Ordenando los datos en la matriz del problema del transporte obtenemos la Matriz de Transporte siguiente:

Como se puede observar en el cuadro anterior las variables incógnitas o de decisión del problema están determinados por Xij (docenas de cajas a transportarse desde la fábrica "i" a la ciudad consumidora "j") y los valores conocidos están determinados por Cij (costo de trasladar una docena de cajas de la fábrica "i"

Page 3: Laboratorio 06 - Modelos de Transporte y Asignación

a la ciudad "j"), así como la oferta de docenas de cajas (ai) que producen cada una de las fábricas "i" y la cantidad de demanda requerida por cada ciudad "j" (bj).

SOLUCIÓN APLICANDO PROGRAMACIÓN LINEAL

Formulamos el modelo matemático respectivo (observe que la demanda total es igual a la oferta total):

Min 5X11+8X12+3X13+6X14+4X21+5X22+7X23+4X24+6X31+2X32+4X33+5X34

ST

Restricciones de Oferta:

X11+X12+X13+X14= 3000 (capacidad de producción de Camaná)X21+X22+X23+X24= 5000 (capacidad de producción de Arequipa)X31+X32+X33+X34= 4000 (capacidad de producción de Mollendo)

Restricciones de Demanda:

X11+X21+X31=2500 (demanda de Cusco)X12+X22+X32=1500 (demanda de Tacna)X13+X23+X33= 4500 (demanda de Moquegua)X14+X24+X34= 3500 (demanda de Puno)Restricciones de no negatividad:Xij≥0

Utilizando el LINDO tenemos la siguiente salida:

Interpretación:Se observa que el algoritmo Simplex ha utilizado 6 iteraciones para llegar a la solución óptima. El costo total de envío es de 43000 dólares y el plan de transporte es el siguiente:De la Fábrica 1 (Camaná) se deberá enviar 3000 docenas de cajas al cliente 3 (Moquegua)De la Fábrica 2 (Arequipa) se deberá enviar 2500 docenas de cajas al cliente 1 (Cusco)De la Fábrica 2 (Arequipa) se deberá enviar 2500 docenas de cajas al cliente 4 (Puno)De la Fábrica 3 (Mollendo) se deberá enviar 1500 docenas de cajas al cliente 2 (Tacna)De la Fábrica 3 (Mollendo) se deberá enviar 1500 docenas de cajas al cliente 3 (Moquegua)De la Fábrica 3 (Mollendo) se deberá enviar 1000 docenas de cajas al cliente 4 (Puno)

Los Slack or Surplus con valor cero indican que las demandas y ofertas han sido agotadas.

Los costos reducidos indican que por ejemplo para que se justifique el envío de la fábrica 1 (Camaná) al cliente 2 (Tacna), el costo unitario de transporte por docena deberá mejorar (disminuir) en 7 dólares.

SOLUCIÓN APLICANDO REDES DE OPTIMIZACIÓN DEL WINQSB

Utilizando el módulo Network Modeling del WinQSB, ingresamos con File/New Problem, y nos presenta la siguiente ventana:

Page 4: Laboratorio 06 - Modelos de Transporte y Asignación

Existen 7 modelos fundamentales para el tratamiento de los problemas que involucran redes con el fin de optimizar el uso de algún recurso, generalmente tratándose de la minimización de costos, tiempo o la maximización del flujo a través de una red. Estos modelos son:

• Flujo en redes o modelo de trasbordo (Network Flow)• Problema de transporte (Transportation Problem)• Problema de asignación (Assignment Problem)• Problema de la ruta más corta (Shortest Path Problem)• Problema de flujo máximo (Maximal Flow Problem)• Árbol de mínima expansión (Minimal Spanning Tree)• Problema del agente viajero (Traveling Salesman Problem)

Ingresamos con la opción Transportation Problem: La función objetivo (Objetive Criterion), Minimización. El formato de entrada de datos (Data Entry Format) en forma matricial. El número de Orígenes (Number of Sources), 3. El número de destinos (Number of Destinations), 4.

