l11 polyphase circuits ch12

Upload: hernan-tovar

Post on 07-Jul-2018

260 views

Category:

Documents


6 download

TRANSCRIPT

  • 8/19/2019 L11 Polyphase Circuits Ch12

    1/78

    ENE 104

    Electric Circuit Theory 

    Lecture 11:

    Polyphase Circuits 

    http://webstaff.kmutt.ac.th/~dejwoot.kha/  

    (ENE) Mon, 26 Mar 2012 / (EIE) Wed, 4 Apr 2012

    Week 12 : Dejwoot KHAWPARISUTH

    http://webstaff.kmutt.ac.th/~dejwoot.kha/http://webstaff.kmutt.ac.th/~dejwoot.kha/http://webstaff.kmutt.ac.th/~dejwoot.kha/

  • 8/19/2019 L11 Polyphase Circuits Ch12

    2/78

    Objectives : Ch12

    Week #12

    Page 2

    ENE 104 Pol hase Circuits

    • single-phase and polyphase systems

    • Y- and Δ- connected three-phase system

    • per-phase analysis of three-phase systems

  • 8/19/2019 L11 Polyphase Circuits Ch12

    3/78

    Introduction:

    Week #12

    Page 3

    ENE 104 Pol hase Circuits

    An example set of three voltages, each of which is 120o out of

    phase with the other two. As can be seen, only one of the voltages

    will be zero at a particular instant.

  • 8/19/2019 L11 Polyphase Circuits Ch12

    4/78

    Double-Subscript Notation:

    Week #12

    Page 4

    ENE 104 Pol hase Circuits

    (a) The definition of the

    voltage Vab.

    (b) Vad = Vab + Vbc+ Vcd 

    = Vab + Vcd.

  • 8/19/2019 L11 Polyphase Circuits Ch12

    5/78

    Double-Subscript Notation:

    Week #12

    Page 5

    ENE 104 Pol hase Circuits

    .V0100   anV

    .V120100   bnV

    .V240100   cnV

  • 8/19/2019 L11 Polyphase Circuits Ch12

    6/78

    Double-Subscript Notation:

    Week #12

    Page 6

    ENE 104 Pol hase Circuits

    .V302.173)6.8650(100

    .V1201000100

     j

    bnannbanab   VVVVV

  • 8/19/2019 L11 Polyphase Circuits Ch12

    7/78

    Practice: 12.1

    Week #12

    Page 7

    ENE 104 Pol hase Circuits

    Let

    = 100∠0° V,

    = 40∠80° V, and

    = 70∠200° V. Find (a) ; (b) ; (c)  

  • 8/19/2019 L11 Polyphase Circuits Ch12

    8/78

    Practice: 12.1

    Week #12

    Page 8

    ENE 104 Pol hase Circuits

  • 8/19/2019 L11 Polyphase Circuits Ch12

    9/78

    Practice: 12.2

    Week #12

    Page 9

    ENE 104 Pol hase Circuits

    Refer to the circuit of figure below and let

    = 3 A, = 2 A, and ℎ = −6 A. Find (a),

    ; (b) ; (c)  

  • 8/19/2019 L11 Polyphase Circuits Ch12

    10/78

    Practice: 12.2

    Week #12

    Page 10

    ENE 104 Pol hase Circuits

  • 8/19/2019 L11 Polyphase Circuits Ch12

    11/78

    Single-Phase Three-Wire System:

    Week #12

    Page 11

    ENE 104 Pol hase Circuits

  • 8/19/2019 L11 Polyphase Circuits Ch12

    12/78

    Single-Phase Three-Wire System:

    Week #12

    Page 12

    ENE 104 Pol hase Circuits

    Since Van = Vnb

    Then

     And  InN = IBb + IAa = IBb - IaA = 0 

     p

    nb Bb

     p

    anaA

    Z

    VIZ

    VI  

    Consider: 

  • 8/19/2019 L11 Polyphase Circuits Ch12

    13/78

    Example:

    Week #12

    Page 13

    ENE 104 Pol hase Circuits

    Effect of Finite Wire Impedance: 

    Analyze the system below and determine the power

    delivered to each of the three loads as well as the power

    lost in the neutral wire and each of the two lines.

