korean chem. eng. res., - cheric chem. eng. res., vol. 42, ... 0@ doe i` h * 7 !< 2030-40 ab ) j...

9
1 Korean Chem. Eng. Res., Vol. 42, No. 1, February, 2004, pp. 1-9 · 305-343 71-2 (2004 1 20 , 2004 1 31 ) Hydrogen & Fuel Cell Technology Jae-Ek Son Korea Institute of Energy Research, 71-2, Jang-dong, Yuseong-gu, Daejeon 305-343, Korea (Received 20 January 2004; accepted 31 January 2004) . 33% 35% 60% ( ) 85% . . 21 . , , PEMFC DMFC . Abstract - Among various technologies using hydrogen-energy, fuel cells have been considered as the most energy efficient technology. A conventional combustion-based power plant typically generates electricity at efficiencies of 33 to 35 percent, while fuel cell plants can generate electricity at efficiencies of up to 60 percent. When fuel cells are used to generate electricity and heat (co-generation), they can reach efficiencies of up to 85 percent. Moreover, fuel cells generate virtually zero pollution including greenhouse gases such as CO 2 . Therefore, the fuel cells are believed as a most promising alternative power produc- ing technology, which can solve global problems facing 21st century such as exhaustion of fossil fuels and environmental pol- lution at the same time. In this review, recent trends in fuel cell R&D are summarized focusing on PEMFC and DMFC which are closest to the practical use and can be used for batteries, electrical power sources for automobiles and immobile structures such as buildings. Key words: Hydrogen Energy, Fuel Cell, Proton Exchange Membrane Fuel Cell (PEMFC), Direct Methanol Fuel Cell (DMFC) 1. (hydrogen economy) 1970 , . 2000 , [1], 2003 5 17 , . BBC [2], 2001 $900 M, 2002 $1,100 M , 2007 $1.8 B , 2007 $1.0 B . 2010 , . . 10 (fuel processor) ( 21C ) EU( : ECTOS ) . To whom correspondence should be addressed. E-mail: [email protected]

Upload: vanduong

Post on 15-Mar-2018

238 views

Category:

Documents


1 download

TRANSCRIPT

Korean Chem. Eng. Res., Vol. 42, No. 1, February, 2004, pp. 1-9

·

305-343 71-2(2004 1 20 , 2004 1 31 )

Hydrogen & Fuel Cell Technology

Jae-Ek Son

Korea Institute of Energy Research,71-2, Jang-dong, Yuseong-gu, Daejeon 305-343, Korea(Received 20 January 2004; accepted 31 January 2004)

. ! " #$ %& '(

33% ) 35% *$ "+ ,- ./ (0 $ %& 12 +- 3 60%4 56

7 (8 ") +- 9:; 85%4* 12 < =>. ?@A $ %& B0 CD E$

F. G . HIJ K 21L$ M;NO PQ $ R S%TU NO VW 0XY

. Z[ \T] . ^ _`J. ab Oc d/ eP f eP

; Cgh Z7, ij kl m no p, qVr p s tY uJ %O m vw x

PEMFC8 DMFC Z yz$ @| %- h:~.

Abstract − Among various technologies using hydrogen-energy, fuel cells have been considered as the most energy efficient

technology. A conventional combustion-based power plant typically generates electricity at efficiencies of 33 to 35 percent,

while fuel cell plants can generate electricity at efficiencies of up to 60 percent. When fuel cells are used to generate electricity

and heat (co-generation), they can reach efficiencies of up to 85 percent. Moreover, fuel cells generate virtually zero pollution

including greenhouse gases such as CO2. Therefore, the fuel cells are believed as a most promising alternative power produc-

ing technology, which can solve global problems facing 21st century such as exhaustion of fossil fuels and environmental pol-lution at the same time. In this review, recent trends in fuel cell R&D are summarized focusing on PEMFC and DMFC which

are closest to the practical use and can be used for batteries, electrical power sources for automobiles and immobile structures

such as buildings.

Key words: Hydrogen Energy, Fuel Cell, Proton Exchange Membrane Fuel Cell (PEMFC), Direct Methanol Fuel Cell (DMFC)

1.

(hydrogen economy) 1970

, ! "# $ %

& '() *+ ,. -. 2000 / 0( 12

3 456 789 : ;+< =), >? 0@ )

AB C< @D EF GH IJK[1], 2003 23F7 L

M N 5O 17PQ RSI T MU4, V +@/W

X ,R 23F7 YZ "# LM [)-\ ]AI" ^_I

` ) AB D^14 a,.

BBC b4 I`[2], V 23F7 cd 2001 $900 M,

2002 $1,100 M eK, 2007 $1.8 B WfIg 4, - '

2007 $1.0 Bh i j) klI4 a,. m< 2010

23F7 Sno pq 23F7 Fr s!1 t*u

v) WBw j) b4, V xA +@ yzo cd

"# x CI| ~ ,I4 a,.

78s D' z< r7 z y< 1

1 7 ) I4 a) h *cI" C< "

# " l` t$ $! !< 123 L "#

6 $4 s$ Sr 9 0("#) *D 7r

7)z F" 1 < "#)

8 a,. FS N 10 t b D< cF

r! 23F7 ^¡¢ C< 23L"(fuel processor)o Fr!

23F7 Sn G [£ 8¤ C< ¡¥¦ "#

$!4 aK S 'n AB C< F)

$ *c C< r§ "#6 t" ¨© ª~I| «¬

£( 21C [­® [)-\)h E¯I| 0@ EU(k: °±²

³ ECTOS [)-\)h ;) ´µ ]A4 a,.

†To whom correspondence should be addressed.E-mail: [email protected]

1

2

0@ DOE I` *7h !< 2030-

40 AB j) klI4 a,. ¶£ - F·7 12

3h !< *c [£ 8¤ "# ª¸¹6 ^ N

h ª Dº » j) *+¼,.

E1 7)z "#) 7½·7 t!1¼ "#

F"K, ¾ 1¿, !¿ *$ À¿ Á

" À¿/ °Ã·7W "Ä28 h Å7 ÆI4 a,.

~ ~6 Ç *7/ 7$ 7r °È)

,É ) 7 Ê' Ë$) Ì8K, ¶£ F

" < D D' ÍÎÃ< ) ÏD4 a,[3, 4].

F" "#) (i) ÐѬ !Ò F"¿, (ii) 4Ó4S F

"¿(PEM), (iii) 4Ô" F"¿(HTE) Á a,. ÐѬ

!Ò F¿ Õ(F t!1¼ À¿ KOH Á ÖÐѬh

!I) F z×:, Ø FÙÚ) h LxI 28D

Û74 a,[5-8]. 4Ó 4SÜ F !I À¿

>? LM¼ À¿) < !I4, FÙÚW Ý '

Þ E! 4D,. <ß 4Ô " F¿ 700oC s 4Ô

F"h µI) Ø FFà) á ÙÚ â a

' a, 4Ô ! a 4Ó F LM Ë

ÌIK, °Ã "Ä28 ã. a,.