Al hacer clic en OK, aparece la tabla siguiente de entrada de datos:

Para modificar los nombres de los nodos pulsamos sobre Node Name en el menú Editar (Edit). Modifiquemos dichos nombre como se muestra a continuación:

Page 5: Laboratorio 06 - Modelos de Transporte y Asignación

Luego ingresamos los costos unitarios, así como las ofertas (Supply) de cada fábrica y las demandas (Demand) de cada cliente.

Como paso previo a la solución debe escogerse el método mediante el cual se determina la solución básica inicial (recuérdese que los métodos asociados con el transporte sólo se diferencian en la forma como se obtiene la solución básica inicial). La manera de resolver el problema es idéntica a la del simplex, pudiéndose resolver directamente o por pasos.

Mediante la opción del menú Solve and Analyze/Select Initial Solution Method, escogemos el método de solución inicial. En este caso se ha escogido el método de la columna mínima.

Presionamos Solve o en su defecto ingresamos por el menú con la opción Solve and Analyze/Solve the Problem.

Obtenemos la misma solución que obtuvimos utilizando el software Lindo.

A continuación se muestran dos resúmenes de los que permite este módulo, para realizar el análisis de sensibilidad:

La primera tabla mediante la opción del menú Results/Range of Optimality, nos muestra, entre otros, el estado de las variables (básicas o no básicas); esto es, si la solución indica que un tramo ( i,j) debe realizarse o no; también enseña los costos reducidos, que tienen igual interpretación que en programación

Page 6: Laboratorio 06 - Modelos de Transporte y Asignación

lineal. Las dos últimas columnas señalan los máximos y mínimos costos permitidos en un tramo de transporte; esto equivale al análisis de coeficientes de costos de la programación lineal.

De la segunda tabla obtenida mediante la opción del menú Results/Range of Feasibility, cabe destacar los precios duales y los máximos y mínimos permitidos para las restricciones que se interpretan igual que en programación lineal.

EJEMPLO Nro 2: Modelo de Transporte

La Cía. Cervecera de Arequipa quiere planear su producción del primer semestre del 2008. Un estudio de mercado proyecta la demanda regional de cerveza siguiente:

Mes Enero Febrero Marzo Abril Mayo JunioDemanda (Toneladas) 30 40 50 30 40 30

La capacidad de producción de la planta para satisfacer dicha demanda es de 50 toneladas mensuales. Dado que en el mes de Marzo gran parte del personal de producción sale de vacaciones, la capacidad de la planta se reduce a 20 toneladas. La empresa puede producir y almacenar en cualquier mes para satisfacer demandas futuras.

Los costos de producción y almacenamiento se dan en la tabla siguiente (en decenas de soles/tonelada):

a) Determinar utilizando el WinQsb con la opción Network Modeling, el plan de producción mensual para satisfacer la demanda al menor costo de producción y almacenamiento?

b) Indicar el costo total óptimo para la empresa.c) Indicar la capacidad ociosa de la planta en cada uno de los seis meses.d) Suponiendo que se obliga agotar la capacidad de producción del mes de Abril, construya el modelo

matemático que permita determinar el plan de producción mensual.e) Utilizando el Lindo o WinQSB, determine el plan de producción mensual, el costo total y la

capacidad ociosa mensual de la planta.

Page 7: Laboratorio 06 - Modelos de Transporte y Asignación

SOLUCIÓN

a) Ingresamos la información de la siguiente manera:

La salida del WinQSB es la siguiente:

Por lo tanto el Plan de Producción es:

Enero: 50 toneladasFebrero: 50 toneladasMarzo: 20 toneladasAbril: 30 toneladasMayo: 40 toneladasJunio: 30 toneladas

b) El costo óptimo para la empresa es 449 000 soles.

c) La capacidad ociosa es: en Abril 20 toneladas, en Mayo 10 toneladas y en Junio 20 toneladas.

d) El modelo matemático respectivo es:

Min 200x11+210x12+220x13+230x14+240x15+250x16+200x22+210x23+220x24+230x25+240x26+220x33+240x34+260x35+280x36+200x44+210x45+220x46+200x55+210x56+200x66

Stx11+x12+x13+x14+x15+x16<=50x22+x23+x24+x25+x26<=50x33+x34+x35+x36<=20x44+x45+x46=50x55+x56<=50x66<=50x11=30x12+x22=40x13+x23+x33=50x14+x24+x34+x44=30x15+x25+x35+x45+x55=40x16+x26+x36+x46+x56+x66=30end