  • 8/19/2019 L11 Polyphase Circuits Ch12

    14/78

    Example:

    Week #12

    Page 14

    ENE 104 Pol hase Circuits

    0)(100)(30115

    0)(50)(100)1020(0)(3)(500115

    32313

    12322

    31211

    IIIII

    IIIII

    IIIII

     j

  • 8/19/2019 L11 Polyphase Circuits Ch12

    15/78

    Example:

    Week #12

    Page 15

    ENE 104 Pol hase Circuits

    .A83.1924.111

      I

    .A47.24389.92   I

    .A80.2137.103   I

    .W206502

    2150     II P 

    .W117100223100     II P 

    The average power  drawn by each load: 

    .W1763202

    21020     I j P 

  • 8/19/2019 L11 Polyphase Circuits Ch12

    16/78

    Example:

    Week #12

    Page 16

    ENE 104 Pol hase Circuits

    .W12612

    1     IaA P 

    .A83.1924.111

      I

    .W108123     IbB P 

    .A47.24389.92   I

    .A80.2137.103   I

    The loss in each of the wires: 

    .W312

    13     IInN  P 

    P 17

  • 8/19/2019 L11 Polyphase Circuits Ch12

    17/78

    Example:

    Week #12

    Page 17

    ENE 104 Pol hase Circuits

    The transmission efficiency, : 

    %8.892372086

    2086

     generated  power total 

    load todelivered  power total 

     

     

    P 18

  • 8/19/2019 L11 Polyphase Circuits Ch12

    18/78

    Practice: 12.3

    Week #12

    Page 18

    ENE 104 Pol hase Circuits

    Modified Figure below by adding a 1.5 Ω 

    resistance to each of the two outer lines, and a2.5 Ω resistance to the neutral wire. Find the

    average power delivered to each of the three

    loads.

    P 19

  • 8/19/2019 L11 Polyphase Circuits Ch12

    19/78

    Practice: 12.3

    Week #12

    Page 19

    ENE 104 Pol hase Circuits

    Page 20

  • 8/19/2019 L11 Polyphase Circuits Ch12

    20/78

    Practice: 12.3

    Week #12

    Page 20

    ENE 104 Pol hase Circuits

    h h CPage 21

  • 8/19/2019 L11 Polyphase Circuits Ch12

    21/78

    Three-Phase Y-Y Connection:

    Week #12

    Page 21

    ENE 104 Pol hase Circuits

    A Y-connected three-phase four-wire source.

     A balanced three-phase system:

    may be defined as having

    and 

    cnbnan   VVV  

    0   cnbnan   VVV

    Th Ph Y Y C iPage 22

  • 8/19/2019 L11 Polyphase Circuits Ch12

    22/78

    Three-Phase Y-Y Connection:

    Week #12

    Page 22

    ENE 104 Pol hase Circuits

    Positive, or abc,phase sequence. 

    Negative, or cba,phase sequence. 

    Th Ph Y Y C tiPage 23

  • 8/19/2019 L11 Polyphase Circuits Ch12

    23/78

    Three-Phase Y-Y Connection:

    Week #12

    Page 23

    ENE 104 Pol hase Circuits

    Line-to-Line Voltage: 

    303

    1200

     pab

     p p

    bnanab

    V V 

    V

    VVV

    Th Ph Y Y C tiPage 24

  • 8/19/2019 L11 Polyphase Circuits Ch12

    24/78

    Three-Phase Y-Y Connection:

    Week #12

    Page 24

    ENE 104 Pol hase Circuits

    Line-to-Line Voltage: 

      2103  pca   V V

      903  pbc   V V

      303  pab   V V

    Th Ph Y Y C tiPage 25

  • 8/19/2019 L11 Polyphase Circuits Ch12

    25/78

    A balanced three-phase system, connected

     Y-Y and including a neutral.

