l 0 (b) zl =( j z l j l solution: refer to fig. p2.47. (a ...faculty.uml.edu/xwang/16.360/homework 5...

12
2.47 Use the Smith chart to find the reflection coefficient corresponding to a load impedance of (a) Z L = 3Z 0 (b) Z L =(2 j2)Z 0 (c) Z L = j2Z 0 (d) Z L = 0 (short circuit) Solution: Refer to Fig. P2.47. (a) Point A is z L = 3 + j0. Γ = 0.5 exp 0 (b) Point B is z L = 2 j2. Γ = 0.62 exp 29.7 (c) Point C is z L = 0 j2. Γ = 1.0 exp 53.1 (d) Point D is z L = 0 + j0. Γ = 1.0 exp 180.0

Upload: others

Post on 03-Mar-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: L 0 (b) ZL =( j Z L j L Solution: Refer to Fig. P2.47. (a ...faculty.uml.edu/xwang/16.360/Homework 5 solution.pdf2.49 Use the Smith chart to find the normalized load impedance corresponding

2.47 Use the Smith chart to find the reflection coefficient corresponding to a load

impedance of

(a) ZL = 3Z0

(b) ZL = (2− j2)Z0

(c) ZL = − j2Z0

(d) ZL = 0 (short circuit)

Solution: Refer to Fig. P2.47.

(a) Point A is zL = 3+ j0. Γ = 0.5exp 0

(b) Point B is zL = 2− j2. Γ = 0.62exp−29.7

(c) Point C is zL = 0− j2. Γ = 1.0exp−53.1

(d) Point D is zL = 0+ j0. Γ = 1.0exp 180.0

Page 2: L 0 (b) ZL =( j Z L j L Solution: Refer to Fig. P2.47. (a ...faculty.uml.edu/xwang/16.360/Homework 5 solution.pdf2.49 Use the Smith chart to find the normalized load impedance corresponding

0.1

0.1

0.1

0.2

0.2

0.2

0.3

0.3

0.3

0.4

0.4

0.4

0.5

0.5

0.5

0.6

0.6

0.6

0.7

0.7

0.7

0.8

0.8

0.8

0.9

0.9

0.9

1.0

1.0

1.0

1.2

1.2

1.2

1.4

1.4

1.4

1.6

1.6

1.6

1.8

1.8

1.8

2.0

2.0

2.0

3.0

3.0

3.0

4.0

4.0

4.0

5.0

5.0

5.0

10

10

10

20

20

20

50

50

50

0.2

0.2

0.2

0.2

0.4

0.4

0.4

0.4

0.6

0.6

0.6

0.6

0.8

0.8

0.8

0.8

1.0

1.0

1.0

1.0

20-20

30-30

40-40

50

-50

60

-60

70

-70

80

-80

90

-90

100

-100

110

-110

120

-120

130

-130

140

-140

150

-150

160

-160

170

-170

180

±

0.04

0.04

0.05

0.05

0.06

0.06

0.07

0.07

0.08

0.08

0.09

0.09

0.1

0.1

0.11

0.11

0.12

0.12

0.13

0.13

0.14

0.14

0.15

0.15

0.16

0.16

0.17

0.17

0.18

0.18

0.190.19

0.2

0.2

0.21

0.210.22

0.220.23

0.230.24

0.24

0.25

0.25

0.26

0.26

0.27

0.27

0.28

0.28

0.29

0.29

0.3

0.3

0.31

0.31

0.32

0.32

0.33

0.33

0.34

0.34

0.35

0.35

0.36

0.36

0.37

0.37

0.38

0.38

0.39

0.39

0.4

0.4

0.41

0.41

0.42

0.42

0.43

0.43

0.44

0.44

0.45

0.45

0.46

0.46

0.47

0.47

0.48

0.48

0.49

0.49

0.0

0.0

AN

GL

E O

F R

EF

LE

CT

ION

CO

EF

FIC

IEN

T IN

DE

GR

EE

S

—>

WA

VE

LE

NG

TH

S T

OW

AR

D G

EN

ER

AT

OR

—>

<—

WA

VE

LE

NG

TH

S T

OW

AR

D L

OA

D <

IND

UC

TIV

E R

EA

CT

AN

CE

CO

MPO

NEN

T (+jX

/Zo), O

R CAPACIT

IVE SUSCEPTANCE (+jB/Yo)