7h !< "# D' Ù6$ À¿ 23F7 MF

"#,. 23F7 o c F" 1$ F"

o 6 ¾ *cI MF 'ÞK, F" *c ÙÚ Ý4, MF ^

G äå °ª $ ' a,. ¶£ 23F7 "# 21V"

æ`: 123 456 9Õç :h è ) éÕ

ê4 a,. ëì 23F7 D' ÙÚ$ ! "# I)

yK, : | ¾í » j) "

4 a,.

23F7 1960 0@ ǻx! Fr) LM ^_e

K, î¸) 4Ô 4Óc1 23F7(SOFC)o !ïcç 2

3F7(MCFC) -¬4 ÊÔ c 23F7(PAFC), ÐѬ 23

F7(AFC), 4SF 23F7(PEMFC) Ãðñò 23F7

(DMFC)D a,. / "# ó) ô õ cFr!

) PEMFC, SOFC MCFCD, ö! ÷! Fr)

PEMFC, DMFCD øIK, F V$)W / < 28L

M s!1h C< ù~ D' ú µ74 a,.

2.

2-1.

< F"FWWD °ª _) ÐѬ !Ò) I| F

"h µ<,. sd$) LM ª) !4 a À¿

) 80oC yW ÐѬ !Ò(25-35% KOH) F) Èû6 ü

F !I| sà F"I j,. >? LM4

a À¿) ÐѬ !Ò ýWh 40%·7, -¬4 40"à y

W 4à ! aK, " 7 þ9ÙÚ6 F¸ÿW

W ++ 77-80%o 0.13-0.25 A/cm2 80-90%o 0.2-2.0 A/cm2 ·7

++ I4 a,.

M* ¶ê "$ F"$ ¬ 28 e

K[9, 10], - è6) ÐѬ m c FÒ rS

(work function) ¶É 6Fà ª"$ þ1D

,[11]. Ni, Pd Pt d8s2, d10s0 d9s1 FS8 6F

à >D K, -¬4 Zn, Cd Hg d10s2 FS8 >

¼,[12].

F"D t!1 ¼ Ä" × FD

°ñ¬ ª¸h Ûe, >? b, 7 ÙÚ Ý

× Fo ) - D n I4 aK, 7½

Electrolyzer Corporation _I4 a,[13]. q × filter press

F ÒÓ-4Ó ¬h C< plateo frame filter press r¬)

S eK, ú dÓ *cI4 a[14, 15], - "# n

,.

ÐѬ F ÙÚ ^4 E! ^" C< 2

8D Aµ4 aK, sd$ LM 3¼ j) Life Systems

o Teledyne Energy Systems LM< = D7 FD a,. "

 |. D7 Ab¼ / 4 ) F LMW

]A4 a,.

1972 Teledyne ) Fh xbJ, HG series)

ô¼ / M*" F Uós ^Oæ 60 l·7

h *c a _ !v je,. ^Oæ h 1,200

z 12,000l·7 *c a HS seriesD LM ú ôt$

â4 a,[16].

Electrolyzer Corporation F¸ÿW 134 mA/cm2, 1.74 V F

Fà ÙÚ 87% Fh LMIJ, 6Fà 75 mV)

m< Ohmic drop 50% ^ è6,[17]. Cathode) Ni-boride

h "ó) < !IJK, anode) ! À¿)

< NiCo2O4D !4 a,. Brown Boveri & Cie F"

) FÙÚ ò¬4, C q# !v g I| F¸ÿWh 2.0

3.4 kA/m2·7 ò$) F ÙÚ Ns^ %Uh

=4 a,[18]. Norsk Hydro ) &Ü6 4zI F L

x¼ Fh SI4, F u '( ) FFà

1.71 V(80oC, 25% KOH zI 3,600 A) Fh LMI4 a,

[19]. Lurgi Gmbh F~Eo SEh ^)) $

>$! â4S IJ,[20]. F~Eh ^" C F

ÔWh 130-150oC) ò¬4, F u D^*K, SEh

^" C F 7+ 1.6 m) D^, *cÚ

^*,. DeNora S.P.A. cathode) ! Fe F"W½

-£¡. /¿) Û¥06 10 W½I4, anode) Ni(m

Co), ¡¥¬¡ ¡2 W½¼ Ni, m Ni-Feh !I| C

7 Eh ^*,[21].

2-2.

4S F F" À¿ ÐѬ !Ò F 3

Ô m cÔ FW D7 4S F Ü !I j

,. / 80-100oC yW I !I4 aK, "

ÐѬ F" EI| C Fæ F¸ÿWh Ý a4

FàÙÚ Ns " h C< 28D Aµ4 a,.

Ô FW 4S FÜ) DuPont Co. _<

Nafion®(Perfluorosulfonic acid polymer) ª) !4 aK, "Â

Dow Chemical Co.o Asahi Chemical Industry Co.W o E4<

8 4S F I4 a,[22]. / ¬$ )

c !WD 4, Ô FW K, E Ø4, 1$

F "$ ÖWD á j 5 a,. F" D'

¬ !4 a FÜ Nafion 117K, !¼ s =6

7 0.175 mm,[23].

"F(catalyst electrode) FÜ6 D< < 8 è

a9 I FÜ6 "F ð"Ê: ;¹)

8 Ý F¸ÿW F" ÙÚ Ns^" C,.

LM¼ Ô FÜ Eº$ Ö< c Â4 a)

z F½/ "F) !I" QyI,.

8 < ½ c19r D»FCb, F"1 FCD sæ8

42 1 2004 2

· 3

Ý" õ:,. ¶£ =½, ¬>, Û¥0 Á ?½ /

½ "F) !4 a,. D M* < ª) =

½ !4 aK, cD M* ¬> c1

|" =½ m Û¥0 Á @¼ j !4 a, =½

!IJ õb, FàÖI AÁ8 «I" õ:,.

FÜ "F zBÀ¿) General Electric Co. L

M< hot press¿[24] ¬ !4 aK, 1W½¿) C¿

9r CR¿ Á Takenaka Á[25] !e4, "Â 1

B¿ Á ! a,. DFE ,G D¡ R6E) F

ðI| F¸h Ig I4, 4S F F FÓ F¸

Hh FIg IK, "G I| F"1 I| *¼ "

Óh äå^ )) GI4 a,. b Ti ,GÓh,

< ,G Óh !<,.

4Ó 4S F LM6 Ä" !W 23F7) !

- ª¼ jeK, - » !I j F") 23

F7 9 "#LM Í) F" "# LM6 ÞI4 a,.

1959z G&$) ^_¼ 23F7 LM6 ¶É 4Ó 4

S F ! F cell ~ Ä" 5.4 mW/cm2 1980

Ä 861 mW/cm2·7 e,[22]. Ç MF 1968

DuPont Nafion LM6 6 ÛK, 4Ó 4S F

FÜ) Nafion ! bß1 e,. ª) GE(General

Electric) ªW¼ PEM 23F7 F"# 1980

UTC(United Technology Corp.)-Hamilton Standard F

ê4 aK, F 1983-1984 PEM 23F7 "G

Know-howD GE)z H Siemens AG Fe,. UTC-

Hamilton Standard sd$) SPE Hydrogen Generator ES

1000[26] Á F" 'Þh *cI4 a,.

