la tierra como planeta

44
INDICE INDICE………………………………………………………………………….. Pág...01 LA TIERRA COMO PLANETA………………………………………………..Pág. 02 – 04 SISTEMA SOLAR…………………………………………………………….. Pág. 05 -13 LITOSFERA…………………………………………………………………… Pág. 14 – 18 RELIEVE CONTINENTAL…………………………………………………… Pág.19 – 20 CUENCAS OCEANICAS……………………………………………………..Pág.21 – 23 TEORIA DE LA ISOSTASIA………………………………………………… Pág. 24 – 26 DERIVADA CONTINENTAL………………………………………………… Pág. 27 – 28 TECTONICA DE PLACAS…………………………………………………… Pág. 29 – 30 LINCOGRAFIA………………………………………………………………… Pág. 31 CONCLUSION………………………………………………………………… Pág. 32 1

Upload: editha-mendoza-mejia

Post on 06-Dec-2015

219 views

Category:

Documents


1 download

DESCRIPTION

importante +'

TRANSCRIPT

Page 1: La Tierra Como Planeta

INDICE

INDICE………………………………………………………………………….. Pág...01

LA TIERRA COMO PLANETA………………………………………………..Pág. 02 – 04

SISTEMA SOLAR…………………………………………………………….. Pág. 05 -13

LITOSFERA…………………………………………………………………… Pág. 14 – 18

RELIEVE CONTINENTAL…………………………………………………… Pág.19 – 20

CUENCAS OCEANICAS……………………………………………………..Pág.21 – 23

TEORIA DE LA ISOSTASIA………………………………………………… Pág. 24 – 26

DERIVADA CONTINENTAL………………………………………………… Pág. 27 – 28

TECTONICA DE PLACAS…………………………………………………… Pág. 29 – 30

LINCOGRAFIA………………………………………………………………… Pág. 31

CONCLUSION………………………………………………………………… Pág. 32

1

Page 2: La Tierra Como Planeta

LA TIERRA COMO PLANETA

Es nuestro planeta y el único habitado. Está en la ecosfera, un espacio que rodea al Sol y que tiene las condiciones necesarias para que exista vida.

La Tierra es el mayor de los planetas rocosos. Eso hace que pueda retener una capa de gases, la atmósfera, que dispersa la luz y absorbe calor. De día evita que la Tierra se caliente demasiado y, de noche, que se enfríe.

Siete de cada diez partes de la superficie terrestre están cubiertas de agua. Los mares y océanos también ayudan a regular la temperatura. El agua que se evapora forma nubes y cae en forma de lluvia o nieve, formando ríos y lagos. En los polos, que reciben poca energía solar, el agua se hiela y forma los casquetes polares. El del sur es más grande y concentra la mayor reserva de agua dulce.

La Tierra no es una esfera perfecta, sino que tiene forma de pera. Cálculos basados en las perturbaciones de las órbitas de los satélites artificiales revelan que el ecuador se engrosa 21 km; el polo norte está dilatado 10 m y el polo sur está hundido unos 31 metros.

Datos básicos La Tierra Orden

Tamaño: radio ecuatorial 6.378 km. 5º

Distancia media al Sol 149.600.000 km. 3º.

Día: periodo de rotación sobre el eje 23,93 horas 5º.

Año: órbita alrededor del Sol 365,256 dias 3º.

Temperatura media superficial 15 º C 7º.

Gravedad superficial en el ecuador 9,78 m/s2 5º.

Formación de la Tierra :

2

Page 3: La Tierra Como Planeta

La Tierra se formó hace unos 4.650 millones de años, junto con todo el Sistema Solar. Aunque las piedras más antiguas de la Tierra no tienen más de 4.000 millones de años, los meteoritos, que se corresponden geológicamente con el núcleo de la Tierra, dan fechas de unos 4.500 millones de años, y la cristalización del núcleo y de los cuerpos precursores de los meteoritos, se cree que ocurrió al mismo tiempo, unos 150 millones de años después de formarse la Tierra y el Sistema Solar.

Después de condensarse a partir del polvo cósmico y del gas mediante la atracción gravitacional, la Tierra era casi homogénea y bastante fría. Pero la continuada contracción de materiales y la radiactividad de algunos de los elementos más pesados hizo que se calentara.

Después, comenzó a fundirse bajo la influencia de la gravedad, produciendo la diferenciación entre la corteza, el manto y el núcleo, con los silicatos más ligeros moviéndose hacia arriba para formar la corteza y el manto y los elementos más pesados, sobre todo el hierro y el níquel, cayendo hacia el centro de la Tierra para formar el núcleo.

Al mismo tiempo, la erupción de los numerosos volcanes, provocó la salida de vapores y gases volátiles y ligeros. Algunos eran atrapados por la gravedad de la Tierra y formaron la atmósfera primitiva, mientras que el vapor de agua condensado formó los primeros océanos.

Magnetismo de la Tierra

3

Page 4: La Tierra Como Planeta

El magnetismo terrestre significa que la Tierra se comporta como un enorme imán. El físico inglés William Gilbert fue el primero que lo señaló, en 1600, aunque los efectos del magnetismo terrestre se habían utilizado mucho antes en las brújulas primitivas.

La Tierra está rodeada por un potente campo magnético, como si el planeta tuviera un enorme imán en su interior cuyo polo sur estuviera cerca del polo norte geográfico y viceversa. Por paralelismo con los polos geográficos, los polos magnéticos terrestres reciben el nombre de polo norte magnético y polo sur magnético, aunque su magnetismo real sea opuesto al que indican sus nombres.

El polo norte magnético se sitúa hoy cerca de la costa oeste de la isla Bathurst en los Territorios del Noroeste en Canadá. El polo sur magnético está en el extremo del continente antártico en Tierra Adelia.

Las posiciones de los polos magnéticos no son constantes y muestran notables cambios de año en año. Las variaciones en el campo magnético de la Tierra incluyen el cambio en la dirección del campo provocado por el desplazamiento de los polos. Esta es una variación periódica que se repite cada 960 años. También existe una variación anual más pequeña.

SISTEMA SOLAR

4

Page 5: La Tierra Como Planeta

El Sistema Solar es uno de las materias más estudiadas en la historia de la humanidad.

Desde tiempos muy antiguos, el hombre ha manifestado preocupación e interés por conocer su medio, y el Universo no está exento de esa curiosidad y afán de investigación.

Ya en el siglo III A.C. , Aristarco de Samos presentaba la teoría heliocéntrica del origen del Sistema Solar, la que perduró hasta el siglo II, cuando Tolomeo propondría su celebre Teoría Geocéntrica, la que sostenía que la tierra era el centro del Universo. Debieron pasar un par de siglos, para que en el XVI, Nicolás Copérnico propusiera nuevamente la teoría heliocéntrica, la que esta vez sea aceptada universalmente.

Desde entonces, ha habido un gran interés por conocer el sistema solar, investigaciones de las que desprenden grandes teorías, desde la Ley de la Gravitación Universal de Newton hasta cálculos que indican que habrían más de cien mil millones de estrellas en la Vía Láctea, galaxia a la cual pertenece nuestro sistema solar.

Este interés ha llevado al hombre a realizar grandes operaciones, las que han trascendido fronteras, es así como en 1957 se lanza al espacio el Sputnik I, primer vehículo que sales de la órbita terrestre. En 1958, la URSS lanza al espacio un cohete con dos perras: los primeros seres vivientes en salir del globo terrestre. El primer astronauta fue Yuri Gagarin, a bordo del Bostok I. El 18 de marzo de 1965 se realiza el primer paseo espacial: el ruso A. Leonov flotó en le espacio por 10 minutos, convertido en un "hombre – satélite".

En 16 de julio de 1969 el Apolo XI despegó rumbo a la Luna. Iba tripulado por Collins, Armstrong y Aldrin. Cuatro días después, se marcaba la primera huella humana sobre la luna, la frase "un pequeño paso para un hombre, un gran paso para la humanidad" recorrería el mundo.