    Three-Phase Y-Y Connection:

    Week #12

    Page 25

    ENE 104 Pol hase Circuits

     p

    anaA

    Z

    V

    I  

    120

    120

    aA

     p

    an

     p

    bnbB

    I

    Z

    V

    Z

    VI

      240aAcC    IITherefore: 

    0   cC bBaA Nn   IIII

    E lPage 26

  • 8/19/2019 L11 Polyphase Circuits Ch12

    26/78

    Example:

    Week #12

    Page 26

    ENE 104 Pol hase Circuits

    Find the currents, voltages and the total power

    dissipated in the load 

    E lPage 27

  • 8/19/2019 L11 Polyphase Circuits Ch12

    27/78

    Example:

    Week #12

    Page 27

    ENE 104 Pol hase Circuits

    “Per -phase”: 

    .V0200   anV

    .V120200   bnV

    .V240200   cnV

      2103  pca   V V

      903  pbc   V V

      303  pab   V V     602 p

    anaA

    Z

    VI

      3002cC I

      1802bBI

    E lPage 28

  • 8/19/2019 L11 Polyphase Circuits Ch12

    28/78

    Example:

    Week #12

    Page 28

    ENE 104 Pol hase Circuits

    “Per -phase”: 

    )0120cos(2200     t v AN     

    )60120cos(22     t i AN     

    E lPage 29

  • 8/19/2019 L11 Polyphase Circuits Ch12

    29/78

    Example:

    Week #12

    Page 29

    ENE 104 Pol hase Circuits

    even though phase voltages and currents have

    zero value at specific instants in time, theinstantaneous power delivered to the total load is

    never zero.

    )]60240cos(400200

    )]60240cos()60[cos(400)60120cos()120cos(800)(

    t t t ivt  p  AN  AN  A

     

       

    )]300240cos(400200)(     t t  p B    

    )]180240cos(400200)(     t t  pC     

    E lPage 30

  • 8/19/2019 L11 Polyphase Circuits Ch12

    30/78

    Example:

    Week #12

    g

    ENE 104 Pol hase Circuits

    the instantaneous power absorbed by the total

    load is therefore

    W t  pt  pt  pt  p C  B A   600)()()()(  

    Practice: 12 4Page 31

  • 8/19/2019 L11 Polyphase Circuits Ch12

    31/78

    Practice: 12.4

    Week #12

    g

    ENE 104 Pol hase Circuits

     A balanced three-phase three-wire system has aY-connected load. Each phase contains three

    loads in parallel: −j100 Ω, 100 Ω, and 50 + j50 Ω.

     Assume positive phase sequence with =

    400∠0° V. Find (a) ; (b) ; (c) the total power

    drawn by the load

    Practice: 12 4Page 32

  • 8/19/2019 L11 Polyphase Circuits Ch12

    32/78

    Practice: 12.4

    Week #12

    g

    ENE 104 Pol hase Circuits

    Example:Page 33

  • 8/19/2019 L11 Polyphase Circuits Ch12

    33/78

    A balanced three-phase system with a line

    voltage of 300V is supplying a balanced Y-connected load with 1200W at a leading PF of

    0.8. Find the line current and the per-phase load

    impedance.

    The phase voltage is

    The per-phase power is

    Example:

    Week #12ENE 104 Pol hase Circuits

    .3

    300 V V  p  

    .4003

    1200 W 

    Example:Page 34

  • 8/19/2019 L11 Polyphase Circuits Ch12

    34/78

    Example:

    Week #12ENE 104 Pol hase Circuits

    The line current is

    The phase impedance is

    .3

    300 V V  p     .40031200 W  P  p  

    )cos()cos(

    2

    1         eff  eff  mm   I V  I V  P 

    89.2

    3

    300

     L

     p

     p I 

    V Z

    .89.28.0

    400

    )cos(3

    300 A

     P  I 

     p

     p

     L  

      

  • 8/19/2019 L11 Polyphase Circuits Ch12

    35/78

    Practice: 12 5Page 36

  • 8/19/2019 L11 Polyphase Circuits Ch12

    36/78

    Practice: 12.5

    Week #12ENE 104 Pol hase Circuits

     A balanced three-phase three-wire system has a

    line voltage of 500 V. Two balanced Y-connected

    loads are present. One is a capacitive load with

    7 − j2 Ω per phase, and the other is an inductive

    load with 4 + j2 Ω per phase. Find (a) the phasevoltage; (b) the line current; (c) the total power

    drawn by the load; (d) the power factor at which

    the source is operating.