2-3.

F" ÙÚ Ý m I À¿ F" ÔWh

ò¬ j,. I ¾»$) J õ, « Òsb,

"s D 7 Ì8v ØK, F" ËÌ< >

F"7 ÔWD ÝK I" õ:,. F" ÔW

h tÔ 1,000oC) ò¬` D» FCD Ø°L

$ 7 Ì8v 20% yW <,. ¶£ 4Ô " F

"¿ F" ÙÚ g Ns^M a j) bK,

·7 ÐNA 4Ô _ F) 4Ó c1 Ü) cÔ F

W y1 ZirconiaD a,. 4Ô " F" 4Ó F F

"(SOE: solid oxide electrolyzer)£4W IK, Westinghouse >

Ä) Fcell _< Í a,[27].

4Ó F 60 LM¼ F"1 cell/ anodeo cathode

O& ) F Ê: g ÂO, 1976 Westinghouse

PÜ cell LM ¶£ á AF Û,[28]. I F6

F -¬4 2èE/ ,G "ôC 20µm yW =6) 1

$) B 8K, Ç 8 F Ê: s

æ8 e,. m< FÔWh Øå a 4Ó F LMW

Û74 aK, Kobayashi Á SrZr0.9Yb0.1O3-α partial protonic

conductorh !I| 460-600oC F¸ÙÚ lyIJ,[29].

2-4.

C QRG F" "# ÐѬ F" p

q F *c !4 a,. -. À¿ F" ÙÚ

6 F¸ÿWD Eº$ Ø) Ç è bI" CI| Lv

¼ ÐѬ F" À¿, /"Ü ÐѬ F" À¿ Á 284

aK, 4Ó 4S F F", 4Ô " F" À¿

) F" "#) 28, LM4 a,[28].

s!1 a ÐѬ F" ÙÚ 70-80% ó a

) ÙÚ ò¬" C< F Lv _ÔW sS

) F¸ÿWh ò¬ Á 28LM Û74 a,[30]. ÐѬ F

" E ú ' DA j) ÐNA 4Ó 4S F F

" !v %$) LM <$) !4 a

F'Þ D& 4D) ^¡¢ D& ÊT1D D' á Y

!,. >? 23F7 LM6 ëQ 23F7o F"h D

»$) µI 'Þ LMW Û74 a,[31-33].

2-5.

r3r ¶É 8Eh Table 1 Âe,.

!4 a 123 L"# ¶£ 1U *c^ M*

c1 UE(CO2/H2-E)h Table 2 Âe,. "

# §2D¡ " L À¿ c1h D' $g äåI

Gy"#,.

$ CGy 8 VW(desulfurization)-¬HX(reforming)-

D¡F(water gas shift)- Y¬(after treatment) Á) ÛA,.

r3 H¼ 0v W16 Z"(§2D¡ «)) [D

¼ "W1 ¬HX "(Ni, Rh, Ru) 23F7 "(Pt, Pd)

H ) h F I" C< VWGy ³^ ËÌI

,. VW Gy) 4Ô(300-400oC) 1VW[35]6 sÔ \BVW

Gy[36] !¼,.

¬HXGy h G&$) *cI ];Gy) " L

[37], S¾L[38], zc1Gy[39] U$,. + "# a

s< 1 Table 3 Âe,.

^É _ Ì8 «, zc1 7 S¾L"#

¬< ` ª) yszI D y7 «, " LG

y"# ÙÚ l` ¬I,. D¡ F ¬Hã

n$) *¼ c1D "o )` c1) F

9a6 ^ ýWh D^ ,.

CO+H2O=CO2+H2 bH = −10 kcal/mol

Ô1< M¾(bH = −10 kcal/mol)) ÏsD ÔWD

¶£ Ig )(K=40.99 at 300oC, 235.9 at 200oC), Ý F9

Ú C ÊÔ ¬IK à~ cN d7 e,. -¬

4 E s " G ^, F9Ú sS<,. ¾ "

" M*I ¾ dÔWD sSI4 Ï F9

Ú Ø°7) .< ¾»$ < ;" C "h 2

,) 8I "O ¾º9") + I À¿

Table 2. Feedstocks for hydrogen [34]

CO2/H2 Technology

0.25 Steam methane reforming0.31 Steam pentane reforming0.33 Partial oxidation of methane0.59 Partial oxidation of heavy oil1.0 Partial oxidation of coal

Table 1. Feedstocks for hydrogen [34]

Source World capacity (1988), %

Natural gas 48Petroleum 30

Coal 18Electrolysis 4

Korean Chem. Eng. Res., Vol. 42, No. 1, February, 2004

4

e

c1h + " å8 I À¿ 4Nw a,.

4Ô6 ÊÔ 2) c «, FS 260-370oC cK

S 7 200-260oC yW c¼,.

Y¬ Gy !"# s ¶£ f£A,. ÊÔ 4Ó 4

S 23F7(PEM) B8 CO ýWD f ppm I9

I) xg$ c1Gy[43-44, 46-48] !K ¡¥¦ 4

W(99.99%) h ËÌ) I) ª) PSA[45]D !¼,.

xg$ c1(selective oxidation) D¡ F *

¼ D¡ CO ýWh ppm C·7 ^" C !

K = D7 $ ED» ) ÛA,.

CO+1/2 O2hCO2+67.6 kcal/mol (wanted)

H2+1/2 O2hH2O+58.6 kcal/mol (unwanted)

C = " ÔW I| xgWD f£

a,. t) ÊÔc» CO u17D EI|

Ø" õ: CO c1D xg$) Aµ7 ¶É ÔWsS

g ` CO Ø u17W Q8I4 H2 iW

S(frequency factor)D s$) j H2D kg I| xgWD

Ø°A,. ! D< ") Pt/alumina(100-160oC)[46], Ru/

alumina(100-180oC)[47], Au/Fe2O3(60-80oC)[48] ÁK $

! ÔW 100-200oC, à~ 4 "à I GOW 7 5,000-30,000 hr−1

yWD ¼,.

PSA¿[45] o ,É / \B xg nh !I

À¿,. PSA'Þ \Bl r3D¡h G I| Q

\B^4 6 Õ h m) <,. \B) ò

£n, u, GSÓ, ÐÛ0 Á r3D¡ 6 mD¡

p&, F ! o] xy<,.

PSA < 1960z LM ú s!14 a

'Þ) D¡ Y¬v 100 Nm3/hz 120,000

Nm3/h·7) z G'W s!14 a,. m

W 99.9 99.9999%·7 4W h v) â a

K Ú b 70-80%7 « ¶£ 90% s)

F W a,. \Bl *c pq ¶£ 4-12L·7

!I4 a 4l× PSA m *cv 20,000 Nm3/h,

12l× 70,000-80,000 Nm3/h s *c!v Ì8I Gy $

!4 a,.

23F7h C< *c"# ]; 4ÙÚ1, pqn1, ÊD1,

^ zIþ < ^É ]î) Ì7w a,. ¶£ Ý

LÙÚ(70% s, LHV)6 ëQ pqn1h C< ¾ ^¡¢

1 r7Ès "# tu /vb,W ÌI,.