Hoy, tres décadas después de este "gran paso", la tecnología de Internet hace posible que en segundos contemos con información necesaria y material gráfico de cualquier tema, y la astronomía y la astronáutica no están ajenas a esto.

¿Dónde está ubicado?

Pertenecemos a la Vía Láctea y nuestro Sistema Solar se halla ubicado en uno de los extremos de dicha galaxia. ¿A qué distancia estamos del centro de dicha galaxia? Aproximadamente a unos 31'000,000 de kilómetros.

Como sabemos los cuerpos celestes por lo general giran en un movimiento de rotación respecto a un centro determinado, para nuestro sistema solar, el centro será el centro de la Vía Láctea y nuestro sol demora 230 millones de años terrestres en dar una vuelta completa a este centro.

¿Quiénes lo componen?

5

Page 6: La Tierra Como Planeta

Nuestro Sistema está compuesto por una gran estrella la cual le proporciona el calor necesario para la existencia de vida a nuestro planeta, dicha estrella es El Sol (por ello el nombre de Sistema Solar), asimismo existen planetas (9), algunos con sus

respectivos satélites así como un cinturón de asteroides ubicado entre Marte y Júpiter.

En orden de proximidad al Sol, los cuatro primeros planetas (Mercurio, Venus, Tierra y Marte) son denominados los planetas interiores debido a que están ubicados entre el Sol y el cinturón de asteroides, dicho cinturón de asteroides está conformado por cuerpos de entre 1,5 a 750 kilómetros de diámetro. Los planetas exteriores son Júpiter Saturno, Urano, Neptuno y Plutón.

Planetas interiores

Los planetas de nuestro Sistema Solar pueden dividirse en dos grupos bien definidos. Los planetas interiores también denominados pequeños, rocosos, terrestres o telúricos (esto quiere decir: de la familia de la tierra). Pertenecen a este grupo: Mercurio, Venus, Tierra y Marte. Las características generales son similares. Tamaño más o menos pequeño formados básicamente por rocas y además salvo Mercurio todos están rodeados de una atmósfera que tiene poco hidrógeno y helio. En general tienen pocos -o ningún- satélite natural: Mercurio y Venus no tienen ninguno, la tierra tiene la Luna y Marte tiene dos que son: Fobos y Deimos.

Planetas gigantes

Pertenecen a este grupo Júpiter y Saturno los que tienen un tamaño varias veces superior a la Tierra, el primero 12 veces y el segundo 10 veces.

Planetas Exteriores

Pertenecen a esta clasificación Urano, Neptuno y Plutón.

Asteroides

6

Page 7: La Tierra Como Planeta

Los Asteroides, denominados tambien "planetitas", son pedazos de rocas que orbitan alrededor del Sol, entre Marte y Júpiter en un amplio cinturón llamado justamente "Cinturón de Asteroides". Existen otros Asteroides que siguen órbitas distintas. Hasta el momento se han identificado a mas de 5000 millones de Asteroides. Se piensa que los dos satélites de Marte: Fobos y Deimos son Asteroides que quedaron atrapados por la fuerza de gravedad del planeta. Otros Asteroides como el Gaspra, Ida y Dactyl fueron fotografiados por la nave espacial Galileo en su viaje a Júpiter. El tamaño varia desde 975 Kms. Ceres, 525 Kms. Vesta.

El Sol

El Sol es una estrella compuesta por más de 70 elementos distintos, entre los cuales podemos mencionar al Hidrógeno (81,76%), Helio (18,17%), Oxígeno, Hierro, Magnesio, entre otros que llegan a representar el 0,07% restante. Es un cuerpo gaseoso aunque algunos la consideran dentro del estado de plasma debido a la alta temperatura a la que se encuentra (en la superficie la temperatura llega a los 6,050º C y en el centro se calcula que puede llegar a los 5'000,000º C). Está a 150 millones de kilómetros de la Tierra, su diámetro es aproximadamente de 1´400,000 kilómetros y posee una masa equivalente a 332,000 veces el de la tierra.

¿Qué tiempo de vida tiene el sol?

Puesto que aproximadamente cada segundo el sol pierde 4´000,000 de toneladas de materia en forma de radiación, se estima que el sol llegará a agotar la totalidad del hidrógeno en 5´000,000 de años.

¿Cuánto dura "un día" en el sol?

La rotación solar dura el equivalente a 26 días 19 horas y 12 minutos terrestres. Es decir, 24 horas del sol equivalen a 643 horas y 12 minutos de la tierra.

Igual que otras estrellas, el Sol es una enorme bola de gas en revolución. En su núcleo tienen lugar reacciones nucleares que liberan energía. El Sol es la única estrella que está relativamente cerca para poder ser estudiada en detalle. Las características de su superficie como las manchas solares y las protuberancias, pueden observarse desde la Tierra. En su núcleo, el Sol convierte hidrógeno en helio a razón de 600 toneladas por segundo, lo que significa que el astro pierde cuatro millones de toneladas de su masa cada segundo. Este astro NUNCA DEBE SER OBSERVADO DIRECTAMENTE,

7

Page 8: La Tierra Como Planeta

incluso a través de gafas de sol, película fotográfica o cristal ahumado hay riesgo de dañarse los ojos. A través de equipos especiales es posible ver en el Sol manchas oscuras que son zonas del Sol más frías y que son fruto de la actividad solar.

Una mancha solar completamente desarrollada, consiste en una oscura sombra rodeada de penumbra más clara. La penumbra tiene una estructura filamentosa. Las grandes manchas solares pueden tener diámetros mayores que el de la Tierra(diámetro de la Tierra en comparación con la mancha solar de la fotografía representado por el anillo azul que esta a la derecha de la misma).

Las protuberancias solares son enormes chorros de gas caliente expulsados desde la superficie del Sol y que se extienden a muchos miles de kilómetros. Las mayores llamaradas pueden durar varios meses. El campo magnético del Sol desvía algunas protuberancias que forman así un gigantesco arco.

Mercurio:

8

Page 9: La Tierra Como Planeta

Mercurio es uno de los planetas más pequeños de nuestro sistema solar, prácticamente carece de atmósfera. Si la pudiéramos ver de cerca veríamos un panorama parecido al de la Luna, una superficie bombardeada constantemente por meteoritos.

Posee una alta densidad (5,43 g/cm3), su temperatura varía dependiendo de que esté o no expuesta al sol pasando de 430º C de día a -180º C de noche, es el planeta que mayor variación de temperatura posee, esto debido a su proximidad al sol. La gravedad en la superficie de éste planeta es de 0,377 veces el de la tierra, es decir, que allá nuestro peso sería menor que el de aquí en la tierra.

Su distancia media al sol es de 57´910,000 kilómetros, su rotación es bastante lenta llegando a durar un día en Mercurio el equivalente a 58,66 días terrestres. Asimismo el año en Mercurio dura en términos terrestres 87,96 días (poco menos de tres meses terrestres). No posee satélites.

Venus :

Este planeta se encuentra a 108 200 000 kilómetros y posee una atmósfera compuesta mayormente de dióxido de carbono (97%), nitrógeno (3% aprox.) además de oxígeno, vapor de agua, monóxido de carbono, cloruro y fluoruro de hidrógeno, entre otros elementos. Está compuesto principalmente por hierro, oxígeno, nitrógeno, entre otros elementos.

A Venus lo podemos ver claramente en el cielo durante los atardeceres o al amanecer debido a que es el planeta que más cerca de la tierra logra pasar, cada 19 meses logra hacerlo.Al parecer posee cadenas montañosas y gran actividad volcánica. Su temperatura media en superficie es de 480º C, su densidad llega a ser de 5,24 g/cm3, su gravedad es de 0,902 veces la de la tierra.

El día en Venus dura, en términos terrestres, 243,01 días en movimiento contrario al de nuestro planeta (retrógrado) y un año en Venus equivale a 224,7 días terrestres, es decir, que un día en Venus es más largo que su año. No posee satélites conocidos.

