kth - process integration...ih2655 spring 2013 christoph henkel / mikael Östling kth 18 gate...

118
Process Integration Lecture 12

Upload: others

Post on 27-Jan-2021

22 views

Category:

Documents


0 download

TRANSCRIPT

  • Process Integration

    Lecture 12

  • “Where we are today”

    Lecture 12: Process Integration

    Wafer Fabrication

    FEOL Processes

    BEOL Fabrication

    Packaging

    Future Technologies

    Device Integration

    Simulation & Modeling

    Metrology

    Electrical Testing

    PS: This list of co-dependencies is

    not complete!

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 3

    • Lithography Laser (Steppers), EUV, E-Beam, …

    • Thin Film deposition CVD – LPCVD, PECVD, ALD …

    PVD – Sputtering (DC, RF, …), Evaporation (Resistance, E-Beam), …

    Epitaxy – CVD, MBE, SPE

    Spin-coating

    Inkjet Printing

    • Etching Wet etching

    Dry etching

    • Doping Ion implantation

    Diffusion

    • Surface engineering Thermal oxidation

    Metal silicide(SALICIDE)

    Pa

    ttern

    Process Integration: Overview

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 4

    Process Integration - Overview

    • Isolation Technology • LOCOS

    • STI

    • Gate Stack Options

    • Advanced CMOS Integration

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 5

    MOS-Basic Isolation in Ics

    MOS transistors are self-isolated. Compared to bipolar devices, MOSFETs may have

    higher density, but they will suffer from parasitic effects from the adjacent devices.

    High threshold voltage at the field region VTF is preferred. VTF must be 3-4 V higher

    (depending on CMOS generation) than the supply voltage to ensure that the current

    from parasitic MOSFET is less than 1 pA.

    VTF decreases with decreasing device distance or increasing temperature T. When T

    increases from 25 oC to 125 oC, VTF will decrease by 2 V.

    Methods to Increase Field Threshold Voltage VTF

    Increase field oxide to be 7~10 times thicker than gate oxide

    Increase the doping concentration under field oxide (Channel-

    stop implantation)

    oxC

    MSAqNsMSFBT VV

    )2(22

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 6

    LOCOS Isolation Technology

    (40nm)

    (80nm)

    50 keV,1×1013 cm-2

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 7

    Problems in LOCOS Technology

    1) Bird’s Beak Effect

    — limits integration improvement

    2) Rough Surface

    — limits Lithography (DOF)

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 8

    Improved LOCOS — PBL (Poly-Buffered LOCOS)

    Deposit a layer of polysilicon before LPCVD Si3N4. Polysilicon

    consumes the oxygen diffused laterally during field oxidation. The

    bird’s beak can reduce to 0.1-0.2 mm.

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 9

    Helpful to

    integration

    improvement

    Improved LOCOS — PBL (Poly-Buffered LOCOS)

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 10

    Shallow Trench Isolation (STI) 1/5

    LOCOS, PBL applicable for technology node0.35-0.5 mm.

    For technology node

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 11

    3) LPCVD Si3N4 (100 nm)

    4) Isolation

    Lithography

    5) Shallow Trench

    Etching (0.5 mm)

    Shallow Trench Isolation (STI) 2/5

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 12

    6) Thermal Growth of

    Oxide Stop (20 nm)

    7) Channel Stop

    Implantation

    8) Trench Filling by CVD

    Oxide

    Shallow Trench Isolation (STI) 3/5

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 13

    9) Etching-back

    Planarization

    10) Si3N4 Etching

    Shallow Trench Isolation (STI) 4/5

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 14

    11) Re-Etching-back

    Planarization

    12) Densification

    Annealing of CVD

    Oxide

    Shallow Trench Isolation (STI) 5/5

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 15

    Modern STI Technology (CMOS) 1/2

    2) HDPCVD:

    No Densification

    Annealing

    1) No Channel Stop

    Implantation

    USG (Un-doped Silicate Glass): SiH4+O2+Ar→USG + volatiles

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 16

    3) CMP

    Planarization

    4) Si3N4 Etching-

    back and USG

    Modern STI Technology (CMOS) 2/2

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 17

    Process Integration - Overview

    • Isolation Technology

    • Gate Stack Options

    • Self Aligned Structures

    • Replacement Gate Technology

    • Fully Silicided Gates

    • Advanced CMOS Integration

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 18

    Gate Structure

    Early gate structure is SiO2-Metal Gate (Al Gate).

    With increased integration, low VT is required.

    i

    DTFC

    qN

    FFBTn

    NVVV

    ox

    FAs ln;2)2(2

    Using poly-gate, VT can decrease by 1.2~1.4 V

    Other Advantages of Poly-Gate: MS can be changed by doping. For example, n-poly may reduce VT by 1.1 V, i.e., the dual-poly (n & p) technology commonly used in industry.

    Poly-Gate self-alignment technology can further improve

    integration.

    Moreover, Al is incompatible to high-temperature

    process, such as ion implantation annealing.

    Al gate not feasible when reducing source-drain

    series resistance is required.

    Poly-Gate

    (Interconnect)

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 19

    Poly-Gate Self-Alignment Technology

    “Hot” electron effects are

    considerable in small devices !! Lighly Doped Drain (LDD)

    + Spacer

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 20

    LDD + Spacer Polysilicon Self-Alignment

    1) LDD Implant

    2) Sidewall Formation

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 21

    3) Ion Implantation

    +Annealing

    Self-Aligned Silicide SALICIDE

    Maximize contact area, reduce contact resistance

    and make contacts much closer to the channel (see

    also Lecture 9)

    TiSi2,CoSi2,NiSi

    Self-Aligned Ion

    Implantation

    LDD + Spacer Polysilicon Self-Alignment

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 22

    High k/Metal Gate: Replacement of Poly-Gate

    1) LDD and

    Sidewall

    2) LPCVD Si3N4 + CVD PSG

    + CMP

    Si3N4

    Problem: High-k / Metal Gate stacks are not compatible with

    CMOS FEOL temperature requirements.

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 23

    3) Si3N4 Etching

    4) Poly-Si Etching

    5) Oxide Etching

    High k/Metal Gate: Replacement of Poly-Gate

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 24

    6) High-k Deposition

    Today: Hafnium-

    based; ALD process

    7) Metal Gate

    8) CMP

    Hf-based High k

    Hf-based

    High k/Metal Gate: Replacement of Poly-Gate

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 25

    Metal silicide directly on gate oxide without poly-Si in-between

    Fully-Silicided (FUSI) Gate

    Gottlob et al., “0.86-nm CET Gate Stacks With Epitaxial

    Gd2O3 High-k Dielectrics and FUSI NiSi Metal

    Electrodes”, IEEE El. Dev. Lett., 27(10), 2006.

    Example: nickel silicide (1 nm Ni + 1.84 nm Si 2.2 nm NiSi)

    Gottlob et al., “Gentle FUSI NiSi metal gate

    process for high-k dielectric screening”,

    Microelectronic Engineering 85 (2008)

    2019–2021

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 26

    Process Integration - Overview

    • Isolation Technology

    • Gate Stack Options

    • Advanced CMOS Integration

    • Full SOI CMOS Process

    • Flip Chip Packaging

    • Current Technology

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 27

    Modern SOI CMOS

    Integration Technology

    Example:

    SOI + Five-level

    Cu Interconnect

    Next Slides

    21 mask process

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 28

    CMOS Integration

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 29

    SIMOX = Separation by Ion Implantation of Oxygen

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 30

    & Wafer cleaning

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 31

    & Wafer cleaning

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 32

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 33

    & alignment, exposure, PEB,

    development and inspection

    Etch oxide & Si

    as alignment

    marks

    mask0

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 34

    Strip PR and Screen Oxide

    Wafer cleaning

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 35

    Pad thermal oxidation

    LPCVD Nitride

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 36

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 37

    PR coating and pre-baking

    mask1

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 38

    PEB, development & inspection

    Etch pad oxide and nitride

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 39

    Strip PR & etch Si

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 40

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 41

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 42

    Strip nitride & oxide

    Wafer cleaning

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 43

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 44

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 45

    mask2

    PR coating and pre-baking, mask

    alignment & exposure, PEB,

    development and inspection

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 46

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 47

    Ox

    I

    Ox

    FAS

    FFBthC

    Q

    C

    qNVV

    2)2(22

    QI ion implantation dose (typical dose 1011-1012)

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 48

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 49

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 50

    mask3

    PR coating and pre-baking, mask

    alignment & exposure, PEB,

    development and inspection

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 51

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 52

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 53

    Strip PR & sacrificial oxide

    Wafer cleaning

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 54

    Group Activity 1

    How to get from A to B?