3.

3-1.

23F7) MFI" C< ^¡¢ 23F7 GÓ(stack)o 23 G

z ªþ"") 8¼,. ¡¢ ]; F7 GÓ F

(electrode)6 - F(membrane) -¬4 "Ó ¨cE(gas

diffusion layer), ¬ô(separater) Á) 8K, ];"#) F,

F, ¬ô ¡g _"# Á a,.

23F7 8 zm F 23 G" c1o 9r ++

æ F U` 4 õ * Ô s F

) b F¸h wêg I » <,. x F F S

ÓD F I| c1 m 9r7 e4 Ô < FWW

D x°9 <,. PEMFC LM Ä" phenol sulfonic Ü m

polystyrene sulfonic Ü Á !IJ y l` z

¡7 ÆIJ,. - PEMFC "# 1970 | LM

¼ perfluorosulfonic acid Ü(Nafion) !I`z &<

y Ns â ae,[49]. ·7 ! Ô F Ü/

y¬ b` °(o Ç,[50].

Ô Teflon6 < 8), ~ #c(SO3H)"h D74

a,. #c" ýW D) , 1h "G) I Ü/

E b, Ý Ô FWWh Â,. Ô FWW

Ô Ü D' á ' y a,4 J a,

CF2h 4S "G8) !)` âA è6,. Dow

Chemical Ashai Chemical Á Ô6 < 8 b

, side chain D7K, #c" ýWD Ô b, Ý

perfluorosulfonic acid Ü I|, b, Ns¼ b4 IJ,

[51]. W.L. Gore ¥[ ø 77Ó) !< Nafion Ü

LMI|, "$ ÖW Ns6 "Ó R6Wh ; aeK,

V$) D' Ý F-F ðÓ(MEA)h *

cI4 a,[52-53]. F Ü 9 ÊD Ü LM, ÊDt

/Dt Ü -¬4 4Ô! Ü LM %U) I4 aK, 284

a ªÌ ) polyethersulfone(PSU), poly ether ether keton

Table 3. Main characteristics of each reforming process

Technology Main Reaction Characteristics Conc. of H2(%) Company

STR CH4+H2O=CO+3H2, H=+49.7 kcal/mol

· Slow endothermic · Indirect heating· Larger reactor volume· Slow response time· High efficiency

65-75 Plug power [40]

POX CH4+1/2O2CO+2H2 H=−9 kcal/mol

· Fast exothermic· Direct heating· Fast start-up and response· Low efficiency

30-40 Nuvera [41]

ATR Balance of STR & POX · Combination of STR & POX· Direct heating· Fast start-up and response

40-50 Johnson matthey [42]

Table 4. Characteristics of polymer electrolyte membranes

MembranePower density

(kW/m2)Life time

(*1,000 hr)

1959-19611962-19651966-19671968-19701971-1980

Phenol sulfonicPolystyrene sulfonicPolytriflurostyrene sulfonicNafion experimentalNafion procudtion

0.05-0.10.4-0.60.75-0.8

0.8-16-8

0.3-10.3-2

0.75-0.80.8-1

10-2000

42 1 2004 2

· 5

(PEEK), polyphenylquinoxaline(PPQ) -¬4 polybenzimidazole(PBI)

Á U$,[54-56].

PEMFC! F PAFC AFCo .D7) c1o c9r

q= , =½ m =½ ½ D' «< F") Ð

NL a,. F s 6Fà(overpotential) 236 G"

á nh b, 23 7 20 mV7, G" 7

400 mV ê 6Fà ÂK, 6Fà OCV(open

circuit voltage) Â j) ÐNL a,. t) G"

E ëì <, - r Ö< O-O è

6 y< Pt-O m Pt-OH , 4L FS Y|I

, 6c1 * D Á a,. E c1

2L FS Y|I ) S u < \

B6y W èy) ÐNL a,[50].

23 " è9 : LD¡h ! « 23

| a CO < F ÊI :o, G" "

6Fà Ø] FÓ 23F7 ÙÚ Ns^,9 <,. >

? G" 6Fà Ø]N W 28) =½ F½ Á

!I| =½ rS O ¬ d-band vacancy I|

á Ù6h b4 a,[57-59]. m< >? =½ !< 23 23

) L D¡h ! « M*I Q(CO, CO2 Á) <

8 7È " LM F ! ¨© < 28 AF

ú 4 a,. =½ "h 23 F) ! « « Ø

CO ýWW ;< uÊIh b, 23 " ñ

È °(o Ç 4 a,.

Pt COh CO/Pt

H2 2Pth 2H/Pt

H/Pth Pt H+ e−

CO/PtOHadsh Pt CO2 H+ e−

C ñÈ Pt-CO è Pt-H b, ÖI" õ:K, CO 10 ppm

ýW n ;+< ÊIh b,. h C< èÀ)

=½6 ,< ½ ½ "h F") !<,. ·7 b

44 a 2½ Sn[60-62], Ru[63-66], Mo[67-68] Á a,.

/ 2½ u½ < CO \B~ ¬ m CO

c1h C< cr G I » I j) ÐNL a,.

CO < ÊIh Ü" C< m ,É À¿) ^¼ j

Oxygen bleeding À¿[69], 7 0.4-2% yW ch F)

N; « 100 ppm CO ýWW F 7<,. I7,

« hot spot) " è, 4S Ü ¾1, "

v Á :D M*<,. .< : èI" C F E

,E(multi-layer)) _I /W b4 4 a,[70, 71].

23F7 F FÓ ÊI Ì 7 80%D G" 6Fà

< j£4 b4 4 a,[72]. G" >$1 «

F Ns |7D b, ú, j 0<,. G" " YZ

28 g =D7 ÀN Aµ4 a, <D7 F N

s l`, ,É <D7 Ý FàC F ÊI : Y

< j,. .< ð? À× 23 «o Ig ,< 2½

WBI j z, U$) 28 Ô ½) Cr,

Ni, Co, Fe[72-74] Á a,.

F6 F ðÓh MEA£4 zÉ,. MEA F"h M*^

D' "G$ CK, PEMFC D' Ì< ];zm I

) J a,. MEA - 8o ,< ! z^,9 <

,. (i) q 6Fà >1 F~ÿW >1, (ii) ?½

" >1, (iii) ÙÚ$ ¾ Y¬ (iv) cFr, ÷! ö

! Á + !9 $< y ¨b Á,.

46 ÊD& MEA LM C< 28), Los Alamos National

Laboratory u½ =½ 77Ó) U`$ carbon

black ! )` =½ " " 7 1/10) ; G

IJK[75], ) 23 « 7 0.05 mg/cm2 )W

"b, ë «< Â MEA _ D ,[76].

m ,É MEA Ns À¿) FE =6h ; À¿

a,. " ?½ EÚ Ý¹)` DI,. FE

=½ ! D^4, u1 6Fà, ohmic 6

Fà Ø]K, å~ÿWh D^,. .< À¿) W. L. Gore

« FE =6h 7 10 micron) _I|, « «<

Â4 a,[52, 53].