La Tierra:

9

Page 10: La Tierra Como Planeta

Nuestro planeta posee una aceleración de la gravedad igual a 9,78 m/s2, su masa es de 5,7 x1024 se encuentra ubicado a una distancia al sol de 149 600 000 kilómetros. La atmósfera está compuesta por diversos elementos los cuales son Nitrógeno (77%), Oxígeno (21%) y otros elementos que llegan a representar el 2% restante. Como todos sabemos, nuestro planeta demora aproximadamente 24 horas en girar sobre su propio eje (para ser más exactos lo hace en 23,93 horas), mientras que tarda 365,256 días en gira en movimiento traslacional respecto del sol.

Como sabemos, éstos parámetros son harto conocidos, sin embargo lo que no es muy conocido a plenitud son los problemas por los que atraviesa nuestro planeta, el hábitat tal como lo conocemos está sufriendo trastornos constantes, a medida que pasa el tiempo los hábitos y las características de nuestro planeta y de sus habitantes cambian, es así como en la actualidad tenemos problemas de sobrepoblación, la reducción de la cantidad de ozono en nuestros polos, la desaparición de especies animales, etc.

Satélites conocidos

Nuestro planeta posee un satélite natural: La Luna, la cual fue explorada por las misiones Apolo - Saturno entre 1967 y 1970, hasta la fecha no ha habido misiones tripuladas no estadounidenses que hayan logrado llegar a posarse en la superficie lunar.

Marte:

Marte, más conocido como "el planeta rojo" está ubicado a una distancia promedio al sol de 227 900 000 kilómetros, su masa es de 6,241 x1023. La composición de su atmósfera ha sido por años motivo de controversia así como la posibilidad de vida en éste planeta, pero luego del aterrizaje del explorador Mars Pathfinder se ha logrado determinar su composición atmosférica la cual contiene: Dióxido de carbono (95,32%), Nitrógeno (2,7%), y otros elementos que completan con un 1,8% la composición de la atmósfera marciana.

La temperatura superficial varía entre -140º C y 20º C, un día en Marte equivale a 1 día 37 minutos 26,4 segundos terrestres, el año en Marte dura 686,98 días terrestres (más largo que el nuestro), en el último año la NASA ha logrado enviar con éxito al Mars Pathfinder, un explorador electrónico controlado de manera remota desde la Tierra, el cual

10

Page 11: La Tierra Como Planeta

ha logrado realizar diversos análisis tanto de la composición atmosférica como de la composición del planeta, así mismo ha sido el primer objeto terrestre en lograr posarse sobre suelo marciano brindándonos imágenes espectaculares de la superficie del planeta rojo.

Satélites conocidos:

Marte posee dos satélites: Phobos y Deimos descubiertos ambos en 1877 por el astrónomo norteamericano Asaph Hall.

Júpiter:

Júpiter es el planeta más grande del sistema solar, en ella podrían caber mas de mil tierras. Su masa alcanza los 1,9 x1027 kilogramos, se encuentra a 778 330 000 kilómetros de distancia promedio al Sol, posee una gran velocidad de rotación pues un día en Júpiter alcanza a durar 9 horas 50 minutos y 24 segundos, así mismo el año en Júpiter alcanza a durar 11,86 años terrestres. Es esencialmente líquido y su gravedad llega a ser 2,64 veces la terrestre, su atmósfera está compuesta por dos únicos elementos Hidrógeno (90%) y Helio (10%).

Júpiter posee un sistema de anillos bastante tenue el cual es muy difícil de observar y que fue descubierto por la sonda espacial Voyager. Júpiter se caracteriza por la Gran Mancha Roja que se encuentra en su atmósfera y que gira en sentido antihorario, en los últimos años éste planeta ha estado en la mira de muchos telescopios debido a la colisión del cometa Shoemaker-Levy en 1997.

Satélites conocidos:

Júpiter posee 16 satélites: Metis, Adrastea, Amalthea, Thebe, Io, Europa, Ganimedes, Calisto, Leda, Himalia, Lysithea, Elara, Ananke, Carme, Pasiphae y Sinope. Tanto Io, Europa, Ganimedes y Calisto fueron descubiertas por Galileo Galilei en 1610.

Saturno:

11

Page 12: La Tierra Como Planeta

Saturno es el planeta en el sistema solar que se caracteriza por sus anillos, el estudio de dichos anillos ha sido punto de partida para diversas hipótesis las cuales en la actualidad aún no logran ser demostradas en su totalidad. Este planeta es el segundo más grande en el sistema solar y el menos denso (su densidad promedio es menor que la del agua) y demora 10 horas y 39 minutos en girar sobre su propio eje, así mismo el año en Saturno equivale a 29 años y medio terrestres. Como podemos apreciar, sus días son más cortos, eso nos da una idea de la elevada velocidad a la que gira lo cual provoca el achatamiento de los polos en dicho cuerpo celeste.

Este planeta posee una masa de 5,688 x1026 kilogramos, la gravedad en la superficie llega a ser 1,19 veces la terrestre y su atmósfera está compuesta al igual que Júpiter por Hidrógeno y Helio, pero en distintas proporciones (97% y 3% respectivamente). Se encuentra a una distancia media del sol de 1 429 400 000 kilómetros.

Satélites conocidos:

Saturno posee 18 satélites naturales: Pan, Atlas, Prometeo, Pandora, Epimeteo, Jano, Mimas, Encelado, Tetis, Telesto, Calipso, Dione, Helena, Rhea, Titán, Hiperion, Japeto y Febe. La que destaca mas es Titán ya que se presume que posee altas cantidades de nitrógeno en su atmósfera por lo que se cree que pueda albergar algún tipo de vida.

Urano:

Si bien Urano es más grande en tamaño que Neptuno, su masa no lo es, esto debido a su densidad. A diferencia de la mayoría de planetas de nuestro Sistema Solar posee un eje de rotación bastante inclinado llegando incluso a tener a los polos prácticamente en el plano de la eclíptica y al igual que Venus posee una rotación retrógrada. Su órbita le otorga otra peculiaridad, ésta es casi circular.

La coloración verdosa característica de este planeta es debido a la presencia del metano en la atmósfera la cual está compuesta por los siguientes elementos: Hidrógeno (90% aprox.), Helio (10% aprox.) y Metano (<1%). La gravedad en su superficie es de 0,93 veces la de la Tierra. Sus elementos constituyentes los podemos resumir en Oxígeno, nitrógeno, carbono, silicio, hierro, agua, metano, amoniaco, hidrógeno y helio. Un día en Urano dura 17 horas y 12 minutos terrestres mientras que su año dura 84,01 años terrestres.

Satélites conocidos:

Urano posee 17 satélites conocidos: Cordelia, Ophelia, Bianca, Cressida, Desdémona, Julieta, Portia, Rosalind, Belinda, Puck, Miranda, Ariel, Umbriel, Titania, Oberón, Urano XVI y Urano XVII. Estos últimos fueron descubiertos en los últimos años.

Neptuno:

12

Page 13: La Tierra Como Planeta

En éste planeta (al igual que en Urano) también hay presencia de Metano en la atmósfera lo que provoca una coloración verdosa ya que la luz roja es absorbida. Las sondas Voyager lograron encontrar satélites adicionales a los ya vistos desde los radio y telescopios terrestres. La composición atmosférica es la siguiente: Hidrógeno, helio, metano, amoniaco y argón.

Posee una rotación más rápida que la terrestre llegando a durar el día en Neptuno el equivalente a 16 horas y 6 minutos, mientras que el año dura el equivalente a 164,80 años terrestres. Este planeta se encuentra ubicado a una distancia media del Sol de 4 496 670 000 kilómetros, su gravedad superficial equivale a 1,22 veces la terrestre. Este planeta está compuesto por: oxígeno, nitrógeno, silicio, hierro, hidrógeno y carbono.

Satélites conocidos:

Neptuno posee 8 satélites: Naiad, Thalassa, Despina, Galatea, Larissa, Proteo, Tritón y Nereida.