CAPACITIVE REACTANCE COM

PONEN

T (-jX

/Zo), O

R IN

DU

CT

IVE

SU

SCE

PT

AN

CE

(-j

B/

Yo

)

RESISTANCE COMPONENT (R/Zo), OR CONDUCTANCE COMPONENT (G/Yo)

A

B

C

D

Figure P2.47: Solution of Problem 2.47.

Page 3: L 0 (b) ZL =( j Z L j L Solution: Refer to Fig. P2.47. (a ...faculty.uml.edu/xwang/16.360/Homework 5 solution.pdf2.49 Use the Smith chart to find the normalized load impedance corresponding

2.49 Use the Smith chart to find the normalized load impedance corresponding to a

reflection coefficient of

(a) Γ = 0.5

(b) Γ = 0.5∠60

(c) Γ = −1

(d) Γ = 0.3∠−30

(e) Γ = 0

(f) Γ = j

0.1

0.1

0.1

0.2

0.2

0.2

0.3

0.3

0.3

0.4

0.4

0.4

0.5

0.5

0.5

0.6

0.6

0.6

0.7

0.7

0.7

0.8

0.8

0.8

0.9

0.9

0.9

1.0

1.0

1.0

1.2

1.2

1.2

1.4

1.4

1.4

1.6

1.6

1.6

1.8

1.8

1.8

2.0

2.0

2.0

3.0

3.0

3.0

4.0

4.0

4.0

5.0

5.0

5.0

10

10

10

20

20

20

50

50

50

0.2

0.2

0.2

0.2

0.4

0.4

0.4

0.4

0.6

0.6

0.6

0.6

0.8

0.8

0.8

0.8

1.0

1.0

1.0

1.0

20-20

30-30

40-40

50

-50

60

-60

70

-70

80

-80

90

-90

100

-100

110

-110

120

-120

130

-130

140

-140

150

-150

160

-160

170

-170

180

±

0.04

0.04

0.05

0.05

0.06

0.06

0.07

0.07

0.08

0.08

0.09

0.09

0.1

0.1

0.11

0.11

0.12

0.12

0.13

0.13

0.14

0.14

0.15

0.15

0.16

0.16

0.17

0.17

0.18

0.18

0.190.19

0.2

0.2

0.21

0.210.22

0.220.23

0.230.24

0.24

0.25

0.25

0.26

0.26

0.27

0.27

0.28

0.28

0.29

0.29

0.3

0.3

0.31

0.31

0.32

0.32

0.33

0.33

0.34

0.34

0.35

0.35

0.36

0.36

0.37

0.37

0.38

0.38

0.39

0.39

0.4

0.4

0.41

0.41

0.42

0.42

0.43

0.43

0.44

0.44

0.45

0.45

0.46

0.46

0.47

0.47

0.48

0.48

0.49

0.49

0.0

0.0

AN

GL

E O

F R

EF

LE

CT

ION

CO

EF

FIC

IEN

T IN

DE

GR

EE

S

—>

WA

VE

LE

NG

TH

S T

OW

AR

D G

EN

ER

AT

OR

—>

<—

WA

VE

LE

NG

TH

S T

OW

AR

D L

OA

D <

IND

UC

TIV

E R

EA

CT

AN

CE

CO

MPO

NEN

T (+jX

/Zo), O

R CAPACIT

IVE SUSCEPTANCE (+jB/Yo)

CAPACITIVE REACTANCE COM

PONEN

T (-jX

/Zo), O

R IN

DU

CT

IVE

SU

SCE

PT

AN

CE

(-j

B/

Yo

)

RESISTANCE COMPONENT (R/Zo), OR CONDUCTANCE COMPONENT (G/Yo)

A’

B’

C’

D’

E’

F’

Figure P2.49: Solution of Problem 2.49.