MEA À¿ g =D7 «) a,. ) ¬

F¿(separate electrode method) "h ,G F"FW D

7 §6 î Á 4y^ 6y Þ j

,. « PTFED ]D"W I, PTFE !

I| *¼ z) b U` M^" C,.

õ ! §6 î F "$ 8 a

K, D¡D h I| "E) ¨c) "Ó cE

(gas diffusion layer)£4 zê"W <,. g ¼ F 4S

F Ü ` 4y , 7 140oC àBI| >î

MEAh <,. = À¿) F Ãð F ³ ¿

(building the electrolyte directly onto the electrolyte)) Ãð Ü C F

^ j,. PTFEo @¼ " rolling¿,

spraying¿ m printing¿ Á À¿) F Ü 4y^g

, À¿ z 4 SÓ "#)` SV8 GL a7 e

,. ,, $< 77Ó &Ê '( < ¾OàBI|, F Ü

) F FfI decal À¿ D' ú ÐNL a,.

23F7h 8I ) 2è^" CI| D' ú !I

À¿ Í£ -1n(¬ô, bipolar plate)h !I j,.

¬ô G"6 23 co 23h ++ G ^, = F

F"$ 2è 7IK D¡ ) ¬^ 8h D

74 a,. m< F! ¶£ "Ó G °È£ *

¼ ru< h ag 9 <,. Ä" "Ó

)h Ï< w+ g SIJ, - ,< S

MU4 a,. UTC « series-parallel h, Ballard

serpentine h !K, >? interdigitated flow flow

through porous material ) b4I4 a,. interdigitated

)[77] >? ª%d4 a, ¡g à~ÊI 7, F

u`$ g ! a ' D74 a,. "Ó F<

v, -¬4 à~ H *¼ ru< äå CI| +

F! $< ,< s )D ^4 a,.

¬ô "G D¡ w+ C< ^ ÏôK,

D¡ CNC "o Ç 'Þ) °ª yÿIg DGI, _d

WD ¬4 4D 'Eh !<, a,. .< À×

) _¼ ¬ô FÓ 23F7 *cD D' ú z n7

I zm I,. >? ½ m ªÀ× Á !< *

c À×[78, 79]) Dh &8 ;4 a7, 8 l

` |F8 28LM ËÌ< z,. ¬ô Ì8I "G

! y¬ b` ,<6 Ç,. (i) Ø F"$ Ê: "Ó R6W,

(ii) «< z× Ê:, (iii) Ø D&, (iv) Êv, Êz, (v) «<

"$ ÖW, ¾FW, (vi) 8B ! Á,.

7½·7 y< PEMFC! ++ ];zm/ I|, CF7

h _ a,. CF7 « - `$ E á F¸h

*c a7, - Fà 1V I) t ^¡¢ $!I"

Korean Chem. Eng. Res., Vol. 42, No. 1, February, 2004

6

D " õ: CF7h |.' $EI| rI Fà·7 Sà

I| !I, g $E¼ CF7 < ¡g(stack)£4

zÉ,.

¡g _"# ]; + CF7 ð"Ê: >1I

j6 "Ó + Á "ÿ ¨bI a,. F V

$) D' ¡ ÐNA ¡g _) Ballard Power Systemso

UTC Fuel CellD aK, Ballard « Dà ! F

IK, UTC sà ! ¡g FI j) MUI4 a,.

Ballard >? m Mark 902 ¡g ª) ÷!) $!K

85 kW å~ Â4, G" Fà~ 1-2 "à, ÔW

80oC) ÐNL a,. ¡g /gD 96 kg, z 75 liter) b

44 a,[31]. UTC ¡g sà FIK 75 kW å~

b4I4 a, Sn, ÈcSn Á !I4 a,. m<

,< 23h !I «W !I4 a, Argonne National

Laboratory µ< D¢£ 23) !I MF ^¡¢ $!

< è6 "*F~ H< net å~ 53 kW å~ÿW 7 0.9 kW/liter

b4IJ,[81].

3-2.

Á "Óh 23) !I 23F7 4S 23F7

4SÜ F) !I) sÔ, sà _ DIK,

F7) Ý4 å~ 7ÿWD á ¤ a,. E

6 @¼ ñò Á ÒÓh 23) !I Ãðñò 23F

7(direct methanol fuel cell, DMFC) 7ÿWD "Ó23 EI

| Ø 23 Z !I4 FÔWD Ø" õ: Ä1

D DI,. o Ç ') I| <sW < $ ¥

7 ÆI4 ¦"^ 9G 1n 2n F7h ÓI" C

< >$~r) DMFCD ª% d4a,[82].

DMFC 6 D& èyI D' Ì< Ì I "

,. 6 DMFC 28 ª) Pth !I| ñò c1^*

. Ø ñò c1 CO < × «I7 ÆI|

>? Pt-Ru ½ "D ñò c1 ") ª) !4 a,.

"h 3Ig LM ^§ a ¨E¬Ð À¿

LM PtRuOsIr, RuSnMoSe Á ñò c1 «< 4

" LM 23 crossoverD Ô ñò Ê:~ «

< RuSnSe 9r " Á LM4 a,[83].

DMFC 4S F «x /vb,W FW «I|

9I4, FSFW 9 IK, ÂS(ñò, )

$9I4, D¡ QCR, sy, 1$ y "$

ÖWD j9<,. 4S ¬Ü) !" C ÔFWW

(ionic conductivity)D 1-5©10−2S ·cm−1, `Ê: 0.2-2Ω ·cm2, FÔ

W 80-120oC DI|9I4, ñò R6Ú °ª $

9<,. $) !4a 4S ¬Ü Table 56 Ç,.

Nafion 117 112 Table 5 Âa Ío Ç Ô FWWD

«I4 $ ·7 DMFC F Ü) D'

¬ !4 a ,. -. ñò R6Ú Ý° ñò

crossover < h ú M^" õ: ñò R6

^4 ÔFWWD «< ) F Ü F

Ü LM Ë$ 6W Á'I4 a,. t$) LANL Á

ñò R6Ú Nafion EI| 1/5·7 F Ü

LMI| t DMFC $!I| ¡¢ Ns WqI4 a

,[85]. - W 4Ô F DI| " u Ns^M

a ) F Ü LMW Û74 a,. DMFC

LM f W-kW s ! yÞ F7 LM6 Eº$

Ø ~ Ì8I F ß ö! _ D< W

0 ª¬ Ó DMFC LM) g «L LM4 a,.

! 23F7 LM) ¬, Gh =4a Ballard D

DMFCh 'n ÷! ! Fr) LMI" CI| 3kW 1!

S!nh LMI| ^F G<$ aK H Dimlerchrysler

W < "î LMI| ^F GI4 !v 10 kW·

7 D^, LM j£4 MUI4 a,[86]. 8 2003 Fuel cell

seminar 0@ VectrixD «< DMFC/Battery I

­¬³ ¡®Â ^m xbJ,[87]. öFr!) 0@

Manhattan Scientifics, Poly fuel Á LM ^_I| ++ 2 W

ö DMFC _m6 ñò )¡ Õ¯h 50%s ;

) °­1 LM6 4 MEAh ^' ±4 a,[88].