Plutón:

Plutón es el planeta más pequeño del sistema solar, es también el más distante y el más frío. Su distancia media al Sol es de 5.900.000.000 kilómetros y su temperatura media superficial llega a -238º C. Fue descubierto en 1930 por C. W. Tombaugh, y aún no ha podido ser explorado de manera exhaustiva por alguna nave o sonda terrestre. Posee una lenta rotación llegando a durar el día en Plutón 6 días 7 horas y 12 minutos terrestres, su período orbital hace que el año en Plutón sea equivalente a 248 años 5 meses y 5 días aproximadamente. Lo interesante de éste planeta es que cada vez que se encuentra recorriendo su propia órbita logra penetrar la órbita de Neptuno, colocándose durante veinte años más cerca al Sol que su vecino verde.

Su atmósfera está compuesta por Nitrógeno, metano y monóxido de carbono, su gravedad superficial es de 0,20 gravedades terrestres y está compuesto por carbono, nitrógeno, hidrógeno, metano y monóxido de carbono.

Satélites conocidos:

Plutón un sólo satélite conocido: Caronte, descubierto en 1978 y con quien se cree conforma el único sistema binario verdadero del sistema solar.

LITOSFERA

La litosfera es la capa externa de la Tierra y está formada por materiales sólidos, engloba la corteza continental, de entre 20 y 70 Km. de espesor, y la corteza oceánica o parte

13

Page 14: La Tierra Como Planeta

superficial del manto consolidado, de unos 10 Km. de espesor. Se presenta dividida en placas tectónicas que se desplazan lentamente sobre la astenosfera, capa de material fluido que se encuentra sobre el manto superior.Las tierras emergidas son las que se hallan situadas sobre el nivel del mar y ocupan el 29% de la superficie del planeta. Su distribución es muy irregular, concentrándose principalmente en el Hemisferio Norte o continental, dominando los océanos en el Hemisferio Sur o marítimo.

La litosfera conforma la parte sólida de la corteza terrestre. Como hemos visto, los elementos que en ella predominan son oxígeno (O), azufre (S), aluminio (Al), hierro (Fe), calcio (Ca), sodio (Na), potasio (k) y magnesio (Mg), de ahí que los compuestos más comunes están formados en primer lugar por oxígeno, como los óxidos. Además de este elemento, otros contienen silicio, formando silicatos, y otros más incorporan también aluminio en los alumino-silicatos.

Una de las clasificaciones más útiles de los elementos los agrupa en tres grandes sistemas.

1. Elementos siderófilos: Se encuentran en forma metálica como el oro (Au), el platino (Pt) y la plata (Ag).

2.Elementos calcófilos: Se encuentran en forma de sulfuros, como el hierro (Fe), el cobre (Cu), el plomo (Pb) y el mercurio (Hg).

3. Elementos litófilos. Se encuentran formando silicatos, como el aluminio (Al), el calcio (Ca) y el magnesio (Mg).

Esta clasificación indica la forma más común en la que se encuentran los elementos en la Tierra

El estudio de los compuestos químicos en la litosfera correspondería principalmente al área de los silicatos, ya que ellos representan 95% de todos los minerales en esta capa (rocas, arenas, arcillas, etc.). Sin embargo, preferimos abordar el estudio de los metales, porque han sido más importantes para el desarrollo de la humanidad.

Rocas ígneas :

Se originan a partir de un magma (rocas fundidas a muy alta temperatura). El término ígneo deriva del latín igneus, es decir, ardiente. Las rocas ígneas se solidifican cuando se enfría el magma, sea bajo tierra o en la superficie. Las más antiguas tienen al menos 3.960 millones de años, mientras que las más jóvenes apenas se están formando en estos momentos. El granito es la roca ígnea más corriente, aunque existen más de 600 tipos. Hay dos tipos de rocas ígneas que se distinguen porque en un caso el magma alcanza la superficie terrestre antes de enfriarse y endurecerse, y en el otro no. El magma que cristaliza bajo tierra forma rocas ígneas intrusivas. El que alcanza la superficie antes de solidificarse forma las rocas ígneas extrusivas.

- Rocas ígneas intrusivas : Las rocas ígneas que se forman en profundidad se enfrían más lentamente que las formadas en superficie, por lo que tienden a ser de grano más grueso y no contienen inclusiones gaseosas o de vidrio. Los grandes cristales normalmente se empaquetan de forma compacta, confiriendo un aspecto granuloso a la roca. Hay dos tipos de rocas ígneas intrusivas. Las hipoabisales se forman justo debajo de la superficie, normalmente en diques y sills. Las rocas plutónicas se forman a mayor profundidad y se emplazan en forma de plutones y

14

Page 15: La Tierra Como Planeta

batolitos. Las rocas ígneas intrusivas quedan expuestas a la superficie si las rocas que las cubren desaparecen por efecto de la erosión.

-Rocas ígneas extrusivas : Si el magma alcanza la superficie terrestre antes de enfriarse, forma rocas ígneas extrusivas de grano fino, también llamadas rocas volcánicas, ya que el magma surge por los volcanes. Las rocas ígneas extrusivas tienen formas fluidas y cristales de poco tamaño que crecen rápidamente, y suelen contener inclusiones de vidrio y de gas.

- Composición: Las rocas ígneas están compuestas esencialmente por silicatos, generalmente ortosa, plagioclasa, cuarzo, mica biotita, olivino, anfíboles y piroxenos. Cada tipo de roca ígnea contiene distintas proporciones de estos minerales.

- Clasificación: Las rocas ígneas se clasifican según la cantidad de sílice que contienen. También se pueden agrupar por el tamaño de los cristales. El tipo de magma, la forma en que viaja hasta la superficie y la velocidad de enfriamiento determinan la composición y características como el tamaño del grano, la forma de los cristales y el color. El tamaño del grano indica si una roca ígnea es intrusiva (de grano grueso) o extrusiva (de grano fino). Las primeras, como el gabro, tienen cristales de más de 5 mm de diámetro; las rocas de grano medio, como la dolerita, tienen cristales de entre 0,5 y 5 mm de tamaño; por último, las de grano fino, como el basalto, tienen cristales de menos de 0,5 mm. La forma de los cristales es otro indicador del origen de la roca. Un enfriamiento lento permite que los minerales tengan tiempo de desarrollar cristales bien formados (idiomórficos). Un enfriamiento rápido sólo permite la aparición de cristales mal formados (alotriomórficos). El color puede ayudar a establecer la composición química de una roca. Las ácidas de color claro contienen más del 65 por ciento de sílice. Las básicas son oscuras, tienen un bajo contenido en sílice y una mayor proporción de minerales ferromagnesianos oscuros y densos como la augita. Las intermedias se sitúan entre las dos anteriores en cuanto a composición y, por lo tanto, también en color.

Rocas sedimentarias

Se forman en la superficie terrestre o cerca de ella. Normalmente, la roca se fragmenta y se disuelve por acción de la meteorización y la erosión, las partículas se sedimentan y los minerales disueltos cristalizan a partir del agua y forman sedimentos. Los componentes de la roca fragmentada son transportados por el agua y el hielo y, enterrados a poca profundidad, se convierten en nuevas rocas. Las rocas sedimentarias se disponen en capas, las más recientes situadas sobre las más antiguas, lo que permite a los geólogos conocer la edad relativa de cada capa. Las rocas sedimentarias suelen contener fósiles, que pueden ser de utilidad tanto para datar las rocas como para determinar su origen. Existen tres grupos principales: orgánicas, detríticas y químicas.

- Rocas sedimentarias orgánicas : Las rocas sedimentarias orgánicas se forman a partir de restos vegetales o animales. Por lo general contienen fósiles, y algunas están compuestas casi íntegramente de restos de seres vivos. Por ejemplo, el carbón se forma a partir de capas de

15

Page 16: La Tierra Como Planeta

material vegetal comprimido. La mayor parte de la piedra caliza procede de restos de criaturas marinas.