Solution: Refer to Fig. P2.49.

Page 4: L 0 (b) ZL =( j Z L j L Solution: Refer to Fig. P2.47. (a ...faculty.uml.edu/xwang/16.360/Homework 5 solution.pdf2.49 Use the Smith chart to find the normalized load impedance corresponding

(a) Point A′ is Γ = 0.5 at zL = 3+ j0.

(b) Point B′ is Γ = 0.5exp j60 at zL = 1+ j1.15.

(c) Point C ′ is Γ = −1 at zL = 0+ j0.

(d) Point D′ is Γ = 0.3exp− j30 at zL = 1.60− j0.53.

(e) Point E ′ is Γ = 0 at zL = 1+ j0.

(f) Point F ′ is Γ = j at zL = 0+ j1.

Page 5: L 0 (b) ZL =( j Z L j L Solution: Refer to Fig. P2.47. (a ...faculty.uml.edu/xwang/16.360/Homework 5 solution.pdf2.49 Use the Smith chart to find the normalized load impedance corresponding

2.50 Use the Smith chart to determine the input impedance Zin of the two-line

configuration shown in Fig. P2.50.

Z01 = 100 Ω

l1 = 3λ/8 l2 = 5λ/8

Z02 = 50 ΩZin

BC A

ZL = (75 − j50) Ω

Figure P2.50 Circuit for Problem 2.50.

Solution:

Page 6: L 0 (b) ZL =( j Z L j L Solution: Refer to Fig. P2.47. (a ...faculty.uml.edu/xwang/16.360/Homework 5 solution.pdf2.49 Use the Smith chart to find the normalized load impedance corresponding

0.1

0.1

0.1

0.2

0.2

0.2

0.3

0.3

0.3

0.4

0.4

0.4

0.5

0.5

0.5

0.6

0.6

0.6

0.7

0.7

0.7

0.8

0.8

0.8

0.9

0.9

0.9

1.0

1.0

1.0

1.2

1.2

1.2

1.4

1.4

1.4

1.6

1.6

1.6

1.8

1.8

1.8

2.0

2.0

2.0

3.0

3.0

3.0

4.0

4.0

4.0

5.0

5.0

5.0

10

10

10

20

20

20

50

50

50

0.2

0.2

0.2

0.2

0.4

0.4

0.4

0.4

0.6

0.6

0.6

0.6

0.8

0.8

0.8

0.8

1.0

1.0

1.0

1.0

20-20

30-30

40-40

50

-50

60

-60

70

-70

80

-80

90

-90

100

-100

110

-110

120

-120

130

-130

140

-140

150

-150

160

-160

170

-170

180

±

0.04

0.04

0.05

0.05

0.06

0.06

0.07

0.07

0.08

0.08

0.09

0.09

0.1

0.1

0.11

0.11

0.12

0.12

0.13

0.13

0.14

0.14

0.15

0.15

0.16

0.16

0.17

0.17

0.18

0.18

0.190.19

0.2

0.2

0.21

0.210.22

0.220.23

0.230.24

0.24

0.25

0.25

0.26

0.26

0.27

0.27

0.28

0.28

0.29

0.29

0.3

0.3

0.31

0.31

0.32

0.32

0.33

0.33

0.34

0.34

0.35

0.35

0.36

0.36

0.37

0.37

0.38

0.38

0.39

0.39

0.4

0.4

0.41

0.41

0.42

0.42

0.43

0.43

0.44

0.44

0.45

0.45

0.46

0.46

0.47

0.47

0.48

0.48

0.49

0.49

0.0

0.0

AN

GL

E O

F R

EF

LE

CT

ION

CO

EF

FIC

IEN

T IN

DE

GR

EE

S

—>

WA

VE

LE

NG

TH

S T

OW

AR

D G

EN

ER

AT

OR

—>

<—

WA

VE

LE

NG

TH

S T

OW

AR

D L

OA

D <

IND

UC

TIV

E R

EA

CT

AN

CE

CO

MPO

NEN

T (+jX

/Zo), O

R CAPACIT

IVE SUSCEPTANCE (+jB/Yo)

