kinetic analysis of the conformational stability and aggregation of … · 2019-12-18 · 0 50 100...

34
Kinetic Analysis of the Conformational Stability and Aggregation of mAbs Using Calorimetry or Two New Things To Do With Your Calorimeter Ernesto Freire [email protected] Johns Hopkins University Freire, E.

Upload: others

Post on 27-May-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Kinetic Analysis of the Conformational Stability and Aggregation of … · 2019-12-18 · 0 50 100 150 50 60 70 80 90 buffer 4 data buffer 4 fit) Temperature (°C) Freire, E. Clarkson

Kinetic Analysis of the Conformational Stability and Aggregation of mAbs Using Calorimetry

orTwo New Things To Do With Your Calorimeter

Ernesto Freire

[email protected]

Johns Hopkins University

Freire, E.

Page 2: Kinetic Analysis of the Conformational Stability and Aggregation of … · 2019-12-18 · 0 50 100 150 50 60 70 80 90 buffer 4 data buffer 4 fit) Temperature (°C) Freire, E. Clarkson

mAbs Denature and AggregateFreire, E.

Partial Denaturation or Complete Denaturation Can Lead to Aggregation

Page 3: Kinetic Analysis of the Conformational Stability and Aggregation of … · 2019-12-18 · 0 50 100 150 50 60 70 80 90 buffer 4 data buffer 4 fit) Temperature (°C) Freire, E. Clarkson

- Lower Concentration of Aggregating Species

Solution: Increase Tm or G

- Decrease Intrinsic Rate of Aggregation

Strategies to Slow Down Denaturation/Aggregation

Solution: Increase Activation Energy H*

Freire, E.

ki ki

Page 4: Kinetic Analysis of the Conformational Stability and Aggregation of … · 2019-12-18 · 0 50 100 150 50 60 70 80 90 buffer 4 data buffer 4 fit) Temperature (°C) Freire, E. Clarkson

Case Study: VRC07-523LS, a Broadly Neutralizing HIV-1 Antibody Currently in Phase 1 Clinical Trials

• VRC07-523LS is a VRC01 class IgG1 neutralizing antibody

• mAb VRC01 binds to CD4 binding site in envelope glycoprotein gp120. It neutralizes ∼90% of HIV-1 strains with an IC50 of less than 50 μg/ml

• VRC07 was identified through sequencing antibody-gene transcripts of VRC01 donor B cells

• Structure-based design was used to further optimize VRC07

• VRC07-523LS is 5- to 8-fold more potent than VRC01

• It neutralizes 96% of viruses tested

PDB: 4OLY, Kwon, Y.D., Kwong, P.D. 2014

Freire, E.

Page 5: Kinetic Analysis of the Conformational Stability and Aggregation of … · 2019-12-18 · 0 50 100 150 50 60 70 80 90 buffer 4 data buffer 4 fit) Temperature (°C) Freire, E. Clarkson

Temperature Denaturation of mAbs is an Irreversible ProcessDSC Usually Shows Peaks Corresponding to Fab, CH2 and CH3 Domains

Garber and Demarest BBRC 355 (2007) 751–757

Freire, E.

Page 6: Kinetic Analysis of the Conformational Stability and Aggregation of … · 2019-12-18 · 0 50 100 150 50 60 70 80 90 buffer 4 data buffer 4 fit) Temperature (°C) Freire, E. Clarkson

Irreversible Denaturation is Kinetically Controlled

ku kagg

Freire, E.

The kinetic control of irreversible protein denaturation in DSC was first discussed by Sanchez-Ruiz et al Biochemistry (1988) 27 1648.

-50

0

50

100

150

200

40 50 60 70 80 90

Cp

kca

l/K

*mol

Temp deg C

Page 7: Kinetic Analysis of the Conformational Stability and Aggregation of … · 2019-12-18 · 0 50 100 150 50 60 70 80 90 buffer 4 data buffer 4 fit) Temperature (°C) Freire, E. Clarkson

-50

0

50

100

150

200

40 50 60 70 80 90

Cp kca

l/K

*mol

Temp deg C

69.0°C

3days10days60days280days

1/k

Freire, E.

~1minute

The Rate of Denaturation Increases With TemperatureAt Tm the Rate of Denaturation is ~ 1 minute

Page 8: Kinetic Analysis of the Conformational Stability and Aggregation of … · 2019-12-18 · 0 50 100 150 50 60 70 80 90 buffer 4 data buffer 4 fit) Temperature (°C) Freire, E. Clarkson

Temperature Denaturation is Kinetically ControlledFreire, E.

-50

0

50

100

150

200

40 50 60 70 80 90

Cp

kca

l/K

*mo

l

Temp deg C

69.0°C1 min

1day10days60days280days

400days

800days

The Stability at Lower Temperatures Depends on the Activation Enthalpy H*.

- The Higher H*, the Higher the Stability.

- In Formulation or mAbSelection we want to Increase H* to Maximize Long Term Stability

Page 9: Kinetic Analysis of the Conformational Stability and Aggregation of … · 2019-12-18 · 0 50 100 150 50 60 70 80 90 buffer 4 data buffer 4 fit) Temperature (°C) Freire, E. Clarkson

10-8

10-7

10-6

10-5

0.0001

0.001

0.01

0.1

1

50 55 60 65 70

k m

in-1

Temp deg C

The Temperature Dependence of the Rate of Denaturation is Determined by the Activation Energy H*

Freire, E.

The Higher ΔH* the Faster the Decrease of the Rate of Denaturation/Aggregation Upon Lowering the Temperature

ΔH* = 100 kcal/mol

ΔH* = 200 kcal/mol

ΔH* = 150 kcal/mol

𝑘−1 = 7 𝑑𝑎𝑦𝑠

𝑘−1 = 140 𝑑𝑎𝑦𝑠

𝑘−1 = 14,000 𝑑𝑎𝑦𝑠

Page 10: Kinetic Analysis of the Conformational Stability and Aggregation of … · 2019-12-18 · 0 50 100 150 50 60 70 80 90 buffer 4 data buffer 4 fit) Temperature (°C) Freire, E. Clarkson

-20

0

20

40

60

80

100

50 55 60 65 70 75 80

Cp

kcal/K

*mo

l

Temp deg C

ΔH Area under the curve

ΔH* Activation EnthalpyShape of the Curve

Tm

Kinetic Deconvolution of DSC for Irreversible Denaturation Freire, E.

Hi* Can be Determined from Kinetic Deconvolution

Page 11: Kinetic Analysis of the Conformational Stability and Aggregation of … · 2019-12-18 · 0 50 100 150 50 60 70 80 90 buffer 4 data buffer 4 fit) Temperature (°C) Freire, E. Clarkson

𝐶𝑝 =∆𝐻𝑖𝑑𝐹𝑑,𝑖𝑑𝑇

𝑑𝐹𝑑,𝑖

𝑑𝑇=

𝑘𝑖𝐹𝑑,𝑖

𝛼

𝑘𝑖 = exp −∆𝐺𝑖

𝑅𝑇= exp(−

∆𝐻𝑖∗ −𝑇∆𝑆𝑖

𝑅𝑇)

Kinetic Deconvolution of DSC for Irreversible Denaturation Using Exact Equations

Freire, E.

Hi* Can be Determined from Kinetic Deconvolution

𝑑 𝑙𝑛𝐹𝑑,𝑖

𝑑𝑇=

𝑘𝑖

𝛼=

exp(−∆𝐺𝑖

𝑅𝑇)

𝛼

𝛼 =𝑑𝑇

𝑑𝑡= 𝑠𝑐𝑎𝑛 𝑟𝑎𝑡𝑒

𝑑𝐹𝑑,𝑖𝑑𝑡

= 𝑘𝑖𝐹𝑑,𝑖

Page 12: Kinetic Analysis of the Conformational Stability and Aggregation of … · 2019-12-18 · 0 50 100 150 50 60 70 80 90 buffer 4 data buffer 4 fit) Temperature (°C) Freire, E. Clarkson

-20

0

20

40

60

80

100

50 55 60 65 70 75 80

Cp kca

l/K

*mol

Temp deg C

H* = 100 kcal/mol

H* = 200 kcal/mol

The Effect of the Activation Enthalpy (H*) on the Shape of the DSC CurveFreire, E.

Page 13: Kinetic Analysis of the Conformational Stability and Aggregation of … · 2019-12-18 · 0 50 100 150 50 60 70 80 90 buffer 4 data buffer 4 fit) Temperature (°C) Freire, E. Clarkson

0

50000

100000

150000

50 55 60 65 70 75 80 85 90

pH 6.8 datapH 6.8 fitpH 6.5 datapH 6.5 fitpH 6.2 datapH 6.2 fitpH 6.0 datapH 6.0 fitpH 5.85 datapH 5.85 fitpH 5.7 datapH 5.7 fitpH 5.5 datapH 5.5 fit

Cp ca

l/K

*mol

Temp deg C

DSC Data and Kinetic Deconvolution as a Function of pH for mAb VRC07

50mM Histidine, 100mM NaCl

Freire, E.

Page 14: Kinetic Analysis of the Conformational Stability and Aggregation of … · 2019-12-18 · 0 50 100 150 50 60 70 80 90 buffer 4 data buffer 4 fit) Temperature (°C) Freire, E. Clarkson

Freire, E.

Kinetic Deconvolution of Cp Function of VRC07 pH 6.8

SumCp1Cp2Cp3

-50

0

50

100

150

200

50 55 60 65 70 75 80 85 90

Cp

kcal/K

*mol

Temp deg C

Page 15: Kinetic Analysis of the Conformational Stability and Aggregation of … · 2019-12-18 · 0 50 100 150 50 60 70 80 90 buffer 4 data buffer 4 fit) Temperature (°C) Freire, E. Clarkson

pH Dependence of Tm and Activation Enthalpy Freire, E.

50

100

150

200

5.5 6 6.5 7 7.5

dHa1dHa2dHa3

H

a kcal/m

ol

pH

62

64

66

68

70

72

74

76

78

5 5.5 6 6.5 7 7.5 8

Tm1 deg CTm2 deg CTm3 deg C

Tm

d

eg C

pH

Page 16: Kinetic Analysis of the Conformational Stability and Aggregation of … · 2019-12-18 · 0 50 100 150 50 60 70 80 90 buffer 4 data buffer 4 fit) Temperature (°C) Freire, E. Clarkson

Combination of Tm and Activation Enthalpy Indicate that pH 6.8 Offers Best Stability Profile

Freire, E.

50

100

150

200

5.5 6 6.5 7 7.5

dHa1dHa2dHa3

H

a kcal/m

ol

pH

62

64

66

68

70

72

74

76

78

5 5.5 6 6.5 7 7.5 8

Tm1 deg CTm2 deg CTm3 deg C

Tm

d

eg C

pH

Page 17: Kinetic Analysis of the Conformational Stability and Aggregation of … · 2019-12-18 · 0 50 100 150 50 60 70 80 90 buffer 4 data buffer 4 fit) Temperature (°C) Freire, E. Clarkson

Cp2 and Cp3 are the first to start denaturation. Even though they have higher Tm’s they have lower H*

Low Temperature Region Provides Clues to Long Term Stability.Kinetic Deconvolution Allows Extrapolation of Cp Components

Freire, E.

0

1

2

3

4

5

6

7

8

56 58 60 62 64

Cp kca

l/K

*mol

Temp deg C

SumCp1Cp2Cp3

-50

0

50

100

150

200

50 55 60 65 70 75 80 85 90

Cp

kcal/K

*mol

Temp deg C

Page 18: Kinetic Analysis of the Conformational Stability and Aggregation of … · 2019-12-18 · 0 50 100 150 50 60 70 80 90 buffer 4 data buffer 4 fit) Temperature (°C) Freire, E. Clarkson

pH 7.5

pH 6.8

At Low Temperatures Cp3 is the Least Stable Domain.pH 6.8 Appears to be the Most Appropriate pH

Freire, E.

SumCp1Cp2Cp3

Page 19: Kinetic Analysis of the Conformational Stability and Aggregation of … · 2019-12-18 · 0 50 100 150 50 60 70 80 90 buffer 4 data buffer 4 fit) Temperature (°C) Freire, E. Clarkson

0

50

100

150

50 60 70 80 90

buffer 1 databuffer 1 fit

Cp

(kca

l/K

/mo

l)

Temperature (°C)

0

50

100

150

50 60 70 80 90

buffer 2 databuffer 2 fit

Cp (

kcal/K

/mol)

Temperature (°C)

0

50

100

150

50 60 70 80 90

buffer 3 databuffer 3 fit

Cp

(kcal/K

/mo

l)

Temperature (°C)

0

50

100

150

50 60 70 80 90

buffer 4 databuffer 4 fit

Cp

(kca

l/K

/mo

l)

Temperature (°C)

Freire, E.

Clarkson et al (2018) Analytical Biochemistry

Further Formulation Optimization at pH 6.8. Addition of Excipients: DSC of VRC07 in Buffers 1 - 4

Buffer 1 - 50mM Histidine, 100mM NaCl, pH 6.8

Buffer 2 - 50mM Histidine, 100mM NaCl, 5% w/v sucrose, pH 6.8

Buffer 3 - 50mM Histidine, 100mM NaCl, 5% w/v sorbitol, pH 6.8

Buffer 4 - 50mM Histidine, 50mM NaCl, 5% w/v sucrose, 2.5% w/v sorbitol, pH 6.8

Page 20: Kinetic Analysis of the Conformational Stability and Aggregation of … · 2019-12-18 · 0 50 100 150 50 60 70 80 90 buffer 4 data buffer 4 fit) Temperature (°C) Freire, E. Clarkson

Effect of Excipients in Tm’s and H*’s of VRC07 at pH 6.8 Freire, E.

Tm’s show an increase for all transitions. Activation enthalpy is fairly constant for transitions 1 and 3. Buffer 4 is the best overall.

68

70

72

74

76

78

80

1 2 3 4

Tm1 deg CTm2 deg CTm3 deg C

Tm

deg C

buffer

40

80

120

160

200

1 2 3 4

dHa1dHa2dHa3

H

* kca

l/m

ol

buffer

Page 21: Kinetic Analysis of the Conformational Stability and Aggregation of … · 2019-12-18 · 0 50 100 150 50 60 70 80 90 buffer 4 data buffer 4 fit) Temperature (°C) Freire, E. Clarkson

Buffer 1 Buffer 4 SumCp1Cp2Cp3

Notice that Formulation Optimization is a Combination of Tm and Activation Enthalpy

Improvement of Low Temperature Stability by Excipients

Freire, E.

Page 22: Kinetic Analysis of the Conformational Stability and Aggregation of … · 2019-12-18 · 0 50 100 150 50 60 70 80 90 buffer 4 data buffer 4 fit) Temperature (°C) Freire, E. Clarkson

Isothermal CalorimetryFreire, E.

ΔHu Qagg

Denaturation and Aggregation Involve the Absorption or Release of Heat and Therefore Can Be Measured Calorimetrically at Constant Temperature

Page 23: Kinetic Analysis of the Conformational Stability and Aggregation of … · 2019-12-18 · 0 50 100 150 50 60 70 80 90 buffer 4 data buffer 4 fit) Temperature (°C) Freire, E. Clarkson

TAM Isothermal CalorimeterFreire, E.

Page 24: Kinetic Analysis of the Conformational Stability and Aggregation of … · 2019-12-18 · 0 50 100 150 50 60 70 80 90 buffer 4 data buffer 4 fit) Temperature (°C) Freire, E. Clarkson

VP DSC. Little Known Isothermal ModeFreire, E.

Page 25: Kinetic Analysis of the Conformational Stability and Aggregation of … · 2019-12-18 · 0 50 100 150 50 60 70 80 90 buffer 4 data buffer 4 fit) Temperature (°C) Freire, E. Clarkson

𝑄 = ∆𝐻𝑢 1 − 𝑒−𝑘𝑢𝑡 + 𝑄𝑎𝑔𝑔 1 − 𝑒−𝑘𝑢𝑡 (1 − 𝑒−𝑘𝑎𝑔𝑔𝑡)

Quantity Measured by Calorimeter is Heat Flow: dQ/dt

Isothermal Calorimetry

𝑑𝑄/𝑑𝑡 = 𝑘𝑢∆𝐻𝑢𝑒−𝑘𝑢𝑡 + 𝑘𝑎𝑔𝑔𝑄𝑎𝑔𝑔𝑒

−𝑘𝑎𝑔𝑔𝑡 + 𝑘𝑢𝑄𝑎𝑔𝑔𝑒−𝑘𝑢𝑡 − (𝑘𝑢 + 𝑘𝑎𝑔𝑔)𝑄𝑎𝑔𝑔𝑒

−(𝑘𝑢+ 𝑘𝑎𝑔𝑔)𝑡

Freire, E.

ΔHu Qagg

𝑄 =𝐻𝑒𝑎𝑡

𝑣[𝑃𝑇]= ∆𝐻𝑢𝐹𝑢 + 𝑄𝑎𝑔𝑔𝐹𝑢𝐹𝑎𝑔𝑔

Page 26: Kinetic Analysis of the Conformational Stability and Aggregation of … · 2019-12-18 · 0 50 100 150 50 60 70 80 90 buffer 4 data buffer 4 fit) Temperature (°C) Freire, E. Clarkson

Two Different Situations for Protein Denaturation/AggregationFreire, E.

ku kagg

ku >> kagg

ku << kagg

k

-100

0

100

200

300

400

500

0 2 4 6 8 10

q expq fit

He

at flo

w (k

ca

l/da

y/m

ol)

time days

Denaturation Precedes Aggregation

Denaturation, Aggregation Occur Simultaneously

-20

0

20

40

60

80

100

120

140

0 0.5 1 1.5 2 2.5 3 3.5 4

expfit

dQ

/dt (k

cal/d

ay/m

ol)

Time (days)

Page 27: Kinetic Analysis of the Conformational Stability and Aggregation of … · 2019-12-18 · 0 50 100 150 50 60 70 80 90 buffer 4 data buffer 4 fit) Temperature (°C) Freire, E. Clarkson

-50

0

50

100

150

200

40 50 60 70 80 90

Cp

kca

l/K

*mol

Temp deg C

-100

0

100

200

300

400

500

0 2 4 6 8 10

q expq fit

Heat flow

(k

cal/day/m

ol)

time days

k = 1.82 days-1 (1/k = 14h)

Isothermal Calorimetry at 60°C, 100 mg/mL

Temperature Denaturation and Aggregation of mAb VRC07

DSC of VRC07

Freire, E.

Page 28: Kinetic Analysis of the Conformational Stability and Aggregation of … · 2019-12-18 · 0 50 100 150 50 60 70 80 90 buffer 4 data buffer 4 fit) Temperature (°C) Freire, E. Clarkson

1 2 3 4 5 6 7 8

q 1-100

qfit 1-100

q 2-100

qfit 2-100

q 3-100

qfit 3-100

q 4-100

qfit 4-100

time days

Clarkson et al (2018) Analytical Biochemistry, In Press

Denaturation/Aggregation Measured by Isothermal Calorimetry (100mg/mL)

Freire, E.

Page 29: Kinetic Analysis of the Conformational Stability and Aggregation of … · 2019-12-18 · 0 50 100 150 50 60 70 80 90 buffer 4 data buffer 4 fit) Temperature (°C) Freire, E. Clarkson

Kinetics of Denaturation/Aggregation Buffers 1 and 4 at 60C(Isothermal Calorimetry Data)

-100

0

100

200

300

400

500

0 2 4 6 8 10

Heat F

low

k

cal/d

ay*m

ol

time days

k = 1.82 days-1 (1/k = 0.55 days) buffer 1

k = 0.37 days-1 (1/k = 2.7 days) buffer 4

Freire, E.

Clarkson et al (2018) Analytical Biochemistry, In Press

Page 30: Kinetic Analysis of the Conformational Stability and Aggregation of … · 2019-12-18 · 0 50 100 150 50 60 70 80 90 buffer 4 data buffer 4 fit) Temperature (°C) Freire, E. Clarkson

VRC07 Denaturation/Aggregation Rates in Different Formulations at 60C

Discrimination Between Different Formulations

Freire, E.

0

0.5

1

1.5

2

A B C D

TA

M d

enat/agg r

ate

s days

-1

Formulation1 2 3 4

Formulation

Page 31: Kinetic Analysis of the Conformational Stability and Aggregation of … · 2019-12-18 · 0 50 100 150 50 60 70 80 90 buffer 4 data buffer 4 fit) Temperature (°C) Freire, E. Clarkson

SEC chromatograms of VRC07 in the four formulation buffers

after 12 weeks storage at 25°C:

red: buffer 1

blue: buffer 2

green: buffer 3

black: buffer 4

Freire, E.

Page 32: Kinetic Analysis of the Conformational Stability and Aggregation of … · 2019-12-18 · 0 50 100 150 50 60 70 80 90 buffer 4 data buffer 4 fit) Temperature (°C) Freire, E. Clarkson

90

91

92

93

94

95

96

97

0 5 10 15

Buffer 1Buffer 2Buffer 3Buffer 4

y = 95.808 - 0.42633x R= 0.99687

y = 95.775 - 0.3389x R= 0.98572

y = 95.755 - 0.2465x R= 0.98028

y = 95.941 - 0.23289x R= 0.9873

%M

on

om

er

Time (weeks)

SEC Data for Four Different Formulations at 25°CFreire, E.

Page 33: Kinetic Analysis of the Conformational Stability and Aggregation of … · 2019-12-18 · 0 50 100 150 50 60 70 80 90 buffer 4 data buffer 4 fit) Temperature (°C) Freire, E. Clarkson

Correlation Between SEC and Isothermal Calorimetry Rates

Freire, E.

5

6

7

8

9

10

0 0.5 1 1.5 2

y = 5.6946 + 1.4968x R= 0.92814

SE

C %

Agg

regate

s

10 w

eeks incubation 2

5oC

TAM rate days-1

Page 34: Kinetic Analysis of the Conformational Stability and Aggregation of … · 2019-12-18 · 0 50 100 150 50 60 70 80 90 buffer 4 data buffer 4 fit) Temperature (°C) Freire, E. Clarkson

Conclusions

- Kinetic Deconvolution of DSC: Activation enthalpies for each denaturation peak. Temperature dependence of denaturation rates. Combined analysis of H* and Tm allows selection of best formulation.

- Isothermal Calorimetry: Rates of denaturation/aggregation at constant temperature can be determined in one week. Correlates well with SEC data and can be used to assess quality of antibody or formulation.

Freire, E.

For additional information or to discuss a collaboration please contact E. Freire at [email protected]