- Rocas sedimentarias detríticas : Las rocas sedimentarias detríticas están constituidas por partículas de rocas más antiguas que pueden estar situadas a cientos de kilómetros. Las rocas de origen se fragmentan debido a la lluvia, la nieve o el hielo, y las partículas resultantes son arrastradas y depositadas como sedimentos en desiertos, en playas o en los lechos de océanos, lagos y ríos. Las rocas detríticas se clasifican de acuerdo con el tamaño de las partículas que contienen. La arenisca es un ejemplo de roca sedimentaria detrítica.

- Rocas sedimentarias químicas : Las rocas sedimentarias químicas se forman a partir de minerales disueltos en el agua. Cuando el agua se evapora o se enfría, los minerales disueltos pueden precipitar y formar depósitos que pueden acumularse con otros sedimentos o formar rocas por su cuenta. Las sales son un ejemplo habitual de rocas sedimentarias químicas.

- Formación de rocas sedimentarias : El proceso que convierte los sedimentos no consolidados en roca se denomina litificación. A diferencia de las rocas metamórficas, las sedimentarias se forman cerca de la superficie terrestre, bajo presiones y temperaturas relativamente bajas. Los sedimentos más antiguos quedan enterrados bajo las nuevas capas y se van endureciendo gradualmente por la compactación y la cementación. La compresión que sufren esos sedimentos para formar rocas se denomina compactación. A medida que se van amontonando las capas de sedimentos, las más inferiores van quedando aplastadas por el peso de las superiores. El grado de compresión que pueden soportar depende del tipo de sedimento. El sedimento de grano fino se puede reducir a una décima parte de su grosor original en un proceso del que se obtiene la argilita (roca constituida por arcillas), mientras que la arena se puede comprimir muy poco. Los sedimentos suelen contener una gran cantidad de agua entre las partículas que se expulsan durante la compactación. Los componentes minerales disueltos pueden cristalizar a partir de esa agua y cementar los sedimentos. Los cementos minerales más comunes son la calcita y el cuarzo.

- Clasificación de las rocas sedimentarias : La apariencia de una roca sedimentaria queda determinada por las partículas que contiene. Características como el tamaño y la forma del grano o la presencia de fósiles pueden ayudar a clasificar este tipo de rocas. El tamaño de los granos de las rocas sedimentarias varía mucho, desde grandes cantos hasta las minúsculas partículas de arcilla. Los conglomerados y las brechas, compuestos de guijarros y cantos rodados, son las rocas sedimentarias de grano más grueso; la arenisca está formada por partículas del tamaño de granos de arena y el esquisto es la roca sedimentaria de grano más fino. La forma de los granos que integran las rocas sedimentarias depende de cómo éstos se han transportado. La erosión del viento crea partículas de arena esféricas y guijarros angulosos. La del agua origina partículas de arena angulosas y guijarros esféricos. Los fósiles son restos animales o vegetales conservados en capas de sedimentos. El tipo de fósil que contiene una roca indica su origen. Por ejemplo, un fósil marino sugiere que la roca se formó a partir de sedimentos depositados en el lecho oceánico. Los fósiles suelen aparecer principalmente en rocas sedimentarias, nunca en las ígneas y raramente en las metamórficas.

16

Page 17: La Tierra Como Planeta

Rocas metamórficas

En la profundidad de la corteza terrestre, las temperaturas y las presiones son altísimas. Dentro de nuestro planeta, el grupo de minerales que compone una roca se puede transformar en otro que sea estable a presiones y temperaturas superiores. Las rocas situadas cerca de un cuerpo de magma caliente se pueden transformar por la acción del calor. Las rocas que han sido enterradas a gran profundidad por la acción de placas tectónicas convergentes pueden transformarse por el aumento de la presión y de la temperatura. Ese cambio se denomina metamorfismo, un proceso que puede modificar cualquier tipo de roca, sea sedimentaria, ígnea o incluso metamórfica. Por ejemplo, la piedra caliza, que es sedimentaria, puede convertirse en mármol, y el basalto, que es ígneo, en una roca verde, anfibolita o eclogita.

- Temperatura y presión : Cuanto mayor sea la profundidad a la que esté enterrada una roca, más calor y mayor temperatura soportará. Con cada kilómetro de profundidad la temperatura aumenta unos 25°C y la presión, unas 250 atmósferas. El aumento de la temperatura y de la presión puede transformar las rocas en dos aspectos: pueden cambiar el conjunto de los minerales presentes en la roca preexistente (la paragénesis) y formar un conjunto nuevo, y también pueden cambiar el tamaño, la forma y la disposición de los cristales en la roca. Ambos procesos pueden causar la destrucción de los cristales preexistentes y generar cristales nuevos por recristalización. El metamorfismo tiene lugar con temperaturas de 250 a 800°C; con temperaturas superiores a 650°C, las rocas se pueden fundir para formar magma y una roca "mixta" denominada migmatita.

- Metamorfismo regional : A medida que se forman las montañas, grandes cantidades de roca se deforman y se transforman debido a un proceso llamado metamorfismo regional. Las rocas enterradas a poca profundidad descienden a mayores profundidades, donde a temperaturas y presiones superiores se pueden formar nuevos minerales. Una zona que ha sufrido el proceso de metamorfismo regional puede ocupar miles de kilómetros cuadrados. Este tipo de metamorfismo se clasifica en grado bajo, medio y alto en función de las temperaturas alcanzadas. La pizarra, el esquisto y el gneis son ejemplos de rocas afectadas por el metamorfismo regional.

- Metamorfismo de contacto : El metamorfismo de contacto se da cuando las rocas son calentadas por un cuerpo de magma. Los fluidos liberados por ese proceso pueden atravesar las rocas y seguir transformándolas. La zona afectada situada en torno a una intrusión ígnea o un flujo de lava se denomina aureola. Su tamaño depende del de la intrusión y de la temperatura del magma. Los minerales de la roca original pueden transformarse de modo que la roca metamórfica resultante sea más cristalina, y en el proceso pueden desaparecer componentes, como los fósiles. Las corneanas son el resultado habitual del metamorfismo de contacto.

- Metamorfismo dinámico : El metamorfismo dinámico es una forma secundaria de metamorfismo que se da cuando las rocas son comprimidas a causa de los grandes movimientos de la corteza terrestre, en especial a lo largo de sistemas de fallas. Grandes masas de roca se superponen a otras rocas y, en los puntos donde entran en contacto, se forman unas rocas metamórficas denominadas milonitas.

17

Page 18: La Tierra Como Planeta

- La clasificación de las rocas metamórficas : Las rocas metamórficas presentan una serie de características comunes. El análisis de la estructura, el tamaño del grano y el contenido mineral puede ayudar a clasificar estas rocas. El término textura hace referencia a cómo se orientan los minerales en el seno de una roca metamórfica. La orientación de los cristales indica si la roca se ha formado como consecuencia de un aumento de presión y de temperatura, o bien, sólo por un incremento de esta última. En las rocas metamórficas de contacto, los minerales suelen estar ordenados al azar. En las de metamorfismo regional, la presión a la que se ha visto sometida la roca suele provocar que determinados minerales se alineen. El tamaño de los cristales refleja el grado de calor y presión al que se ha expuesto la roca. En general, cuanto más altas hayan sido la presión y la temperatura, mayores serán los cristales. Por ejemplo, la pizarra, que se forma bajo poca presión, es de grano fino; el esquisto, que se forma a temperaturas y presiones moderadas, es de grano medio; y el gneis, formado a altas temperaturas y presiones, es de grano grueso. La presencia de determinados minerales en las rocas metamórficas puede ayudar en el proceso de identificación. El granate y la cianita se dan en el gneis y el esquisto, mientras que en la pizarra suelen encontrarse cristales de pirita.

La diferencia entre y meteorización.

Entendemos por meteorización la rotura o la disgregación de una roca sobre la superficie de la Tierra, en la que se formas un manto de roca alterada, regolito, que permanece in situ. El concepto de erosión incluyen la denudación o degradación, es decir, la meteorización y el transporte del material.

Corresponden al conjunto de desigualdades que constituyen el relieve de nuestro planeta. Estas desigualdades no son uniformes, hay eminencias y depresiones. Las más grandes depresiones o concavidades de la Tierra están cubiertas por agua, formando océanos y mares; el nivel del mar se toma como punto de referencia.