    Practice: 12 5Page 37

  • 8/19/2019 L11 Polyphase Circuits Ch12

    37/78

    Practice: 12.5

    Week #12ENE 104 Pol hase Circuits

    Example:Page 38

  • 8/19/2019 L11 Polyphase Circuits Ch12

    38/78

    A balanced 600-W lighting load is added (in

     parallel) to the previous example. Determine thenew line current.

     per-phase circuit

    Example:

    Week #12ENE 104 Pol hase Circuits

      9.3660 pZ

    89.22   I

    Example:Page 39

  • 8/19/2019 L11 Polyphase Circuits Ch12

    39/78

    The amplitude of the lighting current is

    determined by

    So assume

    And the line current is

    Example:

    Week #12ENE 104 Pol hase Circuits

    155.11  I   .A0155.11   I

      0cos200 13300

    I

    )cos(         eff  eff   I V  P 

    .A9.3689.22   I

    .A6.2687.321     III L

    Practice: 12 6Page 40

  • 8/19/2019 L11 Polyphase Circuits Ch12

    40/78

    Practice: 12.6

    Week #12ENE 104 Pol hase Circuits

    Three balanced Y-connected loads are installed on a

    balanced three-phase four-wire system. Load 1draws a total power of 6kW at unity PF, load 2

    requires 10kVA at PF=0.96 lagging, and load 3

    needs 7kW at 0.85 lagging. If the phase voltage at

    the load is 135 V, if each line has a resistance of

    0.1 Ω, and if the neutral has a resistance of 1 Ω, find

    (a) the total power drawn by the load; (b) the

    combined PF of the load; (c) the total power lost inthe four lines; (d) the phase voltage at the source;

    (e) the power factor at which the source is operating.

    Practice: 12 6Page 41

  • 8/19/2019 L11 Polyphase Circuits Ch12

    41/78

    Practice: 12.6

    Week #12ENE 104 Pol hase Circuits

    Practice: 12 6Page 42

  • 8/19/2019 L11 Polyphase Circuits Ch12

    42/78

    Practice: 12.6

    Week #12ENE 104 Pol hase Circuits

    The Delta (∆) Connection:Page 43

  • 8/19/2019 L11 Polyphase Circuits Ch12

    43/78

    Where and

    The Delta (∆) Connection: 

    Week #12ENE 104 Pol hase Circuits

    A balanced -connected load is present on a three-wire

    three-phase system. The source happens to be Y-

    connected.

    cn

    bn

    an pV 

    V

    V

    V

    ca

    bc

    ab LV 

    V

    V

    V

     p L   V V    3     303  pab   V V

    The Delta (∆) Connection:Page 44

  • 8/19/2019 L11 Polyphase Circuits Ch12

    44/78

    The phase current

    the line current:

    and

    The Delta (∆) Connection: 

    Week #12ENE 104 Pol hase Circuits

    CA ABaA   III    p

    caCA

     p

    bc BC 

     p

    ab AB

    Z

    VI

    Z

    V

    I

    Z

    VI

    CA BC  AB p I    III     cC bBaA L I    III  

     p L   I  I    3

    The Delta (∆) Connection:Page 45

  • 8/19/2019 L11 Polyphase Circuits Ch12

    45/78

    An example with an inductive load

    The Delta (∆) Connection: 

    Week #12ENE 104 Pol hase Circuits

    CA ABaA   III  

    CA BC  AB p I    III  

    cC bBaA L I    III  

     p L   I  I    3

    ∆-Connected:Page 46

  • 8/19/2019 L11 Polyphase Circuits Ch12

    46/78

    ∆ Connected:

    Week #12ENE 104 Pol hase Circuits

    total power,

     

