krishna praneeth kilambi & jeffrey j. gray johns hopkins...

32
Towards fast and accurate calculation of protein pK a values Krishna Praneeth Kilambi & Jeffrey J. Gray Johns Hopkins University RosettaCon 2011

Upload: others

Post on 20-Jul-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Krishna Praneeth Kilambi & Jeffrey J. Gray Johns Hopkins ...rosettadesigngroup.org/workshops/RCW2011/presentations/...• RPH mode predicts pK a s to 0.81 RMSD, comparable to leading

Towards fast and accurate calculation of

protein pKa values

Krishna Praneeth Kilambi & Jeffrey J. Gray Johns Hopkins University

RosettaCon 2011

Page 2: Krishna Praneeth Kilambi & Jeffrey J. Gray Johns Hopkins ...rosettadesigngroup.org/workshops/RCW2011/presentations/...• RPH mode predicts pK a s to 0.81 RMSD, comparable to leading

Introduction

• Virtually every biological process is pH dependent – protein folding – enzyme catalysis – protein-protein interactions – pathological conditions

• Influences protonation states of residues in proteins

Russell et al. 2008. Proc. Natl. Acad. Sci. USA. 105: 17736 -17741.

pH = 7.0 pH = 5.0

Page 3: Krishna Praneeth Kilambi & Jeffrey J. Gray Johns Hopkins ...rosettadesigngroup.org/workshops/RCW2011/presentations/...• RPH mode predicts pK a s to 0.81 RMSD, comparable to leading

pKa Values For Residues In Proteins

• Acid dissociation constant (pKa) determines protonation state HA ⇌ H+ + A−

• Henderson-Hasselbalch equation

pH = p𝐾a+ log [A−]

[HA]

• pH at 50% protonation = pKa

• Residue pKa in protein ≠ Intrinsic pKa in solution

Page 4: Krishna Praneeth Kilambi & Jeffrey J. Gray Johns Hopkins ...rosettadesigngroup.org/workshops/RCW2011/presentations/...• RPH mode predicts pK a s to 0.81 RMSD, comparable to leading
Page 5: Krishna Praneeth Kilambi & Jeffrey J. Gray Johns Hopkins ...rosettadesigngroup.org/workshops/RCW2011/presentations/...• RPH mode predicts pK a s to 0.81 RMSD, comparable to leading

Current pKa Prediction Methods

• Current methods 1. continuum electrostatic models (Gunner, Harbury, McCammon etc.) 2. all-atom MD simulations (Case etc.) 3. empirical approaches (Jensen, Hellinga etc.)

• Advantages / Disadvantages – LPBE models overestimate charge interactions – empirical approaches are much faster

• Rosetta toolset – robust score function – varying levels of conformational flexibility – relatively computationally inexpensive

Fitch, C.A., and B. García-Moreno E. 2002. Current Protocols in Bioinformatics

Solvent

Protein

Protein-water system for FDPB calculations

Page 6: Krishna Praneeth Kilambi & Jeffrey J. Gray Johns Hopkins ...rosettadesigngroup.org/workshops/RCW2011/presentations/...• RPH mode predicts pK a s to 0.81 RMSD, comparable to leading

𝐸prot = −𝑘𝐵𝑇 ln 𝑓prot

‘pH Score’ Captures Residue Protonation State Changes

• pH score

• Protonation probability 𝑓prot =1

10pH−Ip𝐾𝑎+1 (Onufriev et al. 2001)

• Enew = Estandard + EpH

0

0.2

0.4

0.6

0.8

1

1.2

-2 -1 0 1 2

pH

Sco

re (

RE

U)

pH - IpKa

𝐸deprot = −𝑘𝐵𝑇 ln(1 − 𝑓prot)

Page 7: Krishna Praneeth Kilambi & Jeffrey J. Gray Johns Hopkins ...rosettadesigngroup.org/workshops/RCW2011/presentations/...• RPH mode predicts pK a s to 0.81 RMSD, comparable to leading

Collect Rotamer Protonation Statistics

Calculate pKa From Residue Titration Plot

Sample Rotamer Library For Target Residue (Includes Prot. And Deprot. Variants)

Starting Structure (Highly Acidic Environment pH = 1)

pH = pH + ΔpH Titrate Until pH = 14 x 14

Rotamer Frequency

Page 8: Krishna Praneeth Kilambi & Jeffrey J. Gray Johns Hopkins ...rosettadesigngroup.org/workshops/RCW2011/presentations/...• RPH mode predicts pK a s to 0.81 RMSD, comparable to leading

Select Lowest Energy

Rotamer

Output pKa

Sample Rotamer Library For Target Residue

(Includes Prot. And Deprot. Variants)

Starting Structure (Highly Acidic Environment pH = 1)

Did protonation

state change?