CAPACITIVE REACTANCE COM

PONEN

T (-jX

/Zo), O

R IN

DU

CT

IVE

SU

SCE

PT

AN

CE

(-j

B/

Yo

)

RESISTANCE COMPONENT (R/Zo), OR CONDUCTANCE COMPONENT (G/Yo)

ABr

0.625 λ

0.308 λ

0.433 λ

SWR Circle

Smith Chart 1

Starting at point A, namely at the load, we normalize ZL with respect to Z02:

zL =ZL

Z02

=75− j50

50= 1.5− j1. (point A on Smith chart 1)

From point A on the Smith chart, we move on the SWR circle a distance of 5λ/8 to

point Br, which is just to the right of point B (see figure). At Br, the normalized input

impedance of line 2 is:

zin2 = 0.48− j0.36 (point Br on Smith chart)

Next, we unnormalize zin2:

Zin2 = Z02zin2 = 50× (0.48− j0.36) = (24− j18) Ω.

Page 7: L 0 (b) ZL =( j Z L j L Solution: Refer to Fig. P2.47. (a ...faculty.uml.edu/xwang/16.360/Homework 5 solution.pdf2.49 Use the Smith chart to find the normalized load impedance corresponding

0.1

0.1

0.1

0.2

0.2

0.2

0.3

0.3

0.3

0.4

0.4

0.4

0.5

0.5

0.5

0.6

0.6

0.6

0.7

0.7

0.7

0.8

0.8

0.8

0.9

0.9

0.9

1.0

1.0

1.0

1.2

1.2

1.2

1.4

1.4

1.4

1.6

1.6

1.6

1.8

1.8

1.8

2.0

2.0

2.0

3.0

3.0

3.0

4.0

4.0

4.0

5.0

5.0

5.0

10

10

10

20

20

20

50

50

50

0.2

0.2

0.2

0.2

0.4

0.4

0.4

0.4

0.6

0.6

0.6

0.6

0.8

0.8

0.8

0.8

1.0

1.0

1.0

1.0

20-20

30-30

40-40

50

-50

60

-60

70

-70

80

-80

90

-90

100

-100

110

-110

120

-120

130

-130

140

-140

150

-150

160

-160

170

-170

180

±

0.04

0.04

0.05

0.05

0.06

0.06

0.07

0.07

0.08

0.08

0.09

0.09

0.1

0.1

0.11

0.11

0.12

0.12

0.13

0.13

0.14

0.14

0.15

0.15

0.16

0.16

0.17

0.17

0.18

0.18

0.190.19

0.2

0.2

0.21

0.210.22

0.220.23

0.230.24

0.24

0.25

0.25

0.26

0.26

0.27

0.27

0.28

0.28

0.29

0.29

0.3

0.3

0.31

0.31

0.32

0.32

0.33

0.33

0.34

0.34

0.35

0.35

0.36

0.36

0.37

0.37

0.38

0.38

0.39

0.39

0.4

0.4

0.41

0.41

0.42

0.42

0.43

0.43

0.44

0.44

0.45

0.45

0.46

0.46

0.47

0.47

0.48

0.48

0.49

0.49

0.0

0.0

AN

GL

E O

F R

EF

LE

CT

ION

CO

EF

FIC

IEN

T IN

DE

GR

EE

S

—>

WA

VE

LE

NG

TH

S T

OW

AR

D G

EN

ER

AT

OR

—>

<—

WA

VE

LE

NG

TH

S T

OW

AR

D L

OA

D <

IND

UC

TIV

E R

EA

CT

AN

CE

CO

MPO

NEN

T (+jX

/Zo), O

R CAPACIT

IVE SUSCEPTANCE (+jB/Yo)

