kinematics notes part 2 - weeblyclogankvhs.weebly.com/uploads/7/8/6/8/78684366/2.0... ·...

7
Kinematics Notes Part 2 Vectors, Simple Problems, Graphs of Motion 1 February 17 2017 Thurs Feb 9 Thursday, Feb 9th Mark & Hand‐in Toolbox & Sci10 Begin Kinematics > Chapter 2: Describing Motion Displacement, Velocity, Acceleration Reference Frame & Point Math Toolbox Quick Write tomorrow Kinematics Unit 1: Kinematics HOW things move... Chapter 2: Describing Motion 3 Key Words Displacement Velocity Acceleration Ref Frame & Point 1) Identify the reference frame (Who is the observer? Are they moving?) 2) Choose smart reference points (When/where do we begin measurements?) Describing Motion 1 0 2 3 4 5 1 2 3 4 5 Scalars vs Vectors Scalars vs Vectors Magnitude Magnitude Direction & Amount Quantity Measurement Number [ ] Distance: 5m Speed: 110 km/h Time: 46 mins Acceleration: 2 m/s 2 Mass: 75 kg Energy: 120 J Work: 80 J Displacement: 5 m [W] Velocity: 110 km/h [E] Acceleration: 2 m/s 2 @ 45 Force: 500 N [down] Momentum: 45 kgm/s [right] o Describing Motion Qualitative vs Quantitative Qualitative vs Quantitative Qualities Quantities Measurements & Calculations Diagrams & Descriptions 2 4 6 8 2 4 6 8 d (m) t (s) Describing Motion

Upload: others

Post on 17-Jul-2020

10 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Kinematics Notes Part 2 - Weeblyclogankvhs.weebly.com/uploads/7/8/6/8/78684366/2.0... · 2018-09-04 · Kinematics Notes Part 2 Vectors, Simple Problems, Graphs of Motion 1 February

Kinematics Notes Part 2

Vectors, Simple Problems, Graphs of Motion 1

February 17 2017

Thurs Feb 9

Thursday, Feb 9th

• Mark & Hand‐in Toolbox & Sci10

• Begin Kinematics> Chapter 2: Describing Motion

– Displacement, Velocity, Acceleration– Reference Frame & Point 

••Math Toolbox Quick Write tomorrow

Kinematics

Unit 1:KinematicsHOW things move...

Chapter 2: Describing Motion

3 Key Words

Displacement

Velocity

Acceleration

Ref Frame & Point

1) Identify the reference frame(Who is the observer? Are they moving?)

2) Choose smart reference points(When/where do we begin measurements?)

Describing Motion

­1 0­2­3­4­5 1 2 3 4 5

Scalars vs Vectors

Scalars vs Vectors

Magnitude MagnitudeDirection&

AmountQuantity

MeasurementNumber[ ]

Distance: 5 mSpeed: 110 km/hTime: 46 mins

Acceleration: 2 m/s2Mass: 75 kgEnergy: 120 JWork: 80 J

Displacement: 5 m [W]Velocity: 110 km/h [E]

Acceleration: 2 m/s2 @ 45Force: 500 N [down]

Momentum: 45 kgm/s [right]

o

Describing Motion

Qualitative vs Quantitative

Qualitative vs Quantitative

Qualities Quantities

Measurements & Calculations

Diagrams & Descriptions

2468

2 4 6 8

d (m)

t (s)

Describing Motion

Page 2: Kinematics Notes Part 2 - Weeblyclogankvhs.weebly.com/uploads/7/8/6/8/78684366/2.0... · 2018-09-04 · Kinematics Notes Part 2 Vectors, Simple Problems, Graphs of Motion 1 February

Kinematics Notes Part 2

Vectors, Simple Problems, Graphs of Motion 2

February 17 2017

Av Speed vs Velocity

Average Velocity & Speed

vav = ΔdΔt

}Average VELOCITY is defined as total displacement divided by the total time

Average SPEED is defined as the total distance travelled divided by the total time}vav = ΔdΔt

Note: These are TIME averages, not statistical averages. You should NOT add up individual speeds/velocities and divide by how many there are. 

dv tav

Ticker tape

Describing MotionA ticker tape machine taps a dot onto a strip of paper as the paper slides through the machine. It can give both qualitative and quantitative information about motion.

+/­ Directions

Describing Motion

+

+‐

UP

DOWN

LEFT RIGHT

+

+

When performing calculations using vectors, you must show opposite directions using +/‐ signs. Set them yourself if the question hasn't done it.

Positive Directions: up, right, north, & eastNegative Directions: down, left, south, & west

Types of Velocity

Describing MotionUniform Motion: 

Non‐uniform Motion: 

Average Velocity:

Instantaneous Velocity:

velocity remains constant; does not change direction or magnitude; instantaneous & average velocities are exactly the same along entire trip. velocity is not constant; changes direction and/or magnitude; object is accelerating.

calculated using initial & final points (displacement); ignores changes along the path/trip.

velocity at one single point in time;calculated from a position‐time graph

Dist vs Disp

Distance & DisplacementExample:A squirrel starts at the curb and tries to scamper straight across a road. It runs out 8 m, sees a dog on the other side of the road and runs back 3 m before being flattened by a truck. What total distance did the squirrel run? What was its displacement?

