kinetics and thermodynamics of amyloid fibril formation ron wetzel university of tennessee

83
Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

Post on 19-Dec-2015

228 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

Kinetics and Thermodynamics of Amyloid Fibril Formation

Ron Wetzel

University of Tennessee

Page 2: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

Energetics of Amyloid Fibril Formation

Fibril assembly equilibria and G fibril elongation

- Aβ(1-40) amyloid fibrils (Alzheimer’s disease) - polyglutamine amyloid (Huntington’s disease)

Kinetics of nucleated growth polymerization and G of nucleus formation

- polyglutamine amyloid

Page 3: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

Thermodynamics of Amyloid Fibril Formation

• Some amyloidogenic mutations work by weakening native structure

- transthyretin

- Ig light chain

• local sequence also affects amyloidogenicity through fibril packing effects

Nfibril fibril

N

Page 4: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

Time (days)

Aβ Amyloid Fibril Formation

lag phase

Cr

[Mo

no

mer

], μ

M

0

5

10

15

20

25

30

0 2 4 6 8 100

5

10

15

20

25

30

35

Th

T F

luo

resc

ence

(au

)

Page 5: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 300

20

40

60

80

100

Time (Hrs)

[Aβ

], μ

M

S26P mutant of Aβ(1-40)

The experimental Cr is the equilibrium position of fibril elongation

1. Unpolymerized Aβ at equilibrium: - chemically indistinguishable from initial - capable of making fibrils after concentration 2. Fibrils resuspended in buffer: - dissociate to the identical Cr position

Page 6: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

Monomer + FibrilN FibrilN+1

Keq

Amyloid Fibril Elongation Thermodynamics

Keq = [FibrilN+1] / [FibrilN][Monomer]

Keq = 1 / [Monomer]

Keq = 1 / Cr

ΔG = - RT ln Keq

ΔG = - RT ln Keq = - RT ln (1 / 0.0000086)

ΔG = - 8.6 kcal/mol [wild type Aβ(1-40)]

CrMon

omer

rem

ain

ing,

μM

Time

Page 7: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

-0.5

0

0.5

1

1.5

2

2.5

4 13 14 15 16 17 18 19 20 22 23 24 25 26 27 28 29 31 32 33 34 35 36 37 38 39 40

-0.5

0

0.5

1

1.5

2

2.5

4 13 14 15 16 17 18 19 20 22 23 24 25 26 27 28 29 31 32 33 34 35 36 37 38 39 40

*

Aβ(1-40) sequence position

ΔΔ

G,

kcal/

mol

Ala scan of Aβ(1-40) fibril elongation thermodynamics

ΔΔG(Ala – WT), kcal/mol

15-21

31-36

Page 8: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

Ala scan of Aβ(1-40) fibril stability

Petkova et al., 2002

Guo et al., 2004

Page 9: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

Positions 6 and 53 in parallel β-sheet in IgG binding protein G (β1)

6

53

Page 10: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

Positions 6 and 53 in parallel β-sheet in IgG binding protein G (β1)

6

53

Page 11: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

Positions 6 and 53 in parallel β-sheet in IgG binding protein G (β1)

6

53

Page 12: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

Effect of Ala replacements in Aβ(1-40) amyloid and in Gβ1

ΔΔG(Ala – residue), kcal/mol

Mutation 18 19 20 31 32 36 6 / 53

Val Ala 1.25

Phe Ala 1.5

Ile Ala 1.65

Aβ(1-40 amyloid fibrils G (β1)

15-21

31-36

[Merkel et al., Structure 7, 1333 (1999) Williams et al., J. Mol. Biol. 357, 1283 (2006)]

inout

Page 13: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

Effect of Ala replacements in Aβ(1-40) amyloid and in Gβ1

ΔΔG(Ala – residue), kcal/mol

Mutation 18 19 20 31 32 36 6 / 53

Val Ala 1.3 1.0 1.25

Phe Ala 1.5

Ile Ala 1.65

Aβ(1-40 amyloid fibrils G (β1)