CAPACITIVE REACTANCE COM

PONEN

T (-jX

/Zo), O

R IN

DU

CT

IVE

SU

SCE

PT

AN

CE

(-j

B/

Yo

)

RESISTANCE COMPONENT (R/Zo), OR CONDUCTANCE COMPONENT (G/Yo)

Bl

C

0.375 λ

0.470 λ

0.345 λ

SWR Circle

Smith Chart 2

To move along line 1, we need to normalize with respect to Z01. We shall call this zL1:

zL1 =Zin2

Z01

=24− j18

100= 0.24− j0.18 (point Bℓ on Smith chart 2)

After drawing the SWR circle through point Bℓ, we move 3λ/8 towards the generator,

ending up at point C on Smith chart 2. The normalized input impedance of line 1 is:

zin = 0.66− j1.25

which upon unnormalizing becomes:

Zin = (66− j125) Ω.

Page 8: L 0 (b) ZL =( j Z L j L Solution: Refer to Fig. P2.47. (a ...faculty.uml.edu/xwang/16.360/Homework 5 solution.pdf2.49 Use the Smith chart to find the normalized load impedance corresponding

2.61 Using a slotted line on a 50-Ω air-spaced lossless line, the following

measurements were obtained: S = 1.6 and |V |max occurred only at 10 cm and 24 cm

from the load. Use the Smith chart to find ZL.

0.1

0.1

0.1

0.2

0.2

0.2

0.3

0.3

0.3

0.4

0.4

0.4

0.5

0.5

0.5

0.6

0.6

0.6

0.7

0.7

0.7

0.8

0.8

0.8

0.9

0.9

0.9

1.0

1.0

1.0

1.2

1.2

1.2

1.4

1.4

1.4

1.6

1.6

1.6

1.8

1.8

1.8

2.0

2.0

2.0

3.0

3.0

3.0

4.0

4.0

4.0

5.0

5.0

5.0

10

10

10

20

20

20

50

50

50

0.2

0.2

0.2

0.2

0.4

0.4

0.4

0.4

0.6

0.6

0.6

0.6

0.8

0.8

0.8

0.8

1.0

1.0

1.0

1.0

20-20

30-30

40-40

50

-50

60

-60

70

-70

80

-80

90

-90

100

-100

110

-110

120

-120

130

-130

140

-140

150

-150

160

-160

170

-170

180

±

0.04

0.04

0.05

0.05

0.06

0.06

0.07

0.07

0.08

0.08

0.09

0.09

0.1

0.1

0.11

0.11

0.12

0.12

0.13

0.13

0.14

0.14

0.15

0.15

0.16

0.16

0.17

0.17

0.18

0.18

0.190.19

0.2

0.2

0.21

0.210.22

0.220.23

0.230.24

0.24

0.25

0.25

0.26

0.26

0.27

0.27

0.28

0.28

0.29

0.29

0.3

0.3

0.31

0.31

0.32

0.32

0.33

0.33

0.34

0.34

0.35

0.35

0.36

0.36

0.37

0.37

0.38

0.38

0.39

0.39

0.4

0.4

0.41

0.41

0.42

0.42

0.43

0.43

0.44

0.44

0.45

0.45

0.46

0.46

0.47

0.47

0.48

0.48

0.49

0.49

0.0

0.0

AN

GL

E O

F R

EF

LE

CT

ION

CO

EF

FIC

IEN

T IN

DE

GR

EE

S

—>

WA

VE

LE

NG

TH

S T

OW

AR

D G

EN

ER

AT

OR

—>

<—

WA

VE

LE

NG

TH

S T

OW

AR

D L

OA

D <

IND

UC

TIV

E R

EA

CT

AN

CE

CO

MPO

NEN

T (+jX

/Zo), O

R CAPACIT

IVE SUSCEPTANCE (+jB/Yo)