      

    cos

    3

    coscos

     L L

     p L

     p p p

     I V 

     I V  I V  P 

     cos3

    3

     L L

     p

     I V 

     P  P 

    Y-connected:Page 47

  • 8/19/2019 L11 Polyphase Circuits Ch12

    47/78

    Y connected:

    Week #12ENE 104 Pol hase Circuits

    total power,

     

      

    cos

    3

    coscos

     L L

     L p

     p p p

     I V 

     I V  I V  P 

     cos3

    3

     L L

     p

     I V 

     P  P 

    Practice: 12 7Page 48

  • 8/19/2019 L11 Polyphase Circuits Ch12

    48/78

    Practice: 12.7

    Week #12ENE 104 Pol hase Circuits

    Each phase of a balanced three-phase Δ-

    connected load consists of a 0.2 H inductor in

    series with the parallel combination of a 5 F

    capacitor and a 200 Ω resistance. Assume zero

    line resistance and a phase voltage of 200 V at

    = 400 rad/s. Find (a) the phase current; (b)

    the line current; (c) the total power absorbed by

    the load

    Practice: 12 7Page 49

  • 8/19/2019 L11 Polyphase Circuits Ch12

    49/78

    Practice: 12.7

    Week #12ENE 104 Pol hase Circuits

    Example 12 5:Page 50

  • 8/19/2019 L11 Polyphase Circuits Ch12

    50/78

    Example 12.5:

    Week #12ENE 104 Pol hase Circuits

    Determine the amplitude of the line current in a

    three-phase system with a line voltage of 300 Vthat supplies 1200 W to a ∆-connected load at a

    lagging PF of 0.8 

     

     

     

    cos3

    cos

    cos

     L L

     p L

     p p p

     I V 

     I V 

     I V  P 

      9.36180.,89.2  p L   A I    Z

    Example 12 6:Page 51

  • 8/19/2019 L11 Polyphase Circuits Ch12

    51/78

    Example 12.6:

    Week #12ENE 104 Pol hase Circuits

    Determine the amplitude of the line current in a

    three-phase system with a line voltage of 300 Vthat supplies 1200 W to a Y-connected load at a

    lagging PF of 0.8 

     

     

     

    cos3

    cos

    cos

     L L

     L p

     p p p

     I V 

     I V 

     I V  P 

      9.3660.,89.2  p L   A I    Z3

    D Z 

     Z Y 

    Practice: 12 8Page 52

  • 8/19/2019 L11 Polyphase Circuits Ch12

    52/78

    Practice: 12.8

    Week #12ENE 104 Pol hase Circuits

     A balanced three-phase three-wire system is

    terminated with two Δ-connected load in

    parallel. Load 1 draws 40kVA at lagging PF of

    0.8, while load 2 absorbs 24 kW at a leading PF

    of 0.9. Assume no line resistance, and let

    = 440∠30° V. Find (a) the total power drawn

    by the load; (b) the phase current  for the

    lagging load; (c) ; (d) .

    Practice: 12.8Page 53

  • 8/19/2019 L11 Polyphase Circuits Ch12

    53/78

    Practice: 12.8

    Week #12ENE 104 Pol hase Circuits

    Power Measurement:Page 54

  • 8/19/2019 L11 Polyphase Circuits Ch12

    54/78

    Power Measurement:

    Week #12ENE 104 Pol hase Circuits

    wattmeter  

    Power Measurement:Page 55

  • 8/19/2019 L11 Polyphase Circuits Ch12

    55/78

    Power Measurement:

    Week #12ENE 104 Pol hase Circuits

    IVIV   ang ang  P      22   cos

    Practice: 12.9Page 56

  • 8/19/2019 L11 Polyphase Circuits Ch12

    56/78

    Practice: 12.9

    Week #12ENE 104 Pol hase Circuits

    Determine the wattmeter reading in Figure

    below, state weather or not the potential coil hadto be reversed in order to obtain an upscale

    reading, and identify the device or devices

    absorbing or generating this power. The (+)

    terminal of the wattmeter is connected to: (a) x;(b) y; (c) z.