Optimize Rosetta Score Function For pKa prediction

YES

NO pH = pH + ΔpH

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

pH

Deprotonated

Protonated

Lowest Energy

Page 9: Krishna Praneeth Kilambi & Jeffrey J. Gray Johns Hopkins ...rosettadesigngroup.org/workshops/RCW2011/presentations/...• RPH mode predicts pK a s to 0.81 RMSD, comparable to leading

Lowest-Energy Conformation Is Better Than

Boltzmann-Weighted Rotamer Frequencies

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14

% Pr

oton

ation

pH

Theoretical curve

Rotamer frequency

Lowest energy

HIS 27 RNase T1 (9RNT)

Page 10: Krishna Praneeth Kilambi & Jeffrey J. Gray Johns Hopkins ...rosettadesigngroup.org/workshops/RCW2011/presentations/...• RPH mode predicts pK a s to 0.81 RMSD, comparable to leading

Lowest-Energy Conformation Is Better Than

Boltzmann-Weighted Rotamer Frequencies

• Consistent with previous studies of side-chain entropy (Kortemme et al. 2002, Hu et al. 2006)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

% Pr

oton

ation

pH

Theoretical curve

Rotamer frequency

Lowest energy

GLU 31 RNase T1 (9RNT)

Page 11: Krishna Praneeth Kilambi & Jeffrey J. Gray Johns Hopkins ...rosettadesigngroup.org/workshops/RCW2011/presentations/...• RPH mode predicts pK a s to 0.81 RMSD, comparable to leading

pKa Prediction vs. Experiment

E = Estd + EpH

ASP GLU

TYR

HIS

LYS

Error range 1 pH unit

Intrinsic pKa of residue

Page 12: Krishna Praneeth Kilambi & Jeffrey J. Gray Johns Hopkins ...rosettadesigngroup.org/workshops/RCW2011/presentations/...• RPH mode predicts pK a s to 0.81 RMSD, comparable to leading

Rosetta Standard Energy Function Predicts No pKa Shifts

E = Estd + EpH

pKa prediction methods (RMSD <1) • MCCE2 RMSD 0.90 pH units • PROPKA3 RMSD 0.79 pH units • Null RMSD 0.92 pH units

Song et al. 2009, Olsson et al. 2011

RMSD of predicted pKas from experimental pKas

Page 13: Krishna Praneeth Kilambi & Jeffrey J. Gray Johns Hopkins ...rosettadesigngroup.org/workshops/RCW2011/presentations/...• RPH mode predicts pK a s to 0.81 RMSD, comparable to leading

Using Explicit Coulomb Potential Improves pKa Predictions (hack_elec E ∝

𝑞1𝑞2ε𝑟

; ε ∝ 𝑟 )

E = Estd + EpH

E = Estd + EpH+ Eelec

Page 14: Krishna Praneeth Kilambi & Jeffrey J. Gray Johns Hopkins ...rosettadesigngroup.org/workshops/RCW2011/presentations/...• RPH mode predicts pK a s to 0.81 RMSD, comparable to leading

Recalibrating LK Solvation Reference Energies For

New Residue Protonation Variants

• 𝐸charged

solv - 𝐸unchargedsolv ~ 0 when exposed to solvent

• ∆𝐸residue

solv = (atoms ∆𝐸iref− 𝑓i 𝑟ij 𝑉j )j≠i (Lazaridis et al. 1999)

~1KT

Before 𝐸refsolv calibration

After 𝐸refsolv calibration

ASP 𝐸refvariant = 𝐸ref

std + Δ𝐸refvariant

Page 15: Krishna Praneeth Kilambi & Jeffrey J. Gray Johns Hopkins ...rosettadesigngroup.org/workshops/RCW2011/presentations/...• RPH mode predicts pK a s to 0.81 RMSD, comparable to leading

Rosetta pH Energy (RPH) Function For pKa Prediction

E = Estd + EpH+ Eelec

E = Estd + EpH+ Eelec + Eref

E17 (4ICB)

E26 (4ICB)

Page 16: Krishna Praneeth Kilambi & Jeffrey J. Gray Johns Hopkins ...rosettadesigngroup.org/workshops/RCW2011/presentations/...• RPH mode predicts pK a s to 0.81 RMSD, comparable to leading

Errors ?

Glu-Glu interaction in Calbindin D9K

Page 17: Krishna Praneeth Kilambi & Jeffrey J. Gray Johns Hopkins ...rosettadesigngroup.org/workshops/RCW2011/presentations/...• RPH mode predicts pK a s to 0.81 RMSD, comparable to leading

Packing Neighbors (6Å):

Some Improvements, But Negates pKa Shifts

Repack < 6Å

Page 18: Krishna Praneeth Kilambi & Jeffrey J. Gray Johns Hopkins ...rosettadesigngroup.org/workshops/RCW2011/presentations/...• RPH mode predicts pK a s to 0.81 RMSD, comparable to leading

Structural Ensemble : Large Range Of Predictions

→ Highly Sensitive To Backbone Conformation

ClassicRelax

D10 (2RN2) No one hiding here !

H227 (1GYM)

Page 19: Krishna Praneeth Kilambi & Jeffrey J. Gray Johns Hopkins ...rosettadesigngroup.org/workshops/RCW2011/presentations/...• RPH mode predicts pK a s to 0.81 RMSD, comparable to leading

Asp-Asp interaction in RNase H captured with backbone flexibility

His in Phospholipase C is constrained with no room for a proton

Page 20: Krishna Praneeth Kilambi & Jeffrey J. Gray Johns Hopkins ...rosettadesigngroup.org/workshops/RCW2011/presentations/...• RPH mode predicts pK a s to 0.81 RMSD, comparable to leading

Rosetta Accurately Predicts Some Extreme pKa Shifts

• New mutants of Staphylococcal nuclease with dramatic shifts up to 5 pH units (~ 7 kcal/mol) [Bertrand Garcia Moreno lab / JHU]

Page 21: Krishna Praneeth Kilambi & Jeffrey J. Gray Johns Hopkins ...rosettadesigngroup.org/workshops/RCW2011/presentations/...• RPH mode predicts pK a s to 0.81 RMSD, comparable to leading

Application to protein-protein docking

• 30% of interface residues ionizable in Docking Benchmark set

• 90% of interfaces - at least one residue changes protonation state (Aguilar et al. 2010)

• Docking results with early score function show some improvements (work in progress)

Page 22: Krishna Praneeth Kilambi & Jeffrey J. Gray Johns Hopkins ...rosettadesigngroup.org/workshops/RCW2011/presentations/...• RPH mode predicts pK a s to 0.81 RMSD, comparable to leading

Summary / Future Work

Acknowledgments

– Prof. Jeffrey J Gray – Prof. Bertrand Garcia Moreno – Ryan Harrison – Lab members – NIH R01 - GM 078221 – Rosetta Community

• Explicit electrostatic model is essential for accurate pKa predictions • RPH mode predicts pKas to 0.81 RMSD, comparable to leading methods • Higher conformational flexibility -

1. Improves accuracy of some pKa predictions 2. Use of pH mode during ClassicRelax to be tested

• pKa prediction test can be used to benchmark score functions • Protonation states may improve docking, folding, and design

Thank You Questions?

