lab 4 solns

3
Name: Tutorial Section: Math 115 Lab 4 Solutions 1. Let T : R 4 R 3 be a linear transformation. If T 1 1 1 1 = 5 1 3 , and T -1 1 0 2 = 2 0 1 , find T 5 3 4 2 . Answer: 5 3 4 2 T =4 1 1 1 1 T - -1 1 0 2 T . Thus, T ( 5 3 4 2 T )=T 4 1 1 1 1 T - -1 1 0 2 T =4T 1 1 1 1 T - T -1 1 0 2 T =4 5 1 3 T - 2 0 1 T = 18 4 11 T 2. Are the following transformations T : R 2 R 2 linear? Verify your answer. (a) T x y = x 2 y (b) T x y = x y +3 Solution: (a) Let u = u 1 u 2 and v = v 1 v 2 . Then T (u + v) = T u 1 + v 1 u 2 + v 2 = (u 1 + v 1 ) 2 u 2 + v 2 = u 2 1 +2u 1 v 1 + v 2 1 u 2 + v 2 But T (u)+ T (v) = u 2 1 u 2 + v 2 1 v 2 = u 2 1 + v 2 1 u 2 + v 2 = T (u + v) (b) Let u = u 1 u 2 and v = v 1 v 2 . Then T (u + v) = T u 1 + v 1 u 2 + v 2 = u 1 + v 1 u 2 + v 2 +3 But T (u)+ T (v) = u 1 u 2 +3 + v 1 v 2 +3 = u 1 + v 1 u 2 + v 2 +6 = T (u + v) Therefore, T is not linear.

Upload: patricesingson

Post on 03-Oct-2015

1 views

Category:

Documents


0 download

DESCRIPTION

MATH 115

TRANSCRIPT

  • Name: Tutorial Section:

    Math 115 Lab 4 Solutions

    1. Let T : R4 R3 be a linear transformation. If T

    1111

    =513

    , and T1102

    =201

    , find T5342

    .Answer:

    [5 3 4 2

    ]T = 4 [1 1 1 1]T [1 1 0 2]T .Thus,

    T ([5 3 4 2

    ]T ) =T (4 [1 1 1 1]T [1 1 0 2]T)=4T

    ([1 1 1 1

    ]T) T ([1 1 0 2]T)=4

    [5 1 3

    ]T [2 0 1]T=[18 4 11

    ]T2. Are the following transformations T : R2 R2 linear? Verify your answer.

    (a) T[xy

    ]=[x2

    y

    ](b) T

    [xy

    ]=[

    xy + 3

    ]Solution:

    (a) Let ~u =[u1u2

    ]and ~v =

    [v1v2

    ]. Then

    T (~u+ ~v) = T([

    u1 + v1u2 + v2

    ])=

    [(u1 + v1)2

    u2 + v2

    ]=

    [u21 + 2u1v1 + v

    21

    u2 + v2

    ]But

    T (~u) + T (~v) =[u21u2

    ]+[v21v2

    ]=

    [u21 + v

    21

    u2 + v2

    ]6= T (~u+ ~v)

    (b) Let ~u =[u1u2

    ]and ~v =

    [v1v2

    ]. Then

    T (~u+ ~v) = T([

    u1 + v1u2 + v2

    ])=

    [u1 + v1

    u2 + v2 + 3

    ]But

    T (~u) + T (~v) =[

    u1u2 + 3

    ]+[

    v1v2 + 3

    ]=

    [u1 + v1

    u2 + v2 + 6

    ]6= T (~u+ ~v)

    Therefore, T is not linear.

  • 3. In each case, find the standard matrix for the given transformation.

    (a) A reflection in the y-axis followed by a rotation through pi/3.

    (b) A rotation through pi/4 followed by a reflection in the x-axis.

    Solution:

    (a) Ry =[1 00 1

    ], Rpi/3 =

    [cos(pi/3) sin(pi/3)sin(pi/3) cos(pi/3)

    ]=

    [12

    32

    32

    12

    ]

    The standard matrix for Rpi/3 Ry is[

    12

    32

    32

    12

    ] [1 00 1

    ]=

    [ 12

    32

    32

    12

    ]

    (b) Rpi/4 =[cos(pi/4) sin(pi/4)sin(pi/4) cos(pi/4)

    ]=

    [12 1

    212

    12

    ]and Rx =

    [1 00 1

    ]The standard matrix for

    Rx Rpi/4 =[

    12 1

    212

    12

    ] [1 00 1

    ]=

    [12

    12

    12 1

    2

    ]

    4. If A is 4 4 and detA = 2, find det(15A1 6 adjA).

    SolutionWe have A1 =

    1detA

    adjA =12adjA, so adjA = 2A1.

    Using the fact that A1 is of size 4 4, this gives

    det(15A1 6 adjA) = det(15A1 12A1) = det(3A1) = 34 det(A1) = 8112=

    812.

    5. Evaluate det

    x 1 2 32 3 x 22 x 2

    by first adding all other rows to the first row.Then find all values of x such that the determinant is zero.

    SolutionR1 +R2 +R3

    det

    x 1 2 32 3 x 22 x 2

    = det x 1 x 1 x 12 3 x 2

    2 x 2

    C2 C1, C3 C1= det

    x 1 0 02 5 x 42 x+ 2 0

    R2 R3= det

    x 1 0 02 x+ 2 02 5 x 4

    = (x 1)(x+ 2)(x 4).Hence the determinant is zero if x = 1, 2 or 4.

    6. (a) Evaluate

    3 5 2 61 2 1 12 4 1 53 7 5 3

    using elementary row/column operations and Cofactor Expansion.(b) Use your result in (a) and Cramers Rule to solve for y in the linear system

    3x+ 5y 2z + 6w = 1x+ 2y z + w = 0

    2x+ 4y + z + 5w = 33x+ 7y + 5z + 3w = 8

    Solution:

  • (a)

    3 5 2 61 2 1 12 4 1 53 7 5 3

    =0 1 1 31 2 1 10 0 3 30 1 8 0

    = 1 1 30 3 31 8 0

    = 1 1 30 3 30 9 3

    = (1)3 39 3

    = 18.R1 3R2 R3 +R1R3 2R2R4 3R2

    (b) Evaluate the determinant of the matrix obtained by replacing column 2 of the coefficient matrixwith the vector of constants:3 1 2 61 0 1 12 3 1 53 8 5 3

    =0 1 1 31 0 1 10 3 3 30 8 8 0

    = 1 1 33 3 38 8 0

    = 0R1 3R2R3 2R2R4 3R2

    Thus, y =018 = 0.