koivunkuoren suberiini - jamk.fi · © natural resources institute finland acknowledgements dr...

28
© Natural Resources Institute Finland © Natural Resources Institute Finland Tiedetreffit 17.4.2018 Saarijärvellä: Biotalouden sivuvirrat ja energiaratkaisut JAMK Biotalousinstituutti Tuumalantie 17, 43130 Tarvaala Koivunkuoren suberiini

Upload: duongbao

Post on 06-Sep-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

© Natural Resources Institute Finland © Natural Resources Institute Finland

Tiedetreffit 17.4.2018 Saarijärvellä: Biotalouden sivuvirrat ja energiaratkaisut JAMK Biotalousinstituutti Tuumalantie 17, 43130 Tarvaala

Koivunkuoren suberiini

© Natural Resources Institute Finland

Suberin fatty acids extracted from birch outer bark as starting material for functional surfaces

Risto Korpinen, D.Sc. (Tech.) Natural Resources Institute Finland (Luke) Production Systems

2

© Natural Resources Institute Finland

Acknowledgements

Dr Pekka Saranpää Dr Tytti Sarjala Dr Petri Kilpeäinen

Natural Resources Institute Finland (Luke) Production Systems

Dr Kirsi S. Mikkonen Dr Hanna Koivula

University of Helsinki Faculty of Agriculture and Forestry Department of Food and Environmental Sciences

Prof Stefan Willför Åbo Akademi University Johan Gadolin Process Chemistry Centre c/o Laboratory of Wood and Paper Chemistry

Dr Mari Nurmi Mrs Pauliina Saloranta

Åbo Akademi University Center for Functional Materials Laboratory of Paper Coating and Converting

3 Korpinen et al.

© Natural Resources Institute Finland

What is suberin?

• Suberin is highly hydrophobic substance found in higher plants.

• It is a natural polyester containing long-chain hydroxy and dicarboxylic acids, phenolic compounds, alcohols and waxes.

4

© Natural Resources Institute Finland

Suberin hypothetical model

• Suberin is believed to form partly orderly arranged lamellar structures

5 Korpinen et al.

© Natural Resources Institute Finland

Why suberin?

• Suberin is natural product, environmentally benign and it can be co-compusted at the end of life cycle of products.

• Suberin content in bark of certain hardwood species can be up to 30%.

• The cell wall suberin barrier is not only virtually impermeable to water and solutes, but is also resistant to microbial hydrolysis and has antimicrobial activity.

6 Korpinen et al.

© Natural Resources Institute Finland

7 10.4.2018

© Natural Resources Institute Finland

Suberin sources

• Fruit, root vegetable, berry peels

• Legume pods

• Tree bark

8 Korpinen et al.

© Natural Resources Institute Finland

Betulinol and suberin fatty acid extraction

9

© Natural Resources Institute Finland

Extraction procedure

10

© Natural Resources Institute Finland

Obtained fractions

11

Betulinol fraction (27.9 % on o.d. bark)

Suberin fatty acid fraction (29.4 % on o.d. bark)

© Natural Resources Institute Finland

Elemental analysis, (ICP)

Korpinen et al. 12

Betulinol fraction Suberin fraction Element mg/kg Na 4910 Mn 42.3 Mg 22.7 S 22.1 Fe 18.8 Ca 17.7 K 17 P 12.8 Zn 2.56 Al 2.38 Pb <1.02 B 0.969 Cu 0.948 Cr <0.204 Ni <0.204 Cd <0.07

Element mg/kg S 210 Na 77.2 P 29.8 K <10.2 Ca 3.83 Pb <1.02 Cu 0.782 Al 0.671 B 0.508 Fe 0.335 Zn 0.305 Mg 0.213 Cr <0.203 Ni <0.203 Cd <0.07 Mn 0.061

Sodium from NaOH (extraction)

Sulfur from H2SO4 (acidification)

© Natural Resources Institute Finland

Suberin fatty acid composition, (GC-FID & GC-MS)

13 Korpinen et al.

© Natural Resources Institute Finland 14 Korpinen et al.

© Natural Resources Institute Finland 15

Compound mg/g Ferulic acid methyl ether (1xTMS) ( ? ) 0.4 16:0 fatty acid (TMS) 0.9 Ferulic acid (2xTMS) 1.0 17:0 fatty acid (TMS) 0.1 18:2 - fatty acid (TMS) (Linoleic acid) 1.0 18:1 - fatty acid (TMS) (Oleic acid) 0.4 18:0 - fatty acid (TMS) (Stearic acid) 0.2 16-hydroxy-16:0 acid 2.7 20:0 fatty acid (TMS) 0.5 1,16-dioic-16:0 acid 3.5 18:-hydroxy-(9)18:1 acid (TMS) 62.4 9,16- and 10,16-dihydroxy-16:0 acids 19.7 18-hydroxy-18:0 acid 1.5 1,18-dioic-(9)18:1 acid 16.8 1,18-dioic-18:0 acid 5.0 9,18-dihydroxy-(9)18:1 acid 5.0 9,10-epoxy-18-hydroxy-18:0 acid 198.0 20-hydroxy-20:1 acid 6.2