Page 8: Laboratorio 06 - Modelos de Transporte y Asignación

donde Xij: Número de Toneladas producidas en el mes i para satisfacer la demanda del mes j.

e) La salida del Lindo 6.0 es:

El plan de producción es:

Enero: 50 toneladasFebrero: 50 toneladasMarzo: 20 toneladasAbril: 50 toneladasMayo: 20 toneladasJunio: 30 toneladas

El costo de producción es 451 000 soles.La capacidad ociosa es: en Mayo 30 toneladas y en Junio 20 toneladas.

Modelos de AsignaciónCaso especial del problema del transporte, donde las ofertas y las demandas siempre son iguales a uno (1). Para la resolución de este caso especial, se hace uso del método húngaro.

EJEMPLO Nro 1: MODELO DE ASIGNACIÓN

Se cuenta con seis empleados para llevar a cabo cinco tareas. El tiempo (en minutos) que toma a cada persona realizar cada tarea se da en la tabla siguiente:

a) Utilizando el WinQSB, determine la asignación óptima que permita minimizar el tiempo total requerido para realizar las cinco tareas.

b) ¿Qué operario se queda sin asignación?c) Si se obliga a la persona 4 realizar la tarea 3 y se prohíbe a las personas 2 y 5 realizar las tareas 2

y 3 respectivamente, Formule un modelo matemático de programación binaria para determinar la asignación de empleados a las tareas que reduce el tiempo total requerido para efectuar las cinco tareas. ¿Qué operario se queda sin asignación?

SOLUCIÓN:

Page 9: Laboratorio 06 - Modelos de Transporte y Asignación

Ingresamos la información al WinQSB, mediante el módulo Network Modeling, luego usamos File/New Problem y escogemos el tipo de problema Assignment Problem. Nuestro modelo tiene 6 orígenes (Number of Objects) y 5 destinos (Number of Assignments), obtenemos la siguiente solución:

a) La solución indica que las personas 1, 2, 3, 4 y 5 deben realizar las tareas 2, 1, 3, 4 y 5 respectivamente.

b) El operario 6 se queda sin asignación.

c) El modelo matemático respectivo es:

Min 22x11+18x12+21x13+18x14+18x15+18x21+23x22+27x23+22x24+22x25+ 26x31+28x32+28x33+28x34+24x35+16x41+22x42+17x43+14x44+14x45+ 21x51+24x52+25x53+28x54+20x55+28x61+25x62+28x63+28x64+30x65Stx11+x12+x13+x14+x15<=1x21+x22+x23+x24+x25<=1x31+x32+x33+x34+x35<=1x41+x42+x43+x44+x45<=1x51+x52+x53+x54+x55<=1x61+x62+x63+x64+x65<=1x11+x21+x31+x41+x51+x61=1x12+x22+x32+x42+x52+x62=1x13+x23+x33+x43+x53+x63=1x14+x24+x34+x44+x54+x64=1x15+x25+x35+x45+x55+x65=1x43=1x22=0x53=0end

donde xij=1, si la persona i es asignada a la tarea j, =0, en caso contrario.

Salida del Lindo:

Page 10: Laboratorio 06 - Modelos de Transporte y Asignación

La salida no indica que los operarios 1, 2, 4, 5 y 6 se deben asignar a las tareas 4, 1, 3, 5 y 2 respectivamente. El operario que se queda sin asignación es el .el operario 3.

EJEMPLO Nro 2: MODELO DE ASIGNACIÓN

El gobierno desea instalar 5 proyectos de inversión (1, 2, 3, 4 y 5) en las regiones A, B, C, D, E, F y G. Se instala a lo más un proyecto por región.