Page 23: Krishna Praneeth Kilambi & Jeffrey J. Gray Johns Hopkins ...rosettadesigngroup.org/workshops/RCW2011/presentations/...• RPH mode predicts pK a s to 0.81 RMSD, comparable to leading
Page 24: Krishna Praneeth Kilambi & Jeffrey J. Gray Johns Hopkins ...rosettadesigngroup.org/workshops/RCW2011/presentations/...• RPH mode predicts pK a s to 0.81 RMSD, comparable to leading

Number of

χ angles

Null

Model

RPH

Function

Neighbor

Repack

Ensemble

Average

Asp 2 0.95 0.77 0.97 0.8

Glu 3 0.86 0.92 1.1 0.95

His 2 0.98 0.79 0.84 0.97

Tyr 2 1.1 0.76 0.76 1.3

Lys 4 0.56 0.67 0.66 0.68

All - 0.92 0.81 0.93 0.92

Supplemental Data

Page 25: Krishna Praneeth Kilambi & Jeffrey J. Gray Johns Hopkins ...rosettadesigngroup.org/workshops/RCW2011/presentations/...• RPH mode predicts pK a s to 0.81 RMSD, comparable to leading

Work with Docking benchmark set 3.0 Total number of interface residues (within 5A at the interface)

Type All Enz-inh Ab-Ant Others

ASP 6.4 6.9 6 6.2

GLU 6.8 5 5.6 8.2

HIS 2.9 4.2 2.2 2.5

TYR 6.5 6.6 11 5

LYS 6.2 4.6 4.7 7.5

Chargeable % 28.8 27.3 29.5 29.4

Non-chargeable % 71.2 72.7 70.5 70.6

Residue Total no Neg_shift Pos_shift Avg_shift

ASP 360 233 90 0.72

GLU 381 222 132 0.67

HIS 132 71 55 0.89

TYR 328 143 152 0.69

LYS 330 90 211 0.72

pKa shifts at interface

Page 26: Krishna Praneeth Kilambi & Jeffrey J. Gray Johns Hopkins ...rosettadesigngroup.org/workshops/RCW2011/presentations/...• RPH mode predicts pK a s to 0.81 RMSD, comparable to leading

Electrostatic model

0123456789

1011121314

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Pre

dic

ted

pK

a

Experimental pKa

Generalized Born (GB) model

ASP

GLU

HIS

0123456789

1011121314

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Pre

dic

ted

pK

a Experimental pKa

Coulomb model with a distance dependent dielectric

ASP

GLU

HIS

Page 27: Krishna Praneeth Kilambi & Jeffrey J. Gray Johns Hopkins ...rosettadesigngroup.org/workshops/RCW2011/presentations/...• RPH mode predicts pK a s to 0.81 RMSD, comparable to leading

Rotamer Recovery

0

0.2

0.4

0.6

0.8

1

1.2

Ala Cyd Asp Glu Phe Gly His Ile Lys Leu Met Asn Pro Gln Arg Ser Thr Val Trp Tyr Avg

Std

pH

Page 28: Krishna Praneeth Kilambi & Jeffrey J. Gray Johns Hopkins ...rosettadesigngroup.org/workshops/RCW2011/presentations/...• RPH mode predicts pK a s to 0.81 RMSD, comparable to leading
Page 29: Krishna Praneeth Kilambi & Jeffrey J. Gray Johns Hopkins ...rosettadesigngroup.org/workshops/RCW2011/presentations/...• RPH mode predicts pK a s to 0.81 RMSD, comparable to leading
Page 30: Krishna Praneeth Kilambi & Jeffrey J. Gray Johns Hopkins ...rosettadesigngroup.org/workshops/RCW2011/presentations/...• RPH mode predicts pK a s to 0.81 RMSD, comparable to leading
Page 31: Krishna Praneeth Kilambi & Jeffrey J. Gray Johns Hopkins ...rosettadesigngroup.org/workshops/RCW2011/presentations/...• RPH mode predicts pK a s to 0.81 RMSD, comparable to leading
Page 32: Krishna Praneeth Kilambi & Jeffrey J. Gray Johns Hopkins ...rosettadesigngroup.org/workshops/RCW2011/presentations/...• RPH mode predicts pK a s to 0.81 RMSD, comparable to leading

Select Lowest Energy

Rotamer

Output pKa

Sample Rotamer Library For Target Residue

Starting Structure (Highly Acidic Environment pH = 1)

Did protonation

state change?

Target Residue

Neighbors ( < 6Å)

Backbone

Calibrate Rosetta Score Function For pKa prediction

Conformational Flexibility

YES

NO pH = pH + ΔpH

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

pH

Deprotonated

Protonated