    Practice: 12.9Page 57

  • 8/19/2019 L11 Polyphase Circuits Ch12

    57/78

    Practice: 12.9

    Week #12ENE 104 Pol hase Circuits

    Practice: 12.9Page 58

  • 8/19/2019 L11 Polyphase Circuits Ch12

    58/78

    Practice: 12.9

    Week #12ENE 104 Pol hase Circuits

    Power Measurement:Page 59

  • 8/19/2019 L11 Polyphase Circuits Ch12

    59/78

    Power Measurement:

    Week #12ENE 104 Pol hase Circuits

    The wattmeter in a Three-Phase System: 

  • 8/19/2019 L11 Polyphase Circuits Ch12

    60/78

    Power Measurement:Page 61

  • 8/19/2019 L11 Polyphase Circuits Ch12

    61/78

    Week #12ENE 104 Pol hase Circuits

    The wattmeter in a Three-Phase System: 

    dt ivivivT 

    dt iiivT 

    dt ivivivT 

    dt ivivivT 

     P  P  P  P 

    cC CN bB BN aA

     AN 

    cC bBaA NxcC CN bB BN aA

     AN 

    cC CxbB BxaA

     AxC  B A

    )(1

    )(1)(1

    )(1

    0

    00

    0

     NxCN Cx

     Nx BN  Bx

     Nx AN  Ax

    vvv

    vvv

    vvv

    Power Measurement:Page 62

  • 8/19/2019 L11 Polyphase Circuits Ch12

    62/78

    Week #12ENE 104 Pol hase Circuits

    The Two-Wattmeter Method: 

    aA ABaA AB   ang ang  P    IVIV     cos1 cC CBcC CB   ang ang  P    IVIV     cos2

    Power Measurement:Page 63

  • 8/19/2019 L11 Polyphase Circuits Ch12

    63/78

    Week #12ENE 104 Pol hase Circuits

    The Two-Wattmeter Method:

    in the case of a

    balance load:

    we can find PF 

     

    30cos

    cos1

     L L

    aA ABaA AB

     I V 

    ang ang  P    IVIV

     

    30cos

    cos2

     L L

    cC CBcC CB

     I V 

    ang ang  P    IVIV

    Power Measurement:Page 64

  • 8/19/2019 L11 Polyphase Circuits Ch12

    64/78

    Week #12ENE 104 Pol hase Circuits

    The Two-Wattmeter Method:

    in the case of a

    balance load:

    we can find PF 

     

     

    30cos

    30cos

    2

    1

     P 

     P 

    12

    123tan P  P 

     P  P 

     

    Example 12.7:Page 65

  • 8/19/2019 L11 Polyphase Circuits Ch12

    65/78

    p

    Week #12ENE 104 Pol hase Circuits

    The balanced load is fed by a balanced three-

     phase system having and positive phase sequence. Find the reading of each

    wattmeter and the total power drawn by theload. 

      120230caV

      120230bc

    V

      0230abV

      0230abV 

    Example:Page 66

  • 8/19/2019 L11 Polyphase Circuits Ch12

    66/78

    p

    Week #12ENE 104 Pol hase Circuits

      60230ac

    V

      W13891.10560cos554.8230

    cos1

      aAacaAac   ang ang  P    IVIV

      0230abV

      1.105554.8

    154

    30

    154

    3230

     j j

    anaA

    VI

      120230caV

    Example:Page 67

  • 8/19/2019 L11 Polyphase Circuits Ch12

    67/78

    p

    Week #12ENE 104 Pol hase Circuits

      W5.5129.134120cos554.8230

    cos2

      bBbcbBbc   ang ang  P    IVIV

      1.105554.8aAI

      120230bcV

      9.134554.8bBI

    Practice: 12.10Page 68

  • 8/19/2019 L11 Polyphase Circuits Ch12

    68/78

    Week #12ENE 104 Pol hase Circuits

    For the circuit of Figure below, let the loads be

    = 25∠60°Ω, = 50∠ − 60°Ω, = 50∠60°Ω, = 600∠0° V rms with (+) phase sequence, and

    locate point x at C. Find (a) ; (b) ; (c) 