La siguiente tabla muestra la rentabilidad de la inversión en un horizonte de vida de 5 años (en millones de dólares):

RegiónProyecto A B C D E F G 1 40 40 35 45 40 30 50 2 25 20 25 20 25 30 30 3 10 15 15 10 20 15 20 4 35 30 30 35 30 25 30 5 30 25 35 30 30 30 35

a) Como Asesor de gobierno en Planificación, determinar utilizando el WinQsb con la opción Network Modeling, la asignación óptima de los proyectos a cada región, de tal manera que se obtenga el máximo rendimiento de la inversión.

b) Indicar la rentabilidad total de la inversión.

c) Indicar las regiones que se quedan sin inversión.

d) Suponiendo que el proyecto 3 no puede ir a la región A, y se obliga a que el proyecto 4 se instale en la región E, Construir el modelo matemático que permita determinar las inquietudes a, b y c y resuélvalo utilizando el Lindo o WinQSB.

SOLUCIÓN

a) Ingresamos la información de la siguiente manera:

Por lo tanto el proyecto 1, 2, 3, 4 y5 se asignan a las regiones G, F, E, A y C respectivamente.

b) La rentabilidad total de la inversión es de 170 millones de dólares.

c) Las regiones que se quedan sin inversión son la región B y la D.

d) El modelo matemático es el siguiente:

Max 40x1a+40x1b+35x1c+45x1d+40x1e+30x1f+50x1g+25x2a+20x2b+25x2c+20x2d+25x2e+30x2f+30x2g+10x3a+15x3b+15x3c+10x3d+20x3e+15x3f+20x3g+35x4a+30x4b+30x4c+35x4d+30x4e+25x4f+30x4g+

Page 11: Laboratorio 06 - Modelos de Transporte y Asignación

30x5a+25x5b+35x5c+30x5d+30x5e+30x5f+35x5gStx1a+x1b+x1c+x1d+x1e+x1f+x1g=1x2a+x2b+x2c+x2d+x2e+x2f+x2g=1x3a+x3b+x3c+x3d+x3e+x3f+x3g=1x4a+x4b+x4c+x4d+x4e+x4f+x4g=1x5a+x5b+x5c+x5d+x5e+x5f+x5g=1x1a+x2a+x3a+x4a+x5a<=1x1b+x2b+x3b+x4b+x5b<=1x1c+x2c+x3c+x4c+x5c<=1x1d+x2d+x3d+x4d+x5d<=1x1e+x2e+x3e+x4e+x5e<=1x1f+x2f+x3f+x4f+x5f<=1x1g+x2g+x3g+x4g+x5g<=1x3a=0x4e=1endint 35

donde Xij =1, si el proyecto i es asignado a la región j; =0, en caso contrario.

La salida del Lindo 6.0 es:

Por lo tanto los proyectos 1, 2, 3, 4 y 5 se deberán asignar a las regiones G, F, B, E y C respectivamente. La rentabilidad de la inversión es 160 millones de dólares. Las regiones que se quedan sin inversión son A y D.

IV

(La práctica tiene una duración de 02 horas) ACTIVIDADES

Modelos de Transporte

1. En el EJEMPLO 1, suponga que la capacidad de producción en Arequipa se reduce de 5000 a 4000 docenas de cajas, Cuál sería el nuevo plan de producción y transporte? Cuál será el nuevo costo total?

2. Considere la representación en red siguiente de un problema de transporte: Los suministros, demandas y costos de transporte por unidad aparecen en la red.

Page 12: Laboratorio 06 - Modelos de Transporte y Asignación

a. Utilice el WinQsb (opción Network Modeling) y muestre el plan de transporte óptimo. Indique el costo total.

b. Desarrolle un modelo matemático de programación lineal para este problema. Utilizando el Lindo o WinQsb resuelva y muestre el plan óptimo de transporte, así como el costo total. Compare sus resultados con los encontrados en el punto anterior.

3. Un producto es manufacturado en tres plantas y embarcado a tres almacenes (los costos de transporte en dólares por Tonelada aparecen en la tabla siguiente).

Almacén Capacidadde la plantaPlanta W1 W2 W3

P1 20 16 24 300 Ton.P2 10 10 8 500 Ton.P3 12 18 10 100 Ton.Demanda de cada almacén 200 Ton. 400 Ton. 100 Ton.

a) Desarrolle un modelo de programación lineal para minimización de costos de transporte. Resuelva el modelo matemático con Lindo o WinQSb y muestre el plan de producción y distribución del problema. Cuál es el costo total?

b) En qué plantas existe capacidad ociosa? Cuánto?c) Suponga que las entradas en la tabla representan utilidad por unidad producida en la planta

i y vendidas al almacén j. ¿Cómo cambia la formulación del modelo, en comparación con el inciso (b)? Cuál es la nueva solución óptima del problema?

d) Para el problema original, Si se obliga el envío de la planta 2 al almacén 1 un mínimo de 150 toneladas y se prohíbe el envío de la planta 1 al almacén 2. Cuál es la nueva solución óptima del problema?.