    A

    B

    ?

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 55

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 56

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 57

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 58

    mask4 a-Si etching

    PR coating and pre-baking, mask

    alignment & exposure, PEB,

    development and inspection

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 59

    Strip PR, wafer cleaning, a-Si

    annealing and oxidation

    oxide

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 60

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 61

    mask5

    PR coating and pre-baking, mask

    alignment & exposure, PEB,

    development and inspection

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 62

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 63

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 64

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 65

    mask6

    PR coating and pre-baking, mask

    alignment & exposure, PEB,

    development and inspection

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 66

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 67

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 68

    Group Activity 2

    How to get from B to C?

    B

    ?

    C

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 69

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 70

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 71

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 72

    mask7

    PR coating and pre-baking, mask

    alignment & exposure, PEB,

    development and inspection

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 73

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 74

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 75

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 76

    PR coating and pre-baking, mask

    alignment & exposure, PEB,

    development and inspection

    mask8

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 77

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 78

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 79

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 80

    Ar Sputtering etching (SiO2 and Cleaning)

    Co and TiN Sputtering Deposition

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 81

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 82

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 83

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 84

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 85

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 86

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 87

    PR coating and pre-baking, mask

    alignment & exposure, PEB,

    development and inspection

    mask9

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 88

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 89

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 90

    Ar sputtering etching

    Ti and TiN Sputtering Deposition

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 91

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 92

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 93

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 94

    Ar Sputtering etching

    Ta and TaN Barrier Layer PVD

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 95

    Bulk Cu ECP & annealing

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 96

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 97

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 98

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 99

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 100

    Mask 16、17

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 101

    Mask 18、19

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 102

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 103

    Mask 20

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 104

    & ship to testing

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 105

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 106

    Ar sputtering etching

    Cr, Cu, and Au Liner Coating

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 107

    Mask 21

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 108

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 109

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 110

    Process Integration - Overview

    • Isolation Technology

    • Gate Stack Options

    • Advanced CMOS Integration

    • Full SOI CMOS Process

    • Flip Chip Packaging

    • Current Technology

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 111

    Dicing, Packaging: e.g.,

    Flip-chip packaging

    Through Silicon Via (TSV)

    Flip Chip Packaging

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 112

    Process Integration - Overview

    • Isolation Technology

    • Gate Stack Options

    • Advanced CMOS Integration

    • Full SOI CMOS Process

    • Flip Chip Packaging

    • Current Technology

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 113

    On-Time 2 Year Cycles

    130 nm

    2001

    90 nm

    2003

    65 nm

    2005

    45 nm

    2007

    32 nm

    2009

    High-k

    2nd Generation

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 114

    Taken from: Masaaki Niwa, “Development of 32nm

    CMOS and Recent Trend for Beyond 32nm” SMT Symp. 2011

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 115

    Taken from: Masaaki Niwa, “Development of 32nm

    CMOS and Recent Trend for Beyond 32nm” SMT Symp. 2011

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 116

    Taken from: Kelin Kuhn, “Moore's Law past 32nm:

    Future Challenges in Device Scaling” SSDM. 2009

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 117

    Taken from: Masaaki Niwa, “Development of 32nm

    CMOS and Recent Trend for Beyond 32nm” SMT Symp. 2011

  • IH2655 Spring 2013

    Christoph Henkel / Mikael Östling KTH 118

    IBM Cu Technology

    http://www-3.ibm.com/chips/gallery/p-n2.html

    To interconnect the extremely small transistors, a complex multi-

    level multi-layer metallization scheme is needed. Shown below is

    what IBM has done with their state-of-the-art Cu technology.

    W-stud

    Cu

    Six Cu metallization levels above the 1st metal

    level with tungsten studs to the transistors

    ../../../../ostling/Lokala%20inställningar/Temporary%20Internet%20Files/OLK12/northwall.html