Motorola öF1"! ²F"o PDA! Fr LMIJK[89],

MTI 2 W öF1"! Fr6 500 mW ²F", 20 W

³! DMFCLM b4I4 a,[90]. H Smart fuel

cellD ñ£, ´l, PDA, @À!) W -50 W DMFC ¡

¢ LMI| s!1h C< óEh I4 a,[91]. G ª)

öFr!) DMFCh LMI4 aK NEC G ù@ "

µ7Ó) !I ) F"h LMI| h !I| ö"

"! DMFCh LMI| î( 23F7 E å~ 7 20% yW

Ns^*K, h !I| ùn ^' x "TI4 a,[92].

Sony 2002 F) 3 -.¶ !I|

DMFC Ns ^WI4 aK W^ÍW DMFCh !

I| IT! Fr LMI| ^m b4 a,. m< SanyoW 2005

c %$) ö! DMFC LM Pnh DI4 a,[93].

@ DMFCh ö! ! Fr) !I" C< 2

8 2-3Fz G&1" _IJK ·î"#r, LG

1, LGFS, SK, CETI Á "d/6 KIER, KISTÁ 28o |

. DMFC ", F, ¬Ü Á Ì"#LM6 ¡¢ L

M ª~I4 a,.

Table 5. Commercial polymer membrane for fuel cell [84]

Membrane EWThickness

(µm)Ionic conductivity

(S/cm)Conductance

(S/cm2)Water uptakec

(%)Hydraulic

PermeationdMethanol

permeability

GORE-SELECT 1,100 20 0.52a, 0.53b 26 32 3.7GORE-SELECT 1,100 5 0.28a 56 - -GORE-SELECT 900 12 0.96b 80 43 12.9Nafion 117 1,100 200 0.14a, 0.10b 5-7 34 1.0 20%Nafion 112 1,100 60 0.10b 17 34 3.3Dow 800 100 0.15b 15 56 4.0az-direction, sulfuric acid immersed sample measured with a four-point probe.bx-y direction, high-frequency measurement for membrane immersed in deionized water.cExpressed as percent of membrane dry weight.dHydraulic permeability relative to Nafion 117.

42 1 2004 2

· 7

on

on

m-

le-

p-

lid

ach,

ate-

ton,

ro-

n

n-

0).

in

ro-

er-

al

E.,

r

of

I

s-

,

n

a-

om

d-

ell

DMFC è9 xè : ñò )¡Õ¯h Ü

¬Ü LM, 4u ñò c1" LM ª¬h Ó a

Ä F7 Á,. F ¬Ü LM ñ

ò )¡Õ¯ sWW Ô Ff D

< -.¶ ÔFWÓ sÔ!ïç F) I 28D

Aµ4 a,[94].

W WÓ Gy !I| MEAh $EI7 e4 Ï`

) ä¾I| )h ø) 8I| Gy 1o D&

Ä1 ¹I "# LM4 a,. DMFC 23G , ñ

ò )¡ Õ¯ c1 Á 6) º° a7 ^¡¢ «

I4 s 2 «I" õ: 41o s!1h N<

28 « ~ d j) FøI4 a,.

1. US DOE, A National Vision of America's Transition to a Hydrogen

Economy - To 2030 and Beyond, Feb. 2002.

2. Business Communication Corp. (BCC), Chem. Mark. Rep, April 8,

FR3(2003).

3. Kreuter, W. and Hofmann, H., “Electrolysis: The Important Energy

Transformer in a World of Sustainable Energy,” Int. J. Hydrogen Energy,

23(8), 661-666(1998).

4. Schug, C. A., “Operational Characteristics of High-pressure, High-

Efficiency Water-hydrogen-electrolysis,” Int. J. Hydrogen Energy, 23(12),

1113-1120(1998).

5. Campillo, B., Sebastian, P. J., Gamboa, S. A., Albarran, J. L. and Cabal-

lero, L. X., “Electrodeposited Ni-Co-B Alloy: Application in Water Elec-

trolysis,” Materials Science and Engineering, C19, 115-118(2002).

6. Hoor, F. S., Aravinda, C. L., Ahmed, M. F. and Mayanna, S. M.,

“Fe-P and Fe-P-Pt co-deposits as Hydrogen Electrodes in Alkaline

Solution,”J. Power Sources, 103, 147-149(2001).

7. Vermeiren, Ph., Adriansens, W., Moreels, J. P. and Leysen, R., “Eval-

ution of the Zirfon Separator for use in Alkaline Water Electrolysis and

Ni-H2 Batteries,”Int. J. Hydrogen Energy, 23(5), 321-324(1998).

8. Kleinke, M. U., Knobel, M., Bonugli, L. O. and Teschke, O., “Amor-

phous Alloys as Anodic and Cathodic Materials for Alkaline Water

Electrolysis,”Int. J. Hydrogen Energy, 22(8), 759-762(1997).

9. Appleby, A. J., Electrocatalysis, Mod. Aspects Electrochem. 9, 369

(1974).

10. Brooman, E. W. and Kuhn, A. T., “Correlations Between the Rate of

the Hydrogen Electrode Reaction and the Properties of Allots,”J.

Electroanal. Chem. 49, 325-476(1974).

11. Tilak, B. W., “Comprehensive Treaties of Electrochemistry,” Vol. 5,

Plenum(1982).

12. Miles, M. H., “Evaluation of Electrocatalysis for Water Electrolysis

in Alkaline Solutions,”J. Electroanal. Chem., 60, 89-96(1975).

13. Commercial Brochures from Brown Boveri & Cie.

14. Commercial Brochures from Norsk Hydro Notodden Fabrikker.

15. Jensen, F. C. and Schubert, F. H., “Hydrogen Energy,” Part A, T.N.

Vegiroglu, ed. Plenum Press, 425-439(1975).

16. Murray, J. N., Laskin, J. B. and Kincaide, W. C., Proceedings of the

Symposium on Industrial Water Electrolysis, Princeton, 78-4, 39-53

(1978).

17. Murray, J. N., Laskin, J. B. and Kincaide, W. C., Proceedings of the Sym-

posium on Industrial Water Electrolysis, Princeton, 78-4, 117-127(1978).

18. Braun, M. J., Proceedings of the Symposium on Industrial Water

Electrolysis, Princeton, 78-4, 16-23(1978).

19. Christiansen, K. and Grundt, T., Proceedings of the Symposium

Industrial Water Electrolysis, Princeton, 78-4, 24-38(1978).

20. Wuellenweber, H. and Mueller, J., Proceedings of the Symposium

Industrial Water Electrolysis, Princeton, 78-4, 1(1978).

21. Giuffre, L., Spaziant, P. M. and Nidola, A., Proceedings of the Sy

posium on Industrial Water Electrolysis, Princeton, 78-4, 190(1978).

22. Blomen, L. J. M. J. and Mugerwa, M. N., “Fuel Cell Systems,” P

num Press(1993).