    Practice: 12.10Page 69

  • 8/19/2019 L11 Polyphase Circuits Ch12

    69/78

    Week #12ENE 104 Pol hase Circuits

    Practice: 12.10Page 70

  • 8/19/2019 L11 Polyphase Circuits Ch12

    70/78

    Week #12ENE 104 Pol hase Circuits

    Example: Final 2/47Page 71

  • 8/19/2019 L11 Polyphase Circuits Ch12

    71/78

    ENE 104  AC Circuit Power Anal sis

    เม อ แหล งจ ายในวงจร เปนแบบ balanced และ positive phase

    sequenceจงหา

    , ,  และ

    the total complex powersupplied by the source

    + _ 

        +    _

    +   _

    a

    b

    c

    480   0

    o

    Vrms

     A

    C

    B

    10 ohm

    -j10 ohm

     j5 ohm

    aAI bBI cC I

    Week #12

    Example: Final 2/47Page 72

  • 8/19/2019 L11 Polyphase Circuits Ch12

    72/78

    ENE 104  AC Circuit Power Anal sis

    + _ 

        +    _

    +   _

    a

    b

    c

    480   0o Vrms

     A

    C

    B

    10 ohm-j10 ohm

     j5 ohm

      301.8310

    ab AB

    VI

    3.1665

    9038.831

     j BC I

      1201.83

    10

    15038.831

     j

    CAI

    .V0480   anV

    V120480   bnV

    .V240480   cnV

      21038.831caV

      904803bcV

      303  pab   V V

    Week #12

    Example: Final 2/47Page 73

  • 8/19/2019 L11 Polyphase Circuits Ch12

    73/78

    ENE 104  AC Circuit Power Anal sis

    + _ 

        +    _

    +   _

    a

    b

    c

    480   0o Vrms

     A

    C

    B

    10 ohm-j10 ohm

     j5 ohm

    3.166 BC I

      301.83 ABI

      1201.83CAI

    CA ABaA   III  

     AB BC bB   III  

     BC CAcC    III  

    ***

    CACA BC  BC  AB ABtotal    IVIVIVS  

    Week #12

    Example: Final 2/46Page 74

  • 8/19/2019 L11 Polyphase Circuits Ch12

    74/78

    ENE 104  AC Circuit Power Anal sis

    เม อ Wattmeters ในวงจร อ านค าได  W.

    และW.

    เม อค าthe magnitude

    ของthe

    line voltage มค า 4160 V. จงหา

    54.297,371 W 

    31.196,1392 W   Z 

    12

    123tan P  P 

     P  P 

     

    Week #12

    Page 75

    Ex:

  • 8/19/2019 L11 Polyphase Circuits Ch12

    75/78

    ENE 104

    + _ 

        +    _

    +   _

    a

    b

    c

    480   0o Vrms

    120o

    480

    480   -120o

    Wm1

    +-+-

    Wm2

    +-+-

    Z A

    ZB

    ZC

     A

    B

    C

    ใหหา  AB, BC,  AB, BC, aA, cC และคาท อานไดท  wattmeter ทั  งสอง 

    Z A= 60 -30˚ 

    ZB= 24 30˚ 

    ZC= 80 0˚ 

     AC Circuit Power Anal sis Week #12

    Ex: Page 76

  • 8/19/2019 L11 Polyphase Circuits Ch12

    76/78

    ENE 104

    + _ 

        +    _

    +   _

    a

    b

    c

    480   0o Vrms

    120o

    480

    480   -120o

    Wm1

    +- +-

    Wm2

    +-+-

    Z A

    ZB

    ZC

     A

    B

    C

     AC Circuit Power Anal sis Week #12

    Hw: Page 77

  • 8/19/2019 L11 Polyphase Circuits Ch12

    77/78

    ENE 104  AC Circuit Power Anal sis Week #12

    Reference:Page 78

  • 8/19/2019 L11 Polyphase Circuits Ch12

    78/78

    W.H. Hayt, Jr., J.E. Kemmerly, S.M. Durbin, Engineering Circuit Analysis, Sixth Edition.

    Copyright ©2002 McGraw-Hill. All rights reserved.