Existe el relieve continental y el relieve submarino.

Relieve Continental

Las principales formas del relieve continental son:

18

Page 19: La Tierra Como Planeta

1) Montañas: Son las formas más elevadas del relieve, es decir, son las más grandes elevaciones del terreno. Lo común es que estén dispuestas en cadenas de gran longitud, llamadas Cordilleras. En algunos casos de una cordillera principal se desprenden cordones que se extienden en diversas direcciones.

Cuando las montañas de una región forman un conjunto poco definido en cuanto a su dirección y disposición, constituyen un macizo. Los lugares elevados donde parecen converger varias cadenas se llaman nudos.

Es muy raro que las cadenas montañosas ocupen el centro de los continentes. La mayoría se distribuye en la periferia, casi siempre al borde del océano, y aunque forman una alineación continuada nunca conservan una dirección recta.

2) Cordillera: Son agrupaciones o conjuntos de montañas que se hallan en cadenas. En América del Sur, bordeando el Océano Pacífico, se encuentra la gran cordillera de los Andes.

3) Cerros o Colinas: Son pequeñas y suaves elevaciones de la Tierra, que pueden presentarse aisladas o agrupadas.

4) Mesetas: Son llamadas también altiplanos, por ser relieves casi planos o planos y por hallarse a cierta altura con respecto al nivel del mar (200-5000). En nuestro continente, existe un enorme altiplano que se halla compartido entre Chile, Perú y Bolivia.

Las mesetas en algunos casos tienen una población densa, cuando sus condiciones climáticas son favorables.

5) Llanuras: Corresponden a relieves que se hallan a poca altura sobre el nivel del mar, menos de 200 metros, pero siguen recibiendo el mismo nombre aun cuando se eleven suavemente hasta 300 metros o poco más, para ponerse en contacto con una zona montañosa y que además son sectores planos, tienen un escaso desnivel y su pendiente es suave. Son muy usadas para los distintos cultivos. En la región de la pampa argentina existen extensas llanuras dedicadas a los cultivos.

Son superficies totalmente horizontales o levemente onduladas.

6) Valles: Son sectores planos rodeados de cerros o montañas por los cuales atraviesa un río (nosotros vivimos en el Valle Central, el cual está rodeado por la Cordillera de Los Andes y por la Cordillera de La Costa siendo atravesado por el río Mapocho).

7) Depresiones: Corresponden a los distintos sectores hundidos de la superficie terrestre, es decir, son regiones de hundimiento (se hallan bajo el nivel del mar o bien bajo en nivel de las regiones circundantes). Por ejemplo, la depresión intermedia en Chile, entre las cordilleras, la de los Andes y la de la Costa.

Los distintos tipos de relieve terrestre se muestran en el siguiente esquema:

19

Page 20: La Tierra Como Planeta

Para ver el gráfico seleccione la opción "Descargar" del menú superior

Relieve Submarino

El fondo oceánico presenta iguales accidentes geográficos que el suelo de los continentes. Innumerables exploraciones científicas han revelado la existencia de un relieve submarino con rasgos característicos. En el relieve submarino, protegido por las aguas, no actúan los agentes erosivos (de desgaste), por lo cual predominan las formas redondeadas, niveladas, de suaves pendientes.

Si bien en el suelo submarino prevalecen las extensiones llanas, las últimas exploraciones oceánicas han revelado la existencia de relieves montañosos, de carácter volcánico, muy escarpados.

En los océanos se pueden considerar las siguientes regiones naturales:

a) Plataforma Continental: de 0 a - 200 metros

b) Región Batial: de – 200 a – 1.000 metros

c) Fosas Abisales o fosas Marinas: de – 5.000 a – 11.000 metros

a) Plataforma Continental: Se considera desde la superficie del agua (nivel del mar en la línea costera) hasta alcanzar los 200 metros de profundidad. Los continentes no terminan de golpe en las orillas del mar, sino que continúan debajo del agua, formando un zócalo en suave o rápido declive. La plataforma submarina guarda estrecho parecido con el relieve continental cercano.

b) Región batial: Se extiende desde donde termina la plataforma continental o submarina (borde continental) hasta los – 1.000 metros. A partir del borde, el suelo marino tiene un declive abrupto muy acentuado; esta pendiente rápida se conoce con el nombre de talud.

c) Región abisal: Se extiende desde los – 1.000 metros hasta los – 5.000. Esta región se llama también zona pelágica; en este fondo oceánico predominan los depósitos de origen orgánico, es decir, los formados con restos de animales o vegetales reducidos a finísimo polvo y llamados fangos.

d) Fosas: Después de los – 5.000 metros se encuentran cavidades muy estrechas, pero de gran extensión, llamadas fosas. Las mayores profundidades oceánicas se han medido en esas fosas, que se encuentran en zonas fuertemente dislocadas o de grandes plegamientos. Abundan especialmente en el océano Pacífico, en el borde exterior de las guirnaldas insulares que enfrentan al continente asiático.

Los continentales no tiene plataformas submarina (es de escaso desarrollo) en aquellos de sus litorales en que se elevan cadenas montañosas; en estos casos, el suelo submarino es un talud brusco, que baja rápidamente hasta insondables profundidades.

20

Page 21: La Tierra Como Planeta

CUENCAS OCEANICAS

Sección diagramática de una cuenca oceánica, mostrando los diversos rasgos geográficos.

Una cuenca oceánica (o cubeta oceánica) es una depresión muy extensa, relativamente uniforme, de contornos casi redondeados, que constituyen el fondo de los océanos. Hidrológicamente, una cuenca oceánica puede ser cualquier lugar de la Tierra que está cubierta por agua del mar, pero geológicamente, las cuencas oceánicas son amplias depresiones geológicas que quedan por debajo del nivel del mar.

Geológicamente, hay otros accidentes geomorfológicos submarinos como las plataformas continentales, las profundas fosas oceánicas, y las cordilleras submarinas (por ejemplo, la dorsal mesoatlántica) que no están consideradas como parte de las cuencas oceánicas; mientras que hidrológicamente, las cuencas oceánicas incluyen flanquear las plataformas continentales y mares epicontinentales de poca profundidad. Las cuencas de los océanos alcanzan profundidades de 6.000 m., pero tienen sus bordes limitados por la base del talud continental, situada a unos 2000 m de profundidad. En cada oceáno la cuenca suele hallarse subdividida en dos o más partes por la dorsal oceánica.

Algunos consideran que las cuencas oceánicas son el complemento a los continentes, con la erosión dominando estos últimos, y los sedimentos así derivados acaban en las cuencas oceánicas. Otros consideran que las cuencas oceánicas son más bien llanuras basálticas, que como depósitos

21

Page 22: La Tierra Como Planeta

de sedimentos, puesto que la mayor parte de la sedimentación se produce en las plataformas continentales y no en las cuencas oceánicas definidas geológicamente.

Hidrológicamente, algunas cuencas oceánicas están tanto por encima como por debajo del nivel del mar, como ocurre con la cuenca de Maracaibo en Venezuela, aunque geológicamente no está considerada como una cuenca oceánica debido a que se encuentra en la plataforma continental y subyace a una corteza continental.

La Tierra es el único planeta con una hipsografía bimodal, reflejando las diferentes clases de corteza, corteza oceánica y corteza continental. Los océanos abarcan el 70% de la superficie terrestre. Debido a que los océanos quedan más abajo que los continentes, los primeros sirven como cuencas sedimentarias que recogen el sedimento producto de la erosión en los continentes, conocidos como sedimentos clásticos, así como los sedimentos de precipitación. Las cuencas oceánicas sirven también como depósitos de esqueletos de organismos que secretan carbonato y sílice como los arrecifes de coral, diatomeas, radiolaria y foraminíferos.