23. NAFION Product Bulletin, DuPont Company.

24. “Solid Polymer Electrolyte Water Electrolysis Technology Develo

ment for Large Scale Hydrogen Production,” General Electric Com-

pany, DOE report No. DOE/ET/26202-1(1981).

25. Takenaka, H., Torikai, E., Kawami, Y. and Wakabayashi, N., “So

Polymer Electrolyte Water Electrolysis,” Int. J. Hydrogen Energy,

7(5), 397-403(1982).

26. Funk, J. E., 10th World Hydrogen Energy Conference, Cocoa Be

U.S.A(1994).

27. Isenberg, A. P., Proceedings of the Symposium on Electrode M

rials and Processes for Energy Conversion and Storage, Prince

77-6, 682(1978).

28. Dutta, S., “Technology Assessment of Advanced Electrolytic Hyd

gen Production,” Int. J. Hydrogen Energy, 15(6), 379-386(1990).

29. Kobayashi, T., Abe, K., Ukyo, Y. and Matsumoto, H., “Study o

Current Efficiency of Steam Electrolysis using Partial Protonic Co

ductor SrZr0.9Yb0.1O3-α, Solid State Ionics, 138, 243-251(2001).

30. Hartmut W., “Electrochemical Hydrogen Technologies,” Elsevier(199

31. Ioroi, T., Yasuda, K., Siroma, Z., Fujiwara, N. and Miyazaki, Y., “Th

Film Electrocatalyst Layer for Unitized Regenerative Polymer Elect

lyte Fuel Cell,” Journal of Power Sources, 112, 583-587(2002).

32. Ando, Y., Tanaka, T., Doi, T. and Takashima, T., “A Study on a Th

mally Regenerative Fuel Cell Utilizing Low-temperature Therm

Energy,” Energy Conversion and Management, 42, 1807-1816(2001).

33. Chen, G., Delafuente, D. A., Sarangapani, S. and Mallouk, T.

“Combination Discovery of Bifunctional Oxygen Reduction-Wate

Oxidation Electrocatalysts for Regenerative Fuel Cells,” Catalysis

Today, 67, 341-355(2001).

34. Armor, J. N., “The Multiple Roles for Catalysis in the Production

H2,” Appl. Catal. A: General, 176(2), 159-176(1999).

35. ICI Katalco Catalogue(1999).

36. Kumar, R. and Agent, O., “Summary Report on the IEA ANNEX X

PHASE II Workshop,” 38(2003).

37. Heinzel, A., Vogel, B. and Hübner, P., “Reforming of Natural Ga

Hydrogen Generation for Small Scale Stationary Fuel Cell Systems” J.

Power Sources, 105(2), 202-207(2002).

38. Avc, A. K., Trimm, D. L. and Önsan, Z. I., “Quantitative Investigatio

of Catalytic Natural Gas Conversion for Hydrogen Fuel Cell Applic

tions,” Chem. Eng. J., 90(1-2), 77-87(2002).

39. Freni, S., Calogero, G. and Cavallaro, S., “Hydrogen Production fr

Methane through Catalytic Partial Oxidation Reactions,” J. Power

Sources, 87(1-2), 28-38(2000).

40. http://www.plugpower.com.

41. http://www.nuvera.com.

42. http://www.matthey.com.

43. Dudfield, C. D., Chen, R. and Adcock, P. l., “Evaluation and Mo

elling of a CO Selective Oxidation Rreactor for Solid Polymer Fuel C

Korean Chem. Eng. Res., Vol. 42, No. 1, February, 2004

8

riza-

up-

um

on

ec-

.,

of

m-

n

ll,”

n-

ent

d

at

er

el

-

r-

nd

e

nt

ies

ign

l,

, T.

at-

Automotive Applications,” J. Power Sources, 85(2), 237-244(2000).

44. Dudfield, C. D., Chen, R. and Adcock, P. L., “A Compact CO Selec-

tive Oxidation Reactor for Solid Polymer Fuel Cell Powered Vehi-

cle Application,” J. Power Sources, 86(1-2), 214(2000).

45. Draft of Hydrogen, Fuel Cells & Infrastructure Technologies Pro-

gram, U.S. DOE, EERE, June, 3(2003).

46. Manasilp, A. and Gulari, E., “Selective CO Oxidation over Pt/alu-

mina Catalysts for Fuel Cell Application,”Appl. Catal. B: Environ.,

37(1), 17-25(2002).

47. Echigo, M. and Tabata, T., “A Study of CO Removal on an Acti-

vated Ru Catalyst for Polymer Electrolyte Fuel Cell Applications,”

Appl. Catal. A: General, 25(1), 157-166(2003).

48. Kahlich, M. J., Gasteiger, H. A. and Behm, R. J., “Kinetics of the

Selective Low Temperature Oxidation of CO in H2-rich Gas over

Au/α-Fe2O3,” J. Catal., 182(2), 430-440(1999).

49. Grot, W. G., Chem. Ind., 19, 647(1985).

50. Costamagna, P. and Srinivasan, S., “Quantum Jumps in the PEMFC

Science and Technology from the 1960s to the year 2000,” J. Power

Sources, 102, 242-252(2001).

51. Wakizoe, M., Veleve, O. A., Srinivasan, S., “Analysis of Proton

Exchange Membrane Fuel Cell Performance with Alternate Mem-

branes,” Electrochim. Acta, 40, 335-344(1995).

52. Kato, H., “An Ion Exchange Membrane and Electrode Assembly for

an Electrochemical Cell,” U.S. Patent No. 6,054,230(2000).

53. Savadogo, O., J. New Mater. Electrochem. Syst. 1, 47(1998).

54. Kopitzke, R. W. and Linkous, C. A., “Conductivity and Water Uptake

of Aromatic-Based Proton Exchange Membrane Electrolytes,”J.

Electrochem. Soc., 147(5), 1677-1681(2000).

55. Wainright, J.S., Wang, J.-T. and Weng, D., “Acid-Doped Polybenzimida-

zoles: A New Polymer Electrolyte,”J. Electrochem. Soc., 142(7),

L121-L123(1995).

56. Kawahara, M., Rikekawa, M., Sanui, K. and Ogata, N., “Synthesis

and Proton Conductivity of Sulfopropylated poly(benzimidazole)

films,” Solid State Ionics, 136-137, 1193-1196(2000).

57. Mukerjee, S. and Srinivasan, S., “Enhanced Electrocatalysis of Oxy-

gen Reduction on Platinum Alloys in Proton Exchange Membrane

Fuel Cells,” J. Electroanal. Chem., 357, 201-224(1993).

58. Swette, L. L., LaConti, A. B. and McCatty, S. A., “Proton-Exchange

Membrane Regenerative Fuel Cells,” J. Power Sources, 47, 343-351(1994).

59. Mukerjee, S., Srinivasan, S., Soriaga, M. P. and Mcbreen, L., “Role of

Structural and Electronic Properties of Pt and Pt Alloys on Electrocatal-

ysis of Oxygen Reduction,” J. Electrochem. Soc., 142, 1409-1422(1995).

60. Verbeek, H. and Sachtler, W., “The Study of the Alloys of Platinum

and Tin by Chemisorption,” J. Catal., 42, 257-267(1976).