Compound mg/g dihydroxyoctadecanoic acid 4.4 20-hydroxy-20:0 acid 16.5 1,20-dioic-20:1 acid 6.0 24:0 fatty acid (TMS) 1.1 9,10,18-trihydroxy-18:0 acid 70.2 22-hydroxy-22:0 acid 94.1 1,22-dioic-22:0 acid 7.7 24-hydroxy-24:0 acid 2.8 Lupenone ( lup-20(29)-en-3-one ) 0.5 Sitosterol (TMS) 1.3 Lupeol (TMS) 3.8 Betulonic acid 2.4 Betulinol (TMS) 16.8 Betulinic acid (TMS) 53.1 Monogynol A ( lupane-3b,20-diol ) 0.0 Lupane-3b,20,28-triol 0.0 Total identified 605.9 Total eluted 743.7

© Natural Resources Institute Finland

Preparation of handsheets

• Unbleached softwood kraft pulp • Unrefined • Approximately 60 g/m2

16

© Natural Resources Institute Finland

Impregnation and fixing • Paper sheets

– 0.02 m2

• Impregnation solution 100 mg/ml

– 50 % w/w suberin fatty acids (SFA) – 50 % w/w maleic anhydride (MA) – Dissolved in EtOH

• Impregnation

– 10, 20 and 30 g/m2

– (2, 4 and 6 ml solution) – Evaporation of EtOH

• Fixing (heat treatment)

– 150 °C over night – Reference, no heat treatment – 0 g/m2, heat treatment but no impregnation

17 Korpinen et al.

MA

© Natural Resources Institute Finland

Surface chemistry

• Maleic or acetic anhydride reacts with – Hydroxyl groups of cellulose – Hydroxyl groups of suberin fatty acids (SFA) – Epoxy groups of suberin fatty acids

• Crosslinking of SFA and lignocellulosic substrate with

anhydride

18 Korpinen et al.

HO-Cell

© Natural Resources Institute Finland

Various properties measured

• Thickness, density, grammage – ISO 534

• Brightness, yellowness

– ISO 2469; ISO 2470

• Tensile, tear indices – ISO 1924; ISO 1974

• Air permeability, water vapour transmission rate, contact angle

– ISO 5636/3,4,5; gravimetric method (cup method); KSV CAM200, Biolin Scientific

19 Korpinen et al.

© Natural Resources Institute Finland

Basic handsheet properties

20 Korpinen et al.

0

50

100

150

200

250

300

350

Reference 0 g/m^2 10 g/m^2 20 g/m^2 30 g/m^2

Grammage (g/m2), thickness (µm), density (kg/m3)

GrammageThicknessDensity

© Natural Resources Institute Finland

Strength properties

21 Korpinen et al.

0

5

10

15

20

25

Reference 0 g/m^2 10 g/m^2 20 g/m^2 30 g/m^2

Tensile index (Nm/g), tear index (mNm2/g)

Tensile indexTear index

© Natural Resources Institute Finland

Optical properties

22 Korpinen et al.

0

10

20

30

40

50

60

70

Reference 0 g/m^2 10 g/m^2 20 g/m^2 30 g/m^2

Brightness, yellowness (%-ISO)

BrightnessYellowness

© Natural Resources Institute Finland

Water vapour transmission rate (WVTR) Air permeance

23 Korpinen et al.

Sample WVTR (g/m2·d) Air permeance (ml/min) Reference 2523 (±113) 8820 0 g/m2 2577 (±11) 8820 10 g/m2 2576 (±78) 8820 20 g/m2 2755 (±29) 8820 30 g/m2 2847 (±47) 8820

© Natural Resources Institute Finland

Hydrophobicity

24 Korpinen et al.

Reference 0 g/m2

10 g/m2 20 g/m2

30 g/m2

© Natural Resources Institute Finland

Contact angle

25 Korpinen et al.

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60Time (s)

Contact angle (°)

Reference 0 g/m^2 10 g/m^2 20 g/m^2 30 g/m^2

10, 20 and 30 g/m2

Reference and 0 g/m2

© Natural Resources Institute Finland

Conclusions

• Suberin fatty acids obtained from birch outer bark can be utilized when creating breathable fibrous materials with excellent water repellent properties – 10 g/m2 was enough to create hydrophobic surface

• Larger amount of impregnated SFA solution slightly impaired

the optical properties decreasing the brightness and increasing the yellowness

• Tensile strength was improved with increased amount of SFA

26 Korpinen et al.

© Natural Resources Institute Finland

Potential applications

• Paper used in – plasterboards or – waterproof packaging materials – …

• Textiles used in

– outdoor furniture – parasols – …

27 Korpinen et al.

© Natural Resources Institute Finland

Thank you!