15-21

31-36

[Merkel et al., Structure 7, 1333 (1999) Williams et al., J. Mol. Biol. 357, 1283 (2006)]

inout

Page 14: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

Effect of Ala replacements in Aβ(1-40) amyloid and in Gβ1

ΔΔG(Ala – residue), kcal/mol

Mutation 18 19 20 31 32 36 6 / 53

Val Ala 1.3 1.0 1.25

Phe Ala 1.5 0.8 1.5

Ile Ala 1.65

Aβ(1-40 amyloid fibrils G (β1)

15-21

31-36

[Merkel et al., Structure 7, 1333 (1999) Williams et al., J. Mol. Biol. 357, 1283 (2006)]

inout

Page 15: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

Effect of Ala replacements in Aβ(1-40) amyloid and in Gβ1

ΔΔG(Ala – residue), kcal/mol

Mutation 18 19 20 31 32 36 6 / 53

Val Ala 1.3 1.0 1.25

Phe Ala 1.5 0.8 1.5

Ile Ala 2.0 1.0 1.65

Aβ(1-40 amyloid fibrils G (β1)

15-21

31-36

[Merkel et al., Structure 7, 1333 (1999) Williams et al., J. Mol. Biol. 357, 1283 (2006)]

inout

Page 16: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

Pro scan of Aβ(1-40) fibril stability

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4 6 9 12 1415161718 19202122 23242526 27282930 3132333435 36373839

Aβ(1-40) sequence position

ΔΔ

G,

kcal/

mol

ΔΔG(Pro – WT), kcal/mol

[Williams et al., J. Mol. Biol. 335, 833-842 (2004)]

Page 17: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

How Does Proline Destabilize β-Sheet?

• Backbone Effects - no N-H proton: lost H-bond - loss of planarity in extended chain

• Side Chain Packing Effects - Pro “side chain” is compact loop that does not extend far out of plane

Page 18: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

Ala-edited Pro scan of Aβ(1-40) fibril stability

ΔΔG(Pro – Ala), kcal/mol

Aβ(1-40) sequence position

ΔΔ

G, k

cal/m

ol

-1

-0.5

0

0.5

1

1.5

2

2.5

4 14 15 16 17 18 19 20 21 22 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

[Williams et al., J. Mol. Biol. 357, 1283 (2006)]

Page 19: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

ΔΔG values for Pro vs. Ala replacement in β-sheetGlobular Protein (Gβ1) vs. Amyloid (Aβ)

Gβ1 position ΔΔG, kcal/mol Source

53 > 4 Minor and Kim, Nature 367, 660 (1994)44 > 4 Minor and Kim, Nature 371, 264 (1994)

Aβ(1-40) sequence position

ΔΔ

G, k

cal/m

ol

-1

-0.5

0

0.5

1

1.5

2

2.5

4 14 15 16 17 18 19 20 21 22 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Amyloid

Globular Protein

Page 20: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

T

Hydrogen-Deuterium Exchange Experiment

Deuterium- labeled fibrils

Processing Solvent (pH~2) - quench exchange - dissociate fibrils - efficient MS analysis

Afibrils

forward exchange - D2O, pD = 7.5

back exchange - H/D mix, pH ~ 210% D2O

( D ) ( H )

Data Analysis

MassSpectrometer

[Kheterpal, Zhou, Cook & Wetzel, PNAS (2000)]

Page 21: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

Protected Amide Hydrogens in Proline Mutant Fibrils

[Williams et al., J. Mol. Biol. 335, 833-842 (2004)]

0

2

4

6

8

10

12

14

16

18

4 6 9 12 14 15 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 33 34 35 36 37 38 39 WT

Position of Pro replacement

Deu

teri

um

co

nte

nt

few

er H

-bon

dsm

ore

H-b

onds

Leu34->Pro, ΔΔG = only 1.5 kcal/mol destabilized …. but it also has 4 more H-bonds than WT

Page 22: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

Thermodynamics of Amyloid Fibril Formation

Results:

- Aβ(1-40) fibril growth tends to a reversible equilibrium position with a Keq and ΔG

- ΔΔGs from Ala mutations agree with data from parallel β-sheet in globular protein

… propagated structural changes suggest a fundamental difference from globular proteins

- some ΔΔG effects attributable to energy changes within the monomer ensemble

fibril

N

Page 23: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

Conformational space

G

globular protein amyloidogenic peptide

N

U U

A1

A3A2

A4

Page 24: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

CAG (polyglutamine) expanded repeat diseases

Disease Largest Normal Smallest Abnormal

Huntington’s 39 36

Kennedy’s 33 38

SCA-1 39 41

SCA-2 31 35

SCA-3 (MJD) 41 40

SCA-6 18 21

SCA-7 17 38

DRPLA 35 51

SCA-17 44 46

Page 25: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

Polyglutamine flanking sequences in expanded CAG repeat disease proteins

AVAAAAVQQSTSQQATQGTS--LTPQPIQNTNSLSILEEQQR-Qn-

PPPPQPQRQQHPPPPPRRTR--RGEPRRAAAAAGGAAAAAAR-Qn-

AVARPGRAATSGPRRYPGPT--PRPHVSYSPVIRKAGGSGPP-Qn-

RDLSGQSSHPCERPATSSGA--SGTNLTSEELRKRREAYFEK-Qn-

PPPAAANVRKPGGSGLLASP--GCPRPACEPVYGPLTMSLKP-Qn-

HLSRAPGLITPGSPPPAQQN--YSTLLANMGSLSQTPGHKAE-Qn-

ETSPRQQQQQQGEDGSPQAH--GPRHPEAASAAPPGASLLLL-Qn-

HHGNSGPPPPGAFPHPLEGG--PSTGAQSTAHPPVSTHHHHH-Qn-

PPPPPPPPPPPQLPQPPPQA- MATLEKLMKAFESLKSF-Qn-

TBP (SCA17)

Ataxin 7 (SCA7)

CACNA1A (SCA6)

Ataxin 3 (SCA3)

Ataxin 2 (SCA2)

Ataxin 1 (SCA1)

Androgen Receptor (SBMA)

Atropin 1 (DRPLA)

Huntingtin (HD)

Page 26: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

0 75 150 225 300

0

20

40

60

80

100

120

Lig

ht S

catt

erin

g

Hours

20 M Q28 monomer

20 M Q28 monomer + 1% Q28 aggregate

Lag phase aborted by seeding

Page 27: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

Nucleation / Elongation

M N*k1

k-1

G

Reaction coordinate

Mk3

MMk2

M

N*

k4

N+1

N+2

N+1 N+2

Kn*

nucleation equilibrium constant

second order fibril elongation rate constant

= ½ Kn*k+2Cn*+2t2

[Qn] time

Page 28: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

Nucleation Kinetics Analysis for Q47 Aggregation

time2 plots

slope = ½ Kn*k+2Cn*+2

-15

-14

-13

-12

-11

-4.9 -4.8 -4.7 -4.6 -4.5 -4.4 -4.3 -4.2 -4.1 -4 -3.9

log ([monomer], M)

log

(t2

slo

pe)

slope = n* + 2 = 2.87

n* = 0.87 ~ 1

log (½ Kn*k+2) = -0.7668

time2 (sec2)

[po

lyG

ln],

M (

x 10

6 )

7

12

17

22

27

32

37

0.0E+00 1.0E+08 2.0E+08 3.0E+08 4.0E+08 5.0E+08

80

85

90

95

100

105

110

[po

lyG

ln],

M (

x 10

6 )

Page 29: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

+

nucleation

elongation

Mechanism of polyglutamine aggregation

Kn*

n* = 1 for Q28, Q36, Q47; Kn* increases from Q28 to Q36 to Q47

[Chen, Ferrone & Wetzel, PNAS (2002)]

Page 30: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

Calculated Aggregation Kinetics Curves at Low Concentration

Q47 Q36 Q28

10-4

10-3

10-2

10-1

100

101

102

103

104

0

10

20

30

40

Years

Agg

rega

ted

Pep

tid

e (%

)[Qn] = 0.1 nM

31 141 1,273

= ½ k+2 Kn* c(n*+2) t2

[Chen, Ferrone & Wetzel, PNAS (2002)]

Page 31: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

Time (sec)

ln [

mo

no

mer

, M

]

-10.28

-10.26

-10.24

-10.22

-10.20

-10.18

-10.16

-10.14

0.0E+00 5.0E+03 1.0E+04 1.5E+04 2.0E+04 2.5E+04

Pseudo-first order kinetics of seeded polyGln elongation

[A Bhattacharyya, AK Thakur and R Wetzel, PNAS 2005]

Fibriln + Monomer Fibriln+1

Rate = k+ [Fibril][Monomer] = kpseudofirst [Monomer]

k+ = kpseudofirst / [Fibril]

= ½ k+2 Kn* c(n*+2) t2

-0.7668 = log (½ Kn*k+2)

Page 32: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

15

20

25

30

35

0 1 2 3 4 5 6 7 8 9 10

15

20

25

30

35

0 1 2 3 4 5 6 7 8 9 100 1 2 3 4 5 6 7 8 9 10

[biotinyl-polyglutamine], μM

fmo

l b

ioti

ny

l-p

oly

Gln

bo

un

d

+

Determination of Kn*

k+ = kpseudo1st / [aggregate] = 1.14 x 104 liters/mol-sec

-0.7668 = log (½ Kn*k+2)

Kn* = 2.6 x 10-9

ΔG = + 12.2 kcal/mol[A Bhattacharyya, AK Thakur and R Wetzel, PNAS 2005]

Page 33: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

nucleation

+

elongation

Mechanism of polyglutamine aggregation

Kn*

For Q47, Kn* = 2.6 x 10-9 (ΔGnucleation = + 12.2 kcal/mol)

k+

[A Bhattacharyya, AK Thakur and R Wetzel, PNAS 2005]

Page 34: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

Acknowledgments

Aβ Team PolyGln Team

Angela Williams Anusri BhattacharyyaShankari Shivaprasad Ashwani Thakur

Brian O’Nuallain Songming ChenIndu KheterpalEric Portelius

Frank Ferrone (Drexel Univ.) Trevor Creamer (Univ. Kentucky) Veronique Hermann (Univ. Kentucky)

Page 35: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee
Page 36: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350

Time (hrs)

% M

on

om

erPolyproline dampens polyglutamine aggregation

Q40

Q40P10

P10Q40

H2NKKQ

40CKKCOOH

|SCH

2CONHG

3P

10 COOHKK

[A Bhattacharyya et al., J. Mol. Biol. 2006]

Page 37: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350

Time (hrs)

% M

on

om

erPolyproline dampens polyglutamine aggregation

Q40

Q40P10

Cr = 4.5 μM

Cr ≤ 50 nM

ΔΔG ≥

3 kcal/mol

Page 38: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350

Time (hrs)

% M

on

om

erPolyproline dampens polyglutamine aggregation

Q40

Q40P10

P10Q40

Page 39: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350

Time (hrs)

% M

on

om

erPolyproline dampens polyglutamine aggregation

Q40

Q40P10

P10Q40

H2NKKQ

40CKKCOOH

|SCH

2CONHG

3P

10 COOHKK

Page 40: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

0

2

4

6

8

10

12

0 100 200 300 400

Time (hrs)

[Mo

no

me

r],

µM

Is the Plateau a Real Thermodynamic Cr?

Q40

Q40

Q40P10

Q40P10

[A Bhattacharyya et al., J. Mol. Biol. 2006]

Page 41: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

A Conformational Correlate to the P10 Connectivity Effect on Aggregation

35°C - 5°C difference spectra

[A Bhattacharyya et al., J. Mol. Biol. 2006]

Page 42: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

A Possible Basis of the OligoProline Effect

Conformational Space

G

fibril

aggregation- incompetent monomer

aggregation- competent monomer

ΔG

Page 43: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

Transportability of the P10 Effect

Peptide C r, μM

Aβ(1-40) 0.9 μM

Aβ(1-40)-P10 21.5 μM

[A Bhattacharyya et al., J. Mol. Biol. 2006]

Page 44: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

Side Chain Packing by Disulfide Formation

HS

[O]HS

HS

SH

HS

SH

HS

HS

S

SH

HS

S

[S. Shivaprasad and R. Wetzel, Biochem. 43, 15310 (2004)]

Page 45: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

Stability of amyloid fibrils from various double Cys mutants of Aβ(1-40)

R-SH R-S-S-R

Cysteine mutants

0

0.5

1

1.5

2

2.5

3

17C-34C 17C-35C 17C-36C

ΔΔ

G (

kca

l/m

ol)

[S. Shivaprasad and R. Wetzel, Biochem. 43, 15310 (2004)]

16

1718

1920

21

31

32

33

343536

15

Page 46: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

Re

lati

ve

In

ten

sit

y

20-34+2

A

B

(c)

746 750 754

Mass/Charge

(d)35-40

+1

561 565 569

727

(a)1-40+6

A

B

723 731

(b)

1-19+5

461 465 469

Re

lati

ve

In

ten

sit

y

Mass/Charge

HX-MS with in-line pepsin: distribution of protected amide protons

[M. Chen, I. Kheterpal, K. D. Cook and R. Wetzel, unpublished]

Page 47: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

M N*k1

k-1

Mel

k3

MelMel

k2 k4

G

Reaction coordinate

M

N*

N+1

N+2

N+1 N+2

Nucleation / Elongation

N*

Page 48: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

45

55

65

75

85

95

105

0 1 2 3 4 5 6

Time (hrs)

Rel

ati

ve

[Q47

]

Q47 Nucleation Kinetics in the Presence of Various Concentrations of Q20

2 M Q47 + [Q20 ], M

0

14

24

36

44

54

Page 49: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

30

40

50

60

70

80

90

100

110

0 2 4 6 8

Time (hrs)

Re

lati

ve

[Q

47

]

Q47 Nucleation Kinetics in the Presence of other PolyGln Peptides

2 M Q47 + 20 M ….

No addnQ10

Q15

Q20

Q25

Q29

Q33

Q40

Page 50: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

+

0

5

10

15

20

0 5 10 15 20 25 30

Time, mins

fmo

l b

ioti

n-Q

30

-10.3

-10.28

-10.26

-10.24

-10.22

-10.2

-10.18

-10.16

-10.14

0 5000 10000 15000 20000 25000

Time (sec)

ln [

mo

no

mer

, M]

Determination of Q47 fibril second order elongation rate constant

k+ = kpseudo1st / [growing ends]

k+ = 11,900 moles/liter-sec

Page 51: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

How is amyloid formation initiated? Polyglutamine studies

There are no kinetically relevant intermediates in nucleation of simple polyGln peptides

Results:

- the nucleus for polyGln aggregation is an energetically unfavorable monomer

- repeat length dependent nucleation efficiency may help account for ages-of-onset

- Kn* for a Q47 peptide is ~ 10-9

- short polyGln peptides in the environment can enhance nucleation efficiency

Page 52: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

Nucleation / Elongation

M N*k1

k-1

G

Reaction coordinate

Mk3

MMk2

M

N*

k4

N+1

N+2

N+1 N+2

Kn*

nucleation equilibrium constant

second order fibril elongation rate constant

= ½ Kn*k+2Cn*+2t2

[Qn] time

Page 53: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

16

1718

1920

21

31

32

33

34

3536

15

Side Chain Orientation and Packing Within the Aβ(1-40) Amyloid Fibril

[S. Shivaprasad, J.-T. Guo, Y. Xu and R. Wetzel, unpublished]

Page 54: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

Side Chain Orientation by Cys Accessibility

SH

SH SH

I-CH2C(O)NH2

S-CH2C(O)NH2

Page 55: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

Ala-edited Pro scan of Aβ(1-40) fibril stability

ΔΔG(Pro – Ala), kcal/mol

Aβ(1-40) sequence position

ΔΔ

G, k

cal/m

ol

-1

-0.5

0

0.5

1

1.5

2

2.5

4 14 15 16 17 18 19 20 21 22 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Page 56: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4 6 9 12 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 P2 P4

Proline Mutant

dd

G,

kcal

/mo

l

Amyloid Fibril Thermodynamics

WT DAEFRHDSGY EVHHQKLVFF AEDVGSNKGA IIGLMVGGVVP2 P PP4 P P P P

[Williams et al., J. Mol. Biol. 335, 833-842 (2004)]

Page 57: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

19 20 38 39

Alanine mutation ΔΔGs adjust for hydrophobicity effects in Pro series

Proline - WT ΔΔG

Alanine - WT ΔΔG

Pro-Ala ΔΔG

Aβ Sequence Position

ΔG

mu

t –

ΔG

wt,

kcal/

mol

[AD Williams & R Wetzel, Ms. in preparation]

Page 58: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

Additivity in Alanine mutation ΔΔGs

16

1718

1920

21

31

32

33

343536

15

0

0.5

1

1.5

2

2.5

17 34 17+34 17/34 17 25 17+27 17/27

Ala Mutants

ΔΔ

G,

kc

al/

ml

[AD Williams & R Wetzel, Ms. in preparation]

Page 59: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

Aβ(1-40) monomer seeded with Aβ(1-40) or IAPP fibrils

0

2

4

6

8

10

0 1 2 3 4Time (hrs)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4Time (hrs)

All experiments with 10 nM biotinyl-Aβ

Fm

ol b

ioti

nyl-

Fm

ol b

ioti

nyl-

Aβ amyloid fibrils on plate

IAPP amyloid fibrils on plate

IAPP fibrils are only 1-2% efficient, compared with Aβ, in seeding Aβ elongation.

Collagen on plate

[O’Nuallain, Williams, Westermark & Wetzel, J. Biol. Chem. 279, 17490-17499 (2004)]

Page 60: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

Rates of A Elongation with Various Amyloid Fibrils as Seeds

Seed Fibril Elongation Rate (fmol/hour) Relative Efficiency

A 7.5 ± 1.1 100 %

IAPP 0.086 ± 0.01 1.1

Ig light chain LEN (1-30) 0.019 ± 0.001 0.3

Ig light chain VL JTO5 0.042 ± 0.006 0.6

2-microglobulin 0.014 ± 0.001 0.2

Ure2p 0.069 ± 0.001 0.9

Polyglutamine Q30 0.44 ± 0.01 5.9

Collagen 0.0075 ± 0.001 0.1

Ovalbumin, reduced/alkylated 0.009 ± 0.003 0.1

[O’Nuallain, Williams, Westermark & Wetzel, J. Biol. Chem. 279, 17490-17499 (2004)]

Page 61: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

Wavelength(nm)

Random coil to -sheet transition in a Q42 peptide incubated at pH 7, 37 °C

-10000

-5000

0

5000

10000

15000

20000

200 220 240 260

[]

deg

ree

cm2 d

mol

e-1

T = 0 hrs

T = 217 hrs

T = 86 hrs

T = 45 hrs

[Chen, Ferrone & Wetzel, PNAS (2002)]

Page 62: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

Fractionation of an Incomplete Aggregation Reaction

200 220 240 260

-10000

-5000

0

5000

10000

15000

20000

Wavelength(nm)

[]

deg

ree

cm2 d

mol

e-1

aggregation time point (86 hrs)

resuspended pellet

supernatant

supernatant plus pellet spectra

No evidence for stable, -sheet structure in the non-aggregated fraction

Page 63: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

14

1210

8

6

4

2

40

38

16

18

282624

22

20

36

34

32

30

14

1210

8

6

440

38

40

38

16

18

282624

22

20

36

34

32

30

A Working Model for the Aβ(1-40) Fibril

[Williams et al., J. Mol. Biol. 335, 833-842 (2004)]

[Guo, J.T., Wetzel, R. and Xu, Y., Proteins (2004) In press.]

Page 64: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

0 50 100 150 200 250

0

20

40

60

80

100

Hours

% A

ggre

gate

For

mat

ion

Aggregation of a Q42 Peptide Monitored by Four Parameters

-sheet formation proceeds in parallel with aggregation

HPLC insolubles

Thioflavin T fluoresence

-sheet (CD)

Light scattering

Page 65: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

Protein Deposition in Human Disease

• Amyloid Plaques (Alzheimer’s)• Amyloid Angiopathy (microvasculature)• Neurofibrillary Tangles (Alzheimer’s; tauopathies)• Lewy Bodies (Parkinson’s; Lewy Body Dementia)• Polyglutamine aggregates (Huntington’s)• Rosenthal Fibers (astrocytes)• Prion Diseases• SOD aggregates (ALS)

• Amyloid (heart, kidney, liver, lungs, peripheral nerves, spleen, skin) - serum amyloid A - transthyretin - Ig light chain - islet amyloid polypeptide (IAPP) - β2-microglobulin• Z-form 1-Antitrypsin Deposition (liver)• Inclusion Body Myositis (muscle)• Mallory Bodies (liver)

BRAIN

PERIPHERY

Page 66: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5 3 3.5 4Time (h)

Th

T f

luo

resc

ence

or

[Aβ

] (μ

M)

Seeded amyloid growth from Aβ(1-40)

ThT

[Aβ(1-40)]

Cr

Page 67: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5 3 3.5 4Time (h)

Th

T f

luo

resc

ence

or

[Aβ

] (μ

M)

Seeded amyloid growth from Aβ(1-40)

ThT

[Aβ(1-40)]

Page 68: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6

Time (hrs)

Th

T f

luo

res

ce

nc

e

Seeded amyloid growth from Aβ(1-40) concentrated from Cr plateau

Page 69: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5 3 3.5 4Time (h)

Th

T f

luo

resc

ence

or

[Aβ

] (μ

M)

Seeded amyloid growth from Aβ(1-40)

ThT

[Aβ(1-40)]

Page 70: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

Aβ(1-40) fibril dissociation to equilibrium

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60

Time (hrs)

[Aβ

] (μ

M)

0.5-day fibrils

20-day fibrils

Page 71: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

CAG REPEAT LENGTHS IN HUNTINGTON’S DISEASE

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 4525 26 27 2824

penetrance

Page 72: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

Repeat Length Dependence of Age of Onset in Huntington’s Disease

[Courtesy Marcy MacDonald]

Page 73: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

log C

-0.3 0.0 0.3 0.6 0.9 1.2 1.5 1.8

-5

-4

-3

-2

-1

0

Q28

Q36

Q47

Concentration Dependence of Nucleation Kinetics

log

[½ k

+2 K

n* c

(n*+

2)]

slope = n* + 2

[Chen, Ferrone & Wetzel, PNAS (2002)]

Page 74: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

0

5

10

15

20

25

30

35

40

0 100 200 300 400 500 600

Time (hrs)

Mo

no

me

r (u

M)

Q45

PGQ9

PGQ8

PGQ7

0

5

10

15

20

25

30

0 50 100 150 200

Time (hrs)

Mo

no

mer

(u

M)

PGQ9

PDGQ9

PolyGln Aggregate Structure

0

5

10

15

20

25

30

35

0 100 200 300 400

Time (hrs)

Mo

no

me

r (u

M) PGQ9(P

2)

Q15PQ26

PGQ9

Q45

PGQ9 PG PG PG

PG PG PGPGQ9(P2) P

PQ15PQ26

Page 75: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

PolyGln Aggregate Structure

PG

PG

PG

PG

PG

PG

N

N

C

C

PG

PG

PG

PGG

PG

P

N

N

C

C

Anti-parallel -sheet model Parallel -helix model

Page 76: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

Aggregation-competentmonomer

Aggregation-incompetentmonomer

(polyproline type II helix??)

AggregateWetzel and Creamer labs

Wetzel lab

Computer simulations: Rohit Pappu, Washington University

Effect of flanking sequences on polyglutamine aggregate stability

Page 77: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

Summary

• as predicted by theory, in vitro amyloid fibrils can achieve an equilibrium with monomer

• the position of this equilibrium is proportional to the free energy of fibril formation

• measurement of shifted equilibria allows quantitation of mutational effects

• amyloid fibrils exhibit a remarkable structural plasticity

• in ideal cases, aggregation kinetics can be interpreted mechanistically

• the kinetic nucleus for polyglutamine aggregation is an alternatively folded monomer

• accumulated sequence changes strongly diminish cross-seeding efficiency

Page 78: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

Mutagenesis and Kinetics/Thermodynamics in Globular Protein Structure

• studies on “natural” mutants of globular proteins (1970s) - Gary Ackers (human hemoglobin variants) - Mike Laskowski (ovomucoid variants)

• protein engineering approaches to globular protein folding stability (1984->) - Ron Wetzel (T4 lysozyme disulfide bonds) - Brian Matthews (T4 lysozyme point mutations) - Robert Matthews, Alan Fersht (folding kinetics)

• protein folding stability and amyloidogenicity (1993->) - Jeff Kelly (transthyretin / TTR amyloidosis) - Ron Wetzel (light chain FV domain / Ig light chain amyloidosis) - Chris Dobson (lysozyme amyloidosis)

• amyloid fibril assembly kinetics and thermodynamics….landscape continuity? - kinetics complicated by protofibrils and by secondary nucleation - can fibril formation reach true equilibrium positions in vitro?

Page 79: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

Aggregation and Packing Interactions

[R. Wetzel, Trends Biotech. 12, 193-198 (1994)]

Page 80: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

ACKNOWLEDGMENTS

UTMCK• Indu Kheterpal• Angela Williams• Shankaramma Shivaprasad• Israel Huff• Tina Richey• Kimberley Salone• Matt Sega• Brian Bledsoe• Valerie Berthelier• Lezlee Dice• Brian O’Nuallain• Anusri Bhattacharyya Mitra• Songming Chen• Wen Yang• Brad Hamilton• Ashwani Thakur• Geetha Thiagarajan• Roopa Kenoth• Merav Geva• Alex Osmand• Erica Johnson Rowe• Erin Newby

UGA• Juntao Guo• Ying Xu

UT Main Campus

• Maolian Chen• Erik Portelius• David Kaleta• Shaolian Zhou• Kelsey Cook

• Neil Whittemore• Rajesh Mishra• Engin Serpersu

• Guangyao Gao• Ying Chen• Peter Zhang

• Anna Gardberg• Chris Dealwis

• Liz Howell

• John Dunlap

Harvard Med• Hilal Lashuel• Peter Lansbury• Prasanna Venkatraman• Fred Goldberg

FUNDING: NIH (NIA, NINDS); Hereditary Disease Foundation

Cal Tech• Jan Ko• Susan Ou• Paul Patterson

Uppsala

• Per Westermark

Drexel • Frank Ferrone

Page 81: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

Thermodynamics of Amyloid Fibril Formation

• In globular proteins, some amyloidogenic mutations work by weakening native structure - transthyretin (Kelly) - Ig light chain (Wetzel)

• local sequence also affects amyloidogenicity through fibril packing effects

• simplest systems are where the starting monomer is in coil, ….. - no overlay of a stable native state - reasonable assumption that mutation minimally affects native state G

• ….. and where there is an easily and accurately measured Cr

• Results: - Aβ(1-40) fibril growth tends to an easily measured, reversible equilibrium position - ΔG = - 8.6 kcal/mol - ΔΔGs from Ala mutations agree with data from parallel β-sheet in globular protein - Ala-edited Pro scan reveals sequence segments in rigid structure, ….. - … but propagated structural changes in H-bonding complicate interpretation

Page 82: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

Many Pro-destabilized Aβ(1-40) fibrils gain H-bonds

[Williams et al., J. Mol. Biol. 335, 833-842 (2004)]

0

2

4

6

8

10

12

14

16

18

4 6 9 12 14 15 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 33 34 35 36 37 38 39 WT

Position of Pro replacement

Deu

teri

um

co

nte

nt

few

er H

-bon

dsm

ore

H-b

onds

Page 83: Kinetics and Thermodynamics of Amyloid Fibril Formation Ron Wetzel University of Tennessee

Normal globular proteins generally have only one stable state