CAPACITIVE REACTANCE COM

PONEN

T (-jX

/Zo), O

R IN

DU

CT

IVE

SU

SCE

PT

AN

CE

(-j

B/

Yo

)

RESISTANCE COMPONENT (R/Zo), OR CONDUCTANCE COMPONENT (G/Yo)

0.357 λ

SWR

Z-LOAD

Figure P2.61: Solution of Problem 2.61.

Solution: Refer to Fig. P2.61. The point SWR denotes the fact that S = 1.6.

This point is also the location of a voltage maximum. From the knowledge of the

locations of adjacent maxima we can determine that λ = 2(24 cm−10 cm) = 28 cm.

Therefore, the load is 10 cm28 cm

λ = 0.357λ from the first voltage maximum, which is at

0.250λ on the WTL scale. Traveling this far on the SWR circle we find point Z-LOAD

at 0.250λ + 0.357λ −0.500λ = 0.107λ on the WTL scale, and here

zL = 0.82− j0.39.

Page 9: L 0 (b) ZL =( j Z L j L Solution: Refer to Fig. P2.47. (a ...faculty.uml.edu/xwang/16.360/Homework 5 solution.pdf2.49 Use the Smith chart to find the normalized load impedance corresponding

Therefore ZL = zLZ0 = (0.82− j0.39)×50 Ω = (41.0− j19.5) Ω.

Page 10: L 0 (b) ZL =( j Z L j L Solution: Refer to Fig. P2.47. (a ...faculty.uml.edu/xwang/16.360/Homework 5 solution.pdf2.49 Use the Smith chart to find the normalized load impedance corresponding

2.66 A 200-Ω transmission line is to be matched to a computer terminal with ZL =(50− j25) Ω by inserting an appropriate reactance in parallel with the line. If f = 800

MHz and εr = 4, determine the location nearest to the load at which inserting:

(a) A capacitor can achieve the required matching, and the value of the capacitor.

(b) An inductor can achieve the required matching, and the value of the inductor.

Solution:

(a) After entering the specified values for ZL and Z0 into Module 2.6, we have zL

represented by the red dot in Fig. P2.66(a), and yL represented by the blue dot. By

moving the cursor a distance d = 0.093λ , the blue dot arrives at the intersection point

between the SWR circle and the S = 1 circle. At that point

y(d) = 1.026126− j1.5402026.

To cancel the imaginary part, we need to add a reactive element whose admittance is

positive, such as a capacitor. That is:

ωC = (1.54206)×Y0

=1.54206

Z0

=1.54206

200= 7.71×10−3,

which leads to

C =7.71×10−3

2π ×8×108= 1.53×10−12 F.

Page 11: L 0 (b) ZL =( j Z L j L Solution: Refer to Fig. P2.47. (a ...faculty.uml.edu/xwang/16.360/Homework 5 solution.pdf2.49 Use the Smith chart to find the normalized load impedance corresponding

Figure P2.66(a)

(b) Repeating the procedure for the second intersection point [Fig. P2.66(b)] leads

to

y(d) = 1.000001+ j1.520691,

at d2 = 0.447806λ .

To cancel the imaginary part, we add an inductor in parallel such that

1

ωL=

1.520691

200,

from which we obtain

L =200

1.52×2π ×8×108= 2.618×10−8 H.

Page 12: L 0 (b) ZL =( j Z L j L Solution: Refer to Fig. P2.47. (a ...faculty.uml.edu/xwang/16.360/Homework 5 solution.pdf2.49 Use the Smith chart to find the normalized load impedance corresponding

Figure P2.66(b)