l06 detection

Download L06 detection

Post on 05-Dec-2014

3.796 views

Category:

Technology

4 download

Embed Size (px)

DESCRIPTION

Обнаружение объектов на изображении

TRANSCRIPT

  • 1. :http://cvbeginner.blogspot.com/ 1
  • 2. 2
  • 3. : Slide credit: 3
  • 4. Slide credit: 4
  • 5. 5
  • 6. Sadeghi . CVPR 2011 6
  • 7. RANSAC SVM , -, - 7
  • 8. 8
  • 9. 9
  • 10. 10
  • 11. RANSAC 11
  • 12. RANSAC : X M, P n E t k 12
  • 13. RANSAC . X n . P M, . . E t , , , , . . 13
  • 14. 14
  • 15. RANSAC s , , T T , (inlier) p (. 0.95) : t2=3.842 N N , (,0.99) ( : e) 15
  • 16. 16
  • 17. 17
  • 18. : ? 18
  • 19. RANSAC + Mat H = cv::findHomography( obj, scene, CV_RANSAC ); 19
  • 20. 20
  • 21. 21
  • 22. SVMhttp://opencv.itseez.com/doc/tutorials/ml/table_of_content_ml/table_of_content_ml.html 22
  • 23. SVM 23
  • 24. SVM ()// Set up training datafloat labels[4] = {1.0, -1.0, -1.0, -1.0};Mat labelsMat(3, 1, CV_32FC1, labels);float trainingData[4][2] = { {501, 10}, {255, 10}, {501, 255}, {10, 501} };Mat trainingDataMat(3, 2, CV_32FC1, trainingData);// Set up SVMs parametersCvSVMParams params; params.svm_type = CvSVM::C_SVC;params.kernel_type = CvSVM::LINEAR;params.term_crit = cvTermCriteria(CV_TERMCRIT_ITER, 100, 1e-6);// Train the SVMCvSVM SVM;SVM.train(trainingDataMat, labelsMat, Mat(), Mat(), params);float response = SVM.predict(sampleMat);: sampleMat? 24
  • 25. Cortes&Vapnik, ML93 25
  • 26. 26
  • 27. 27
  • 28. 28
  • 29. (Visual Words) ? (visual word) , , Slide credit: 29
  • 30. , 30
  • 31. 31
  • 32. 32
  • 33. (Bag of words) 33
  • 34. SVM ? Slide credit: 34
  • 35. 35
  • 36. ? 36
  • 37. Viola-Jones P. Viola and M. Jones. Robust real-time face detection. IJCV 57(2), 2004 , : (Attentional cascade) 37
  • 38. Value = (pixels in white area) (pixels in black area) 38
  • 39. Slide credit: 39
  • 40. ? Slide credit: 40
  • 41. 24x24 , ~160,000! Slide credit: 41
  • 42. Y. Freund and R. Schapire, A short introduction to boosting, Journal of Japane