Geológicamente, las cuencas oceánicas pueden activamente cambiar el tamaño o estar inactivas, dependiendo de si hay una placa tectónica en movimiento limítrofe asociada con ella. Los elementos de una cuenca oceánica active y en crecimiento incluye una elevada dorsal oceánica, colinas abisales a los lados hasta las llanuras abisales. Los elementos de una cuenca oceánica active a menudo incluyen la fosa oceánica asociada con una zona de subducción.

El océano Atlántico y el océano Ártico son Buenos ejemplos de cuencas oceánicas activas y en crecimiento, mientras que el mar Mediterráneo se está hundiendo. El océano Pacífico también es una Cuenca oceánica active, que se hunde, incluso aunque tiene tanto una dorsal que se extiende como fosas oceánicas. Quizá el major ejemplo de una Cuenca oceánica inactiva es el golfo de México, que se formó en los tiempos jurásicos y que desde entonces no ha hecho sino recoger sedimentos. El mar de Japón y el mar de Bering son también Buenos ejemplos de cuencas oceánicas inactivas.

Lista de cuencas

22

Page 23: La Tierra Como Planeta

Esta es una lista de las cuencas oceánicas:1

Cuenca africano antártica

Cuenca aleutiana

Cuenca de las Agujas

Cuenca de Angola

Cuenca antártica del Atlántico

Cuenca antártica del Pacífico

Cuenca arábiga

Cuenca argentina

Cuenca Bauer

Cuenca Blake, océano Atlántico

Cuenca brasileña

Cuenca de Canarias

Cuenca del Cabo

Cuenca del Pacífico Central

Cuenca polar central

Cuenca chilena

Cuenca de Cocos

Cuenca de Guatemala

Cuenca de Guyana

Cuenca de Islandia

Cuenca del Labrador

Cuenca de Madagascar

Cuenca Melanesia

Cuenca de México

Cuenca mesoindia

Cuenca de Natal

Cuenca norteamericana

Cuenca de Terranova

Cuenca polar septentrional

Cuenca amerasiana

Cuenca de Canadá

Cuenca de Makarov

Cuenca euroasiática

Cuenca de Fram

Cuenca de Nansen

Cuenca del Pacífico Norte

Cuenca noruega

Cuenca de Penrhyn

Cuenca de Perth

Cuenca peruana

Cuenca Roggeveen

Cuenca de Sierra Leona

Cuenca somalí

Cuenca del Pacífico Austral

Cuenca de Fiyi meridional

Cuenca Índico-Antártica Oriental

Cuenca de Tsushima (cuenca Ulleung)

Cuenca Índico-Australiana

ISOSTASIA

23

Page 24: La Tierra Como Planeta

La isostasia es la condición de equilibrio que presenta la superficie terrestre debido a la diferencia de densidad de sus partes. Se resuelve en movimientos verticales (epirogénicos) y está fundamentada en el principio de Arquímedes. Fue enunciada como principio a finales del siglo XIX.

El equilibrio isostático puede romperse por un movimiento tectónico o el deshielo de una capa de hielo. La isostasia es fundamental para el relieve de la Tierra. Los continentes son menos densos que el manto, y también que la corteza oceánica. Cuando la corteza continental se pliega acumula gran cantidad de materiales en una región concreta. Terminado el ascenso, comienza la erosión. Los materiales se depositan, a la larga, fuera de la cadena montañosa, con lo que ésta pierde peso y volumen. Las raíces ascienden para compensar esta pérdida dejando en superficie los materiales que han estado sometidos a un mayor proceso metamórfico.

Modelos isostáticos

Hipótesis de Airy (1) y de Pratt (2). Los números indican la densidad media de cada columna de la corteza y del manto terrestre, en kg/m3

En 1735, en una expedición científica en Perú, Pierre Bouguer observó que la deflexión de la vertical era menor a la esperada basándose en la topografía visible de los Andes. El mismo fenómeno fue observado en un levantamiento topogràficore en la India a cargo de George Everest. De estas observaciones surgió la idea de que cierta compensación, con un contraste negativo de densidad, debe existir debajo de la topografía visible. Esto condujo al concepto de isostasia, que asume equilibrio de cada columna de la Tierra hasta cierto nivel de compensación. La condición de equilibrio isostático se plantea como:

24

Page 25: La Tierra Como Planeta

Donde es la profundidad de compensación, la altura de la topografía y la densidad. Esta expresión establece que existe un nivel de compensación T0 por encima del cual el peso de todas las columnas imaginarias de corteza y manto es constante. Esta condición se cumple aproximadamente en la tierra para valores de T0 de pocos cientos de kilómetros. Si el peso de dos columnas fuera distinto, el manto (que es fluido en escalas de tiempo geológicas) se desplazaría hasta equilibrarlos, alcanzando un equilibrio isostático.

Dado que las densidades del interior terrestre no son conocidas, fueron desarrollados de manera casi simultánea dos modelos. Henry Pratt propuso una profundidad de compensación

constante , como consecuencia, las variaciones de la topografía están asociadas a cambios laterales en la densidad. Por otra parte, George Airy asumió una densidad constante, lo cual implica una profundidad de compensación variable.

Actualmente existen tres modelos isostáticos:

Modelo de Pratt-Hayford

El modelo de Pratt fue desarrollado para propósitos geodésicos por Hayford. El modelo asume una

profundidad de compensación consante. La densidad en ausencia de topografía sería . La condición de equilibrio isostásico para una dada columna i será:

En los continentes:

En los océanos:

Donde es la densidad del agua de mar:

Modelo de Airy-Heiskanen

El modelo de Airy fue desarrollado para aplicaciones geodésicas por Heiskanen. El modelo Airy-Heiskanen es similar al de un iceberg flotando. En lugar de hielo tenemos material cortical de densidad y en lugar de agua de mayor densidad tenemos material del manto de densidad . Si existe una elevación (como una montaña) sobre la superficie, debe existir una correspondiente raíz que se introduce dentro del manto. Como el material cortical es de menor densidad que el material del manto, existirá una fuerza de empuje que equilibre la fuerza de atracción gravitatoria de las montañas. Un mecanismo similar tiene lugar por debajo de los océanos. Como el agua de mar tiene menor densidad inducirá una raíz negativa, es decir, una corteza más fina por debajo de los océanos.

25

Page 26: La Tierra Como Planeta

En los continentes:

En los océanos:

Modelo de Vening Meinesz

Más conocido como modelo de isostasia regional o flexión litosférica, este modelo fue propuesto en la década de 1950 a partir de estudios que Vening Meinesz realiza en losHimalayas que mostraban una raíz cortical menor de lo que predecía la teoría de Airy.

Según este modelo, la litosfera actúa como una placa elástica y su rigidez inherente distribuye las cargas topográficas sobre una región, en lugar de hacerlo por columnas.

Isostasia local vs. isostasia regional[editar]

Desde que se extendió el concepto de isostasia, la idea predominante era que el equilibrio isostático se alcanzaba localmente, en cada columna de la corteza terrestre, como si la flotabilidad en cada punto de la corteza fuera independiente de las columnas contiguas. Es decir, como si los movimientos necesarios para reajustar el equilibrio isostático fuesen independientes entre dos puntos cualesquiera y no se transmitiesen lateralmente. Aunque en la década de 1880 Grove Karl Gilbert propuso un comportamiento rígido de la corteza en respuesta a la desaparición del Lago Bonneville, la fuerza y simplicidad del modelo isostático local era tal que perduró hasta los trabajos de Felix Andries Vening Meinesz en la década de 1950, cuando la tectónica de placas comenzó a ser adoptada mayoritariamente. Vening Meinesz mostró que la corteza oceánica está flexionada1 o doblada bajo el peso de volcanes marinos de forma similar a una placa delgada, transmitiendo el hundimiento debido a su peso más allá del propio edificio volcánico.

Aunque el modelo isostático local sigue siendo utilizado como primera aproximación al cálculo de movimientos isostáticos en respuesta a deglaciaciones, vulcanismo u orogénesis, es ahora comúnmente aceptado que la capa externa de la tierra tiene cierta rigidez y que se comporta como una placa delgada, elástica en primera aproximación. A este proceso se le llama isostasia regional o flexión litosférica. El comportamiento flexural de la litosfera depende fundamentalmente del espesor elástico de la litosfera.