Reference point?Starting (initial) position?Ending (final) position?

p. 45 #1­3

Practice Problems: page 45, #1‐3

Page 3: Kinematics Notes Part 2 - Weeblyclogankvhs.weebly.com/uploads/7/8/6/8/78684366/2.0... · 2018-09-04 · Kinematics Notes Part 2 Vectors, Simple Problems, Graphs of Motion 1 February

Kinematics Notes Part 2

Vectors, Simple Problems, Graphs of Motion 3

February 17 2017

Fri Feb 17

Friday, Feb 17th

• Check & Correct Pratice: p.45 #1‐3• Check & Correct P‐T Graphs Sheet

••P‐T to V‐T Graphs•Acceleration

p45 #1

Practice Problems: page 45, #1‐3

Feb 17­9:29 AM p45 #3a

Practice Problems: page 45, #1‐3

p45 #3bcd

Practice Problems: page 45, #1‐3

Slope = Velocity

vave = ΔdΔt

Slope of a P‐T GraphMotion of a Cyclist

1.3 2.6 3.9 5.2 6.5

12

24

36

48

60

time (s)

position (m[E])

• Slope = rise/run

= Δy/Δx

= Δd/Δt

Page 4: Kinematics Notes Part 2 - Weeblyclogankvhs.weebly.com/uploads/7/8/6/8/78684366/2.0... · 2018-09-04 · Kinematics Notes Part 2 Vectors, Simple Problems, Graphs of Motion 1 February

Kinematics Notes Part 2

Vectors, Simple Problems, Graphs of Motion 4

February 17 2017

P­T Graph (Bike)

P‐T to V‐T Graph

AC

B

V­T Graph (Bike)

Velocity‐Time GraphsBike Ride Graph

P­T to V­T Graphs

Going from P‐T to V‐T: Tips1) Calculate the slope along each line segment on your P‐T graph. (v is the same # for the entire line)

2) Make sure the times match up on both graphs.

Bike Ride Graph

Time (s)

Velocity (m

/s [N

])

A

C

B400 800 1200 1600

1

2

‐1

‐2

V­T Slope = Acceleration

D

A C

B

E

V‐T Graph & AccelerationPOSITION‐time graph: slope = velocity

(b/c it shows us how position changes over time)

VELOCITY‐time graph: slope = acceleration(b/c it shows us how velocity changes over time)

vave = ΔdΔt

slope = rise/run = Δy/Δx = Δd/Δt

a = ΔvΔt

slope = rise/run = Δy/Δx = Δv/Δt

it's a vector too!

Graphical Analysis

Acceleration:

V‐T Graph: a & d

Displacement:h

vav ΔtΔd Δv

aav Δt

Graphical Analysis

Acceleration:

V‐T Graph: a & d

Displacement:

vav ΔtΔd Δv

aav Δt

Page 5: Kinematics Notes Part 2 - Weeblyclogankvhs.weebly.com/uploads/7/8/6/8/78684366/2.0... · 2018-09-04 · Kinematics Notes Part 2 Vectors, Simple Problems, Graphs of Motion 1 February

Kinematics Notes Part 2

Vectors, Simple Problems, Graphs of Motion 5

February 17 2017

Graphical Analysis

Acceleration:

V‐T Graph: a & d

Displacement:

vav ΔtΔd Δv

aav Δt

Acceleration

a = Δv      Δt

Units: m/s  =  m/s/s  =  m/s2                s

Acceleration• A vector quantity that describes the rate of change in velocity

o how velocity changes over time

Example:A truck driving 20 m/s East begins to accelerate at 1.5 m/s2.

Time (s)

Velocity (m/s)

0 1 2 3 4 5

Change & Average

vave = ΔdΔt

a = Δv      Δt

What does "average velocity" mean?

What does that "delta" really mean??

Vectors

• Velocity vector points in the same direction as the object's motion. • Acceleration vector depends on how the velocity is changing and does not always point in the same direction as the velocity.

• Increasing velocity (speeding up)• vectors point in __________________ direction• must use ________________ sign in your math

• Decreasing velocity (slowing down)• vectors point in _____________________ direction• must use ___________________ sign in your math

Acceleration Vector

Changing Direction

An object can accelerate without changing its speed...

How?

Acceleration is a vector with magnitude and direction.

The direction can change without changing the number.

Acceleration

p70 #1,6,7 p73 #24­26

p. 73 #24‐26p. 70 #1, 6, 7

Then sketch P‐T and V‐T graphs of its motion.

Δvaav Δt

Page 6: Kinematics Notes Part 2 - Weeblyclogankvhs.weebly.com/uploