kinetic monte carlo triangular lattice. diffusion thermodynamic factor self diffusion coefficient

28
Kinetic Monte Carlo Triangular lattice

Upload: silvester-stafford

Post on 01-Jan-2016

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Kinetic Monte Carlo Triangular lattice. Diffusion Thermodynamic factor Self Diffusion Coefficient

Kinetic Monte Carlo

Triangular lattice

Page 2: Kinetic Monte Carlo Triangular lattice. Diffusion Thermodynamic factor Self Diffusion Coefficient

Diffusion

D = Θ ⋅DJ

DJ =1

2d( )t

1

r R i t( )

i=1

N

∑ ⎛

⎜ ⎜

⎟ ⎟

2

Θ=∂ μ

kBT

⎝ ⎜

⎠ ⎟

∂ ln x=

N

N 2 − N2

Thermodynamic factor

Self DiffusionCoefficient

Page 3: Kinetic Monte Carlo Triangular lattice. Diffusion Thermodynamic factor Self Diffusion Coefficient

Δ r

R i t( )

Δ r

R j t( )

DJ =1

2d( )t

1

r R i t( )

i=1

N

∑ ⎛

⎜ ⎜

⎟ ⎟

2

Diffusion

D* =1

2d( )t

1

r R i t( )

2

i=1

N

Page 4: Kinetic Monte Carlo Triangular lattice. Diffusion Thermodynamic factor Self Diffusion Coefficient

Standard Monte Carlo to study diffusion

• Pick an atom at random

Page 5: Kinetic Monte Carlo Triangular lattice. Diffusion Thermodynamic factor Self Diffusion Coefficient

Standard Monte Carlo to study diffusion

• Pick an atom at random• Pick a hop direction

Page 6: Kinetic Monte Carlo Triangular lattice. Diffusion Thermodynamic factor Self Diffusion Coefficient

Standard Monte Carlo to study diffusion

• Pick an atom at random• Pick a hop direction• Calculate

exp −ΔEb kBT( )

Page 7: Kinetic Monte Carlo Triangular lattice. Diffusion Thermodynamic factor Self Diffusion Coefficient

Standard Monte Carlo to study diffusion

• Pick an atom at random• Pick a hop direction• Calculate • If ( >

random number) do the hop€

exp −ΔEb kBT( )

exp −ΔEb kBT( )

Page 8: Kinetic Monte Carlo Triangular lattice. Diffusion Thermodynamic factor Self Diffusion Coefficient

Kinetic Monte Carlo

Consider all hops simultaneously

A. B. Bortz, M. H. Kalos, J. L. Lebowitz, J. Comput Phys, 17, 10 (1975).F. M. Bulnes, V. D. Pereyra, J. L. Riccardo, Phys. Rev. E, 58, 86 (1998).

Page 9: Kinetic Monte Carlo Triangular lattice. Diffusion Thermodynamic factor Self Diffusion Coefficient
Page 10: Kinetic Monte Carlo Triangular lattice. Diffusion Thermodynamic factor Self Diffusion Coefficient
Page 11: Kinetic Monte Carlo Triangular lattice. Diffusion Thermodynamic factor Self Diffusion Coefficient
Page 12: Kinetic Monte Carlo Triangular lattice. Diffusion Thermodynamic factor Self Diffusion Coefficient
Page 13: Kinetic Monte Carlo Triangular lattice. Diffusion Thermodynamic factor Self Diffusion Coefficient
Page 14: Kinetic Monte Carlo Triangular lattice. Diffusion Thermodynamic factor Self Diffusion Coefficient
Page 15: Kinetic Monte Carlo Triangular lattice. Diffusion Thermodynamic factor Self Diffusion Coefficient
Page 16: Kinetic Monte Carlo Triangular lattice. Diffusion Thermodynamic factor Self Diffusion Coefficient
Page 17: Kinetic Monte Carlo Triangular lattice. Diffusion Thermodynamic factor Self Diffusion Coefficient

Wi = ν * exp−ΔEi

kBT

⎝ ⎜

⎠ ⎟

For each potential hop i, calculate the hop rate

Page 18: Kinetic Monte Carlo Triangular lattice. Diffusion Thermodynamic factor Self Diffusion Coefficient

Wi = ν * exp−ΔEi

kBT

⎝ ⎜

⎠ ⎟

For each potential hop i, calculate the hop rate

Then randomly choose a hop k, with probability

Wk

Page 19: Kinetic Monte Carlo Triangular lattice. Diffusion Thermodynamic factor Self Diffusion Coefficient

Wi = ν * exp−ΔEi

kBT

⎝ ⎜

⎠ ⎟

For each potential hop i, calculate the hop rate

Then randomly choose a hop k, with probability

Wk

= random number

ξ1

Page 20: Kinetic Monte Carlo Triangular lattice. Diffusion Thermodynamic factor Self Diffusion Coefficient

Wi = ν * exp−ΔEi

kBT

⎝ ⎜

⎠ ⎟

For each potential hop i, calculate the hop rate

Then randomly choose a hop k, with probability

Wk

= random number

ξ1

Wi

i=1

k−1

∑ <ξ1 ⋅W ≤ Wi

i= 0

k

W = Wi

i= 0

Nhops

Page 21: Kinetic Monte Carlo Triangular lattice. Diffusion Thermodynamic factor Self Diffusion Coefficient

Then randomly choose a hop k, with probability

Wk

= random number

ξ1

Wi

i=1

k−1

∑ <ξ1 ⋅W ≤ Wi

i= 0

k

W = Wi

i= 0

Nhops

Page 22: Kinetic Monte Carlo Triangular lattice. Diffusion Thermodynamic factor Self Diffusion Coefficient

Time

After hop k we need to update the time

= random number

ξ 2

Δt = −1

Wlogξ 2

Page 23: Kinetic Monte Carlo Triangular lattice. Diffusion Thermodynamic factor Self Diffusion Coefficient

Two independent stochastic variables:

the hop k and the waiting time

Wi

i=1

k−1

∑ <ξ1 ⋅W ≤ Wi

i= 0

k

Δt = −1

Wlogξ 2 €

W = Wi

i= 0

Nhops

∑€

Wi = ν * exp−ΔEi

kBT

⎝ ⎜

⎠ ⎟

Δt

Page 24: Kinetic Monte Carlo Triangular lattice. Diffusion Thermodynamic factor Self Diffusion Coefficient

Kinetic Monte Carlo

• Hop every time

• Consider all possible hops simultaneously

• Pick hop according its relative probability

• Update the time such that on average equals the time that we would have waited in standard Monte Carlo

Δt

A. B. Bortz, M. H. Kalos, J. L. Lebowitz, J. Comput Phys, 17, 10 (1975).F. M. Bulnes, V. D. Pereyra, J. L. Riccardo, Phys. Rev. E, 58, 86 (1998).

Page 25: Kinetic Monte Carlo Triangular lattice. Diffusion Thermodynamic factor Self Diffusion Coefficient

Triangular 2-d lattice, 2NN pair interactions

Er

σ ( ) = Vo +Vpo intσ l +1

2VNNpairσ l σ i

i= NNpairs

∑ +1

2VNNNpairσ l σ j

j= NNNpairs

∑ ⎛

⎜ ⎜ ⎜

⎟ ⎟ ⎟

l=1

N lattice−sites

Page 26: Kinetic Monte Carlo Triangular lattice. Diffusion Thermodynamic factor Self Diffusion Coefficient

Activation barrier

ΔEkra = Eactivated −state −1

2E1 + E2( )

ΔEbarrier = ΔEkra +1

2E final − Einitial( )

Page 27: Kinetic Monte Carlo Triangular lattice. Diffusion Thermodynamic factor Self Diffusion Coefficient

Thermodynamics

Θ=∂ μ

kBT

⎝ ⎜

⎠ ⎟

∂ ln x=

N

N 2 − N2

D = Θ ⋅DJ

Page 28: Kinetic Monte Carlo Triangular lattice. Diffusion Thermodynamic factor Self Diffusion Coefficient

Kinetics

D = Θ ⋅DJ

DJ =1

2d( )t

1

r R i t( )

i=1

N

∑ ⎛

⎜ ⎜

⎟ ⎟

2