26

Page 27: La Tierra Como Planeta

LA DERIVADA CONTINENTAL

Se llama así al fenómeno por el cual las placas que sustentan los continentes se desplazan a lo largo de millones de años de la historia geológica de la Tierra.

Este movimiento se debe a que continuamente sale material del manto por debajo de la corteza oceánica y se crea una fuerza que empuja las zonas ocupadas por los continentes (las placas continentales) y, en consecuencia, les hace cambiar de posición.

27

Page 28: La Tierra Como Planeta

¿En qué consiste la Teoría de la Deriva Continental?

Según esta teoría, los continentes habían estado unidos en algún momento en un único ‘supercontinente’ al que llamó Pangea.

La deriva continental, es un proceso geofísico por el cual las placas que sustentan los continentes se desplazan a lo largo de millones de años de la historia geológica de la Tierra.

Este movimiento se debe a que contínuamente sale material del manto por debajo de la corteza oceánica y se crea una fuerza que empuja las zonas ocupadas por los continentes (las placas continentales) y, en consecuencia, les hace cambiar de posición.

En 1620, el filósofo inglés Francis Bacon se fijó en la similitud que presentan las formas de la costa occidental de África y oriental de Sudamérica. La propuesta de que los continentes podrían moverse la hizo por primera vez en 1858 Antonio Zinder. En 1915 el meteorólogo alemán Alfred Wegener publicó el libro "El origen de los continentes y océanos", la Teoría de la Deriva Continental.

Según esta teoría, los continentes habían estado unidos en algún momento en un único ‘supercontinente’ al que llamó Pangea.

Vídeo: Formación de los continentes.

Las pruebas mas importantes que aporto Wegener para demostrar la deriva de los continentes fueron:

Los contornos de los continentes embonan.

Coincidencia de fósiles y estratos geológicos a uno y otro lado del Atlántico.

Estratos geológicos depositados en climas tropicales, pero que hoy se encuentran en climas fríos, y viceversa.

Indicios de una misma glaciación en lugares muy separados como África, América del Sur, Australia, India y la Antártida.

El hábitat de ciertas especies como el caracol de jardín abarca varios continentes.

Astronomía Educativa

Universo

Sistema Solar

Tierra y Luna

Historia

Lecturas

Personajes

Diccionario

Tectónica de placas

28

Page 29: La Tierra Como Planeta

TECTÓNICA DE PLACAS

Durante miles de millones de años se ha ido sucediendo un lento pero continuo desplazamiento de las placas que forman la corteza del planeta Tierra, originando la llamana "tectónica de placas", una teoría que complementa y explica la deriva continental.

Los continentes se unen entre sí o se fragmentan, los océanos se abren, se levantan montañas, se modifica el clima, influyendo todo esto, de forma muy importante en la evolución y desarrollo de los seres vivos. Se crea nueva corteza en los fondos marinos, se destruye corteza en la trincheras oceánicas y se producen colisiones entre continentes que modifican el relieve.

Las bases de la teoría

Según la teoría de la tectónica de placas, la corteza terrestre está compuesta al menos por una docena de placas rígidas que se mueven a su aire. Estos bloques descansan sobre una capa de roca caliente y flexible, llamada astenosfera, que fluye lentamente a modo de alquitrán caliente.

Los geólogos todavía no han determinado con exactitud como interactúan estas dos capas, pero las teorías más vanguardistas afirman que el movimiento del material espeso y fundido de la astenosfera fuerza a las placas superiores a moverse, hundirse o levantarse.

Mapa tectónico

El concepto básico de la teoría de la tectónica de placas es simple: el calor asciende. El aire caliente asciende por encima del aire frío y las corrientes de agua caliente flotan por encima de las de agua fría. El mismo principio se aplica a las rocas calientes que están bajo la superficie terrestre: el material fundido de la astenosfera, o magma, sube hacia arriba, mientras que la materia fría y endurecida se hunde cada vez más hacia al fondo, dentro del manto. La roca que se hunde finalmente alcanza las elevadas temperaturas de la astenosfera inferior, se calienta y comienza a ascender otra vez.

Este movimiento continuo y, en cierta forma circular, se denomina convección. En los bordes de la placa divergente y en las zonas calientes de la litosfera sólida, el material fundido fluye hacia la superficie, formando una nueva corteza.

Áreas oceánicas y continentales

Se ha convenido en definir geográficamente como continentes a las tierras emergidas, y como océanos a las tierras sumergidas. No obstante, estos términos varían si nos basamos en criterios geológicos y geofísicos, de tal forma que la línea costera no es el límite real entre continente y océano.

Así, se denomina área continental al espacio que ocupan las tierra emergidas más elprecontinente, es decir la tierra firme más la llamada plataforma continental que en algún momento fueron tierras emergidas, y que fueron transformadas en plataformas por efecto de la erosión. Por su

29

Page 30: La Tierra Como Planeta

parte, a las tierras sumergidas, excluidas las plataformas continentales, se les denomina Área oceánica.

Plataforma continental:

La plataforma continental es, como se ha dicho, el precontinente, y como tal constituye una prolongación del continente actual compartiendo su misma estructura.

La plataforma continental constituye el precontinente que en algún momento formó parte de las tierras emergidas

La plataforma continental puede estar recubierta por depósitos marinos recientes o de origen glaciar; a menudo son superficies de erosión glaciar o plataformas de abrasión que han quedado cubiertas por las aguas. Éstas se han formado por hundimiento del litoral tras un proceso de abrasión o acumulación glaciar, o por efecto de la formación de terrazas sedimentarias tras la actividad fluvial.

Escudos:

Las zonas más antiguas de las áreas continentales son los llamados escudos, cuya edad data del precámbrico; los más grandes se localizan en el hemisferio Norte (Canadá, Escandinavia, Siberia, etc.).

Geológicamente los escudos son muy estables, no así los llamados cinturones orogénicos, en los que se incluyen las regiones montañosas de la Tierra, los cuales están sometidos a grandes fuerzas y tensiones que provocan transformaciones orogénicas muy intensas.

Corteza continental:

La corteza continental es el conjunto de capas que conforman el área continental, que como se ha dicho incluye la plataforma continental o precontinente. Está formada por una capa superficial y discontinua de rocas sedimentarias, le sigue otra capa intermedia granítica y de rocas de similar constitución, y finalmente una capa inferior constituida por basaltos.

30

Page 31: La Tierra Como Planeta

LINCOGRAFIA

http://www.monografias.com/trabajos5/sistsol/sistsol.shtml#ixzz3BVmkzoyM

http://www.monografias.com/trabajos17/litosfera/litosfera.shtml#ixzz3BVp7fDM2

http://www.todoelsistemasolar.com.ar

31

Page 32: La Tierra Como Planeta

Conclusión

El universo ha cambiado literalmente de aspecto a partir de la segunda mitad de este siglo.

Hasta la década de los cincuenta, todo lo que sabíamos del espacio llegaba a través de la información contenida en la luz de los astros, y por lo tanto, solo de observaciones con microscopios.

Asomándose a lo que los astrónomos llaman "Ventana óptica" de nuestra atmósfera, ese corredor a través del cual pasan las radiaciones visibles del espacio electromagnético, ya era posible obtener un panorama grandioso y desconcertante.

Hoy parece haberse establecido el momento en que nació el universo. Una gigantesca explosión, llamada "Big Bang", hace 15 mil millones de años, se expande hacia todas direcciones, dejando a su paso masas de estrellas y gases y en una de esas masas, una galaxia llamada Vía Láctea, se encuentra nuestro Sistema Solar.

No es mucho lo que se puede concluir de una investigación del sistema solar, salvo que es tan grandioso, que su indagación ha logrado permanecer en la historia, avanzando junto a la historia del a humanidad.

Y tal investigación continuará avanzado, descubriendo nuevos planetas, conociendo en terrenos los ya descubiertos, buscando formas de vida en nuestro sistema y resto del universo.

32