61. Wang, S. R. and Fedkiw, P. S., “Pulsed-Potential Oxidation of Metha-

nol: II. Graphite-Supported Platinum Electrode with and without Tin

Surface Modification,” J. Electrochem. Soc., 139, 3151-3158(1992).

62. Bittins-Cattaneo, B. and Iwasita, T., “Electrocatalsys of Methanol

Oxidation by Adsorbed Tin on Platinum,” J. Electroanal. Chem., 238,

151-161(1987).

63. Watanabe, M. and Motoo, S., “Electrocatalysis by Ad-atoms Part II.

Enhancement of the Oxidation of Methanol on Platinum by Ruthe-

nium Ad-atoms,”J. Electroanal. Chem., 60, 267-273(1975).

64. Miura, H. and Gonzales, R., “Temperature-Programmed Desorption and

Temperature-Programed Reaction Studies of Carbon Monoxide over

Well-characterized Silica-supported Platinum-Ruthenium Bimetallic

Clusters,” J. Phys. Chem., 86(9), 1577-1582(1982).

65. Alerasool, S. and Gonzales, R. D., “Preparation and Characte

tion of Supported Pt-Ru Bimetallic Clusters: Strong Precursor-S

port Interactions,” J. Catal., 124, 204-216(1990).

66. Franaszczuk, K. and Sobkowski, J., “The Influence of Rutheni

Adatoms on the Oxidation of Chemisorbed Species of Methanol

a Platinum Electrode by a Radiochemical Method,” J. Electroanal

Chem., 327, 235-245(1992).

67. Grgur, B. N., Zhuang, G., Markovic, N. M. and Jr. Ross, P. N., “El

trooxidation of H2/CO Mixtures on a Well-Characterized Pt75Mo25

Alloy Surface,” J. Phys. Chem. B., 101(20), 3910-3913(1997).

68. Grgur, B. N., Zhuang, G., Markovic, N. M. and Jr. Ross, P. N

“Electrooxidation of H2, CO, and H2/CO Mixtures on a Well-Char-

acterized Pt70Mo30 Bulk Alloy Electrode,” J. Phys. Chem. B.,

102(14), 2494-2501(1998).

69. Gottesfeld, S. and Pafford, J., “A New Approach to the Problem

Carbon Monoxide Poisoning in Fuel Cells Operating at Low Te

peratures,”J. Electrochem. Soc., 135, 2651-2652(1988).

70. Wilkinson, D. P., “Method and Apparatus for Oxidizing Carbo

Monoxide in the Reactant Stream of an Electrochemical Fuel Ce

U.S. Patent No. 5,432,021(1995).

71. Uribe, A., Zawodzinski, T. A. and Gottesfeld, S., “Fuel Cell Anode Co

figuration for CO Tolerance,” WO0036679(1999).

72. Toda, R., Igarashi, H., Uchida, H. and Watanabe, M., “Enhancem

of the Electroreduction of Oxygen on Pt Alloys with Fe, Ni, an

Co,” J. Electrochem. Soc, 146, 3750-3756(1999).

73. Paffet, M. T., Beery, G. J. and Gottesfeld, S., “Oxygen Reduction

Pt0.65Cr0.35, Pt0.2Cr0.8 and Roughened Platinum,” J. Electrochem. Soc.,

135, 1431-1436(1988).

74. Beard, B. C. and Ross, P. N., J. Electrochem. Soc., 130, 221(1990).

75. Raistrick, I. D., “Electrode Assembly for Use in a Solid Polym

Electrolyte Fuel Cell,” U.S. Patent No. 4,876,115(1989).

76. Dhar, H. P., “Near Ambient, Unhumidified Solid Polymer Fu

Cell,” U.S. Patent No. 5,318,863(1994).

77. Wood, D. L. III., Yi, J. S. and Nguyen, T. V., “Effect of Direct Liq

uid Water Injection and Interdigitated Flow Field on the Perfo

mance of Proton Exchange Membrane Fuel Cells,” Electrochimica

Acta, 43, 3795-3809(1998).

78. Hentall, P. L., Lakeman, J. B., Mepsted, G. O., Adcock, P. L. a

Moore, J. M., “New Materials for Polymer Electrolyte Membran

Fuel Cell Current Collectors,” J. Power Sources, 80, 235-241(1999).

79. Hornung, R. and Kappelt, G., “Bipolar Plate Materials Developme

Using Fe-based Alloys for Solid Polymer Fuel Cells,” J. Power

Sources, 72, 20-21(1998).

80. http://www.ballard.com/.

81. Smith, M. J., “Hydrogen, Fuel Cells and Infrastructure Technolog

Program,” DOE 2002 annual report, 267-268(2002).

82. Hogarth, M., Christensen, P., Hamnett, A. and Shukla, A., “The Des

and Construction of High-performance Direct Methanol Fuel Cel”

J. Power Sources, 69, 113-124(1997).

83. Chun, B. C., Reddington, E., Sapienza, A., Yu, J. S. and Mallouk

E., “Combinatorial Discovery ane Optimization of anode Electroc

alysts for Direct Methanol Fuel Cell,” Fuel Cell Seminar, November

16-19, 1-4(1998).

84. Jung, D. H. and Shin, D. R., J. Korean Ind. Eng. Chem., 3(4), 20-26

(2000).

42 1 2004 2

· 9

ta-

g

85. Kosek, J., Cropely, C., Hamdan, M. and Shramko, A., “Recent Advances

in Direct Methanol Fuel Cell at Giner, Inc.,” Fuel Cell Seminar, Novem-

ber 16-19, 693-694(1998).

86. Dolan, G., “Methanol: The Consumer-Friendly Hydrogen Source,”

Fuel Cell Seminar, November 3-7, 676-679(2003).

87. http://www.fuelcells.org/.

88. Cox, P., Cha, S-Y. and Attia, A., “PolyFuel’s Z1 Membrane and Cat-

alyst Coatings to Improve the Fuel Cell Performance in Portable Power

Applications,” Fuel Cell Seminar, November 3-7, 977-980(2003).

89. Pavio, J., “Performance and Design of a Reformed Hydrogen Fuel

Cell Systems,” Fuel Cell Seminar, November 3-7, 973-976(2003).

90. “MTI Micro Teams Up with Harris, Gillette/Duracell,” Fuel Cells

Bulletin, Issue 12, 6(2003).

91. “Smart Fuel Cell Starts DMFC Series Production,” Fuel Cells Bulle-

tin, Issue 4, 4(2002).

92. “NEC Unweils Fully Integrated Fuel Cell Notebook PC,”Fuel Cells

Bulletin, Issue 8, 1(2003).

93. “Latest DMFC Prototypes From Toshiba, Hitach Focus on Ca

lyst,” Fuel Cells Bulletin, Issue 12, 2(2003).

94. Maruyama, R., “Elctrochemical Mass-flow Control of Hydrogen Usin

a Fullerene-based Proton Conductor,” Electrochimica Acta, 48, 85-89

(2002).

Korean Chem. Eng. Res., Vol. 42, No. 1, February, 2004