4. La Compañía BBVA tiene pedidos de tres productos similares:

PedidosProducto (unidades)

A 2000B 1500C 1200

Hay disponibles tres máquinas para las operaciones de manufactura; las tres pueden producir todos los productos a la misma velocidad de producción. Sin embargo, debido a distintos porcentajes de defectuosos en cada producto y cada máquina, el costo unitario de los productos varía, dependiendo de la máquina utilizada. La capacidad de máquinas para la semana siguiente, así como los costos unitarios son los siguientes:

CapacidadMáquina (unidades)

1 15002 1500

Page 13: Laboratorio 06 - Modelos de Transporte y Asignación

3 1000

a) Muestre la formulación de programación lineal que permita determinar el programa de producción a costo mínimo de productos y máquinas.

b) Muestre el programa de producción y su costo mínimo.c) Muestre la demanda insatisfecha.

5. Una compañía electrónica norteamericana produce una grabadora de cinta operada por baterías en plantas localizadas en Martinsville, Plymouth y Franklin. El costo de transporte uni tario de embarques desde las tres plantas a los centros de distribución en Chicago, Dallas y New York es como sigue:

Después de tomar en consideración los costos de transporte, la administración ha decidido que bajo ninguna circunstancia se utilizará la ruta Plymouth-Dallas. Las capacidades de planta y los pedidos de los distribuidores para el siguiente mes son los siguientes:

Debido a que existen diferentes escalas de salario en las tres plantas, el costo unitario de producción varía de una a otra. Suponiendo que el costo es de 29.50 dólares por unidad en Martinsville, 31.20 dólares por unidad en Plymouth y 30.35 dólares por unidad en Franklin.

a) Formule un modelo matemático de programación lineal que determine un plan de producción y de distribución que minimice los costos de producción y de transporte.

b) Utilizando el Lindo o WinQsb, resuelva el modelo matemático y muestre el plan de producción y distribución, así como el costo de producción y de transporte.

Modelos de Asignación:

6. Para el caso estudio Nro 1 en su estado inicial, suponga que la persona 5 recibe un plan de adiestramiento de tal manera que sus tiempos para realizar las tareas 1, 2, 3, 4 y 5 son 20, 21, 22, 26 y 17 minutos respectivamente,

a) Utilizando el WinQSB o Lindo, determine la asignación óptima que permita minimizar el tiempo total requerido para realizar las cinco tareas.

b) ¿Qué operario se queda sin asignación?c) Si se obliga a la persona 3 realizar la tarea 5 y se prohíbe a la persona 2 las tareas 2 y 3, Formule

un modelo matemático de programación binaria para determinar la asignación de empleados a las tareas que reduce el tiempo total requerido para efectuar las cinco tareas. ¿Qué operario se queda sin asignación?

2. Para el caso estudio Nro 2 en su estado inicial, suponga que el proyecto 4 se reformula de tal manera que su rentabilidad en las regiones A, B C, D, E, F y G son: 40, 35, 37, 40, 35, 30 y 40 respectivamente,

ProductoMáquina A B C

123

$1.00$1.30$1.10

$1.20$1.40$1.00

$0.90$1.20$1.20

Page 14: Laboratorio 06 - Modelos de Transporte y Asignación

a) Como Asesor de gobierno en Planificación, determinar utilizando el WinQsb con la opción Network Modeling, la nueva asignación óptima de los proyectos a cada región, de tal manera que se obtenga el máximo rendimiento de la inversión.

b) Indicar la rentabilidad total de la inversión.

c) Indicar las regiones que se quedan sin inversión.

d) Suponiendo que el proyecto 2 no puede ir a la región C, y se obliga a que el proyecto 3 se instale en la región F, Construir el modelo matemático que permita determinar las inquietudes a, b y c y resuélvalo utilizando el Lindo o WinQSB.