kleuraspecten van led toestellen - kaho / laboratorium voor lichttechnologie

45
Kleuraspecten van LED toestellen Richard Vanraes Peter Hanselaer Laboratorium voor Lichttechnologie, Gent KAHO Sint-Lieven KU Leuven

Upload: easyfairsbelgium

Post on 20-Aug-2015

351 views

Category:

Documents


0 download

TRANSCRIPT

Kleuraspecten van LED toestellen

Richard Vanraes Peter Hanselaer Laboratorium voor Lichttechnologie, Gent KAHO Sint-Lieven KU Leuven

• Light&Lighting Laboratory • Colorimetry in a nutshell • Colorimetry of LEDs • RGB or phosphor white? • Impact of junction temperature? • Impact of viewing angle? • Impact of operating time? • What about colour rendering ?

2

Outline

3

Light&Lighting Laboratory: the team

New Light Sources

Lighting Optical design

Appearance

Measurement Facilities

4

Light&Lighting Laboratory: topics

5

Light&Lighting Laboratory: activities

Industrial consultancy • 3 consortia • >70 companies • Bilateral projects • Projects with non-profit organisations • Measurements • Courses • Lectures

PhD research items • LEDs and general lighting • OLED • remote phosphor LEDs • lighting in the operating room • colour rendering • gloss perception • colour appearance • ray tracing • scattering and fluorescence • spectral response solar cells

PhD Research

Industrial Consultancy

Education Society

Combination of research and consultancy

7

Light&Lighting Laboratory: measurement facilities

Spectrometers/ CCD detectors

Near field goniometers 8

Light&Lighting Laboratory: measurement facilities

Munsell Hue 5Y 5Y 8/12

9

Colorimetry in a nutshell: colour classification

10

Colorimetry in a nutshell: colour matching

. . .K A B C

K A B C

L A L B

CA

L C L

B

Test colour

with luminance K

K

L

Three primary sources

Trichromatic values Kleurcomponenten

X,Y,Z

11

x 0.706 x 0.863x 0.863

Colorimetry in a nutshell: trichromatic values

Primaries

Ignoring brightness, only two numbers are needed: colour coordinates (x,y)

(Kleurcoördinaten)

Xx

X Y Z

Yy

X Y Z

12

Colorimetry in a nutshell: colour coordinates

Characteristics

• Spectrum locus

• Additive mixing

• Purity, saturation

• Colour gamut

• Primary colours

13

Colorimetry in a nutshell: chromaticity diagram

14

Colorimetry in a nutshell: correlated colour temperature

The correlated colour temperature is the

temperature of a Planckian radiator having

the chromaticity nearest the chromaticity

associated with the given spectral distribution

on a diagram where the (CIE1931 standard

observer based) u, v coordinates of the

Planckian locus and the test stimulus are

depicted.

Black Body Locus

15

EN 12464

• CCT<3300 K :

“warm white”

• 3300 K< CCT< 5300 K:

“neutral white”

• CCT>5300K:

“cool daylight”

Colorimetry in a nutshell: correlated colour temperature

16

Colorimetry in a nutshell: colour rendering

The colour rendering index CRI of a light

source is a measure of the shift in

chromaticity of a set of objects when

they are lighted by the source as

compared to be lighted by a reference

source of comparable colour

temperature.

Testlamp Testsamples (8 of 14)

Standardlamp <colour differences>

Colour coordinates

Colour coordinates

17

Colorimetry in a nutshell: colour rendering

18

Colorimetry in a nutshell: chromatic adaptation

• The visual system is able to partially or

completely disaccount for the colour of the

illuminant such that the white of the illuminant

is always perceived as “white” (complete

adaptation)

• This is accomplished by changing the

sensitivities of the red, green and blue visual

channel.

*

19

Colorimetry in a nutshell: chromatic adaptation

* *

20

Colorimetry in a nutshell: colour matching

1240( ) . .

( )g

cE E eV h f h

nm

1. Peak wavelength is determined by bandgap Eg

2. Number of photons: drive current and recombination probability

Band gap Eg

E

1240( )

( )g

nmE eV

Band gap Eg

E

1240( )

( )g

nmE eV

Band gap Eg

E

Band gap Eg

E

1240( )

( )g

nmE eV

21

0

300

600

900

1200

1500

350 400 450 500 550 600 650 700 750

Golflengte (nm)

Sp

ectr

ale

str

alin

gsin

ten

sit

eit

(m

W/s

r.n

m)

LED1

Colorimetry of LEDs: spectrum

CIE chromaticity

High purity colours

Wide colour gamut possible

No direct generation of white light

22

Colorimetry of LEDs: chromaticity

23

Colorimetry of LEDs: RGB additive mixing

24

Colorimetry of LEDs: Phosphor White LEDs

25

Colorimetry of LEDs: Phosphor White LEDs

LEDs from 3 manufacturers

• 1 phosphor-white package (350 mA)

• 1 red-green-blue package

Comparison of consumed power for same

• luminous flux

• colour coordinates

• heat sink

with PW as reference

26

RGB or Phosphor White? Experiment

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

Cree Lumileds SSC

P (

W)

PW

R

G

B

M1 M2 M3

27

MFR flux (lm) CIE (x,y) P (W) PW

eff. (lm/W) PW

P (W) RGB

eff. (lm/W) RGB

M1 84.1 (0.31, 0.33) 1.16 72.5 2.44 34.5

M2 45.9 (0.32, 0.33) 1.06 43.3 2.50 18.4

M3 77.6 (0.30, 0.32) 1.11 69.9 2.61 29.7

RGB or Phosphor White? Results

Decrease of the bandgap: increase of wavelength

Decrease of recombination rate: decrease of flux

Band gap Eg

E

1240( )

( )g

nmE eV

Band gap Eg

E

1240( )

( )g

nmE eV

Band gap Eg

E

Band gap Eg

E

1240( )

( )g

nmE eV

28

Impact of junction temperature? Spectrum

- 55 E-555 E-5- 0.0019- 0.0520.14Yellow

- 23 E-542 E-5- 0.0040- 0.0160.11Green

- 90 E-690 E-6- 0.0012- 0.0580.19Red

y

(1/°C)

x

(1/°C)

U

(V/°C)

I

(cd/°C)

piek

(nm/°C)

- 55 E-555 E-5- 0.0019- 0.0520.14Yellow

- 23 E-542 E-5- 0.0040- 0.0160.11Green

- 90 E-690 E-6- 0.0012- 0.0580.19Red

y

(1/°C)

x

(1/°C)

U

(V/°C)

I

(cd/°C)

piek

(nm/°C)

29

Impact of junction temperature? Chromaticity

30

Impact of junction temperature? Active cooling

LuxeonIII U(junction T) for series 1 (used)

y = -0.0026x + 2.4443

R2 = 0.999

1.90

1.95

2.00

2.05

2.10

2.15

2.20

2.25

2.30

2.35

2.40

2.45

20 30 40 50 60 70 80 90 100 110

temperature (°C)

U (

V)

1: 10 µA

1: 100 µA

2: 10 µA

2: 100 µA

lnf m

nkU T I a T b

e

31

Impact of junction temperature? Forward voltage

32

Impact of junction temperature? Determination

With and without heat sink

Different ambient temperature

33

Impact of junction temperature Self heating

Luminous flux is dependent on heat sink, position of heat sink, . . .

I(0°)

I (85°)

flux

34

Impact of viewing angle? Chromaticity

35

Impact of viewing angle? Spectrum

Negligible impact when using remote phosphor LEDs

36

Impact of operating time? Chromaticity

Degradation of the phosphor Experiments

CRI Verschil in %

September 2010

Januari 2011

April 2011

Januari tov september

April tov september

Lamp 1 90 89 89 -1% -1%

Lamp 2 72 73 73 1% 1%

Lamp 3 76 78 80 3% 5%

Lamp 4 69 70 69 1% 0%

Lamp 5 76 78 79 3% 4%

Lamp 6 65 66 65 1% 1%

Lamp 7 71 71 71 0% 0%

Lamp 8 77 77 77 0% 0%

Lamp 9 88 88 88 0% 0%

Lamp 10 78 77 80 -1% 3%

Lamp 11 65 65 65 0% 0%

Lamp 12 73 72 73 -1% 0%

gemiddelde 75 76 76 0% 1%

mediaan 76 77 77 1% 1%

37

CCT [K] Verschil in %

September 2010

Januari 2011

April 2011

Januari tov september

April tov september

Lamp 1 4186 4066 4075 -3% -3%

Lamp 2 6876 6637 6818 -3% -1%

Lamp 3 3709 3653 3701 -2% 0%

Lamp 4 4016 3874 3834 -4% -5%

Lamp 5 4207 4077 4128 -3% -2%

Lamp 6 3194 3167 3194 -1% 0%

Lamp 7 3307 3153 3175 -5% -4%

Lamp 8 3853 3717 3743 -4% -3%

Lamp 9 3365 3307 3326 -2% -1%

Lamp 10 3678 3470 3670 -6% 0%

Lamp 11 4733 4586 4625 -3% -2%

Lamp 12 5329 5037 5104 -5% -4%

IEC PAS 62717: CRI after 6000 h: maximum -5 CCT after 6000 h: within 1 class (100 K)

Impact of operating time? CCT and CRI

[email protected] 38

Ra=50 Ra=60 Ra=70 Ra=85 Ra=100 Ra=83 Reference Illuminant

38

Large colour differences towards reference low quality !

What about colour rendering? Problem

The more similar a light source renders the familiar object colours to their memory colours,

the better the colour quality.

39

What about colour rendering? Memory colours

Colour appearance rating of real familiar objects

[email protected] 40

40

The closer the test illuminant reaches the memory colour of 10 objects, the higher the MCRI

What about colour rendering? Determination of Memory colours

• Aspects of colour quality investigated

– Preference/attractiveness (appreciation) – Naturalness

• Thirteen colour quality metrics (CIE TC 1-69)

• Combining results of 9 psychophysical studies

Correlation between 13 metric predictions and all the visual data is calculated.

[email protected] 41 41

What about colour rendering? Experimental validation

[email protected] 42

GAI_Ra for naturalness: ravg = 0.85

Memory metric for preference/attractiveness: ravg = 0.88

42

What about colour rendering? Experimental validation

[email protected] 43 43

Xb Xg Xr Xw X

Yb Yg Yr Yw Y

Zb Zg Zr Zw Z

.

.

xiXi Yi

yi

ziZi Yi

yi

What about colour rendering? Optimizing LED clusters

Optimum MCRI ánd efficacy

Visual experiment with 2700K setting:

• Sa optimized LED lamp scored significantly better (p<0.05) than the incandescent source for attractiveness, preference and memory.

• No significant differences for naturalness and vividness !

[email protected] 44

MEAN/MEDIAN Attractiveness Preference Naturalness Vividness Memory

Sa optimized LED 7.8 / 8.0 7.9 / 8.0 7.2 /8.0 7.4 /8.0 7.9 /8.0

RGB LED cluster 6.0 / 6.0 5.6 / 6.0 4.2 / 4.5 6.3 / 7.0 4.8 / 5.0

Incandescent lamp 5.8 / 6.0 6.0 / 6.0 6.9 / 7.0 6.2 / 6.5 6.5 / 6.0

44

What about colour rendering? Visual performance

www.lichttechnologie.be: daar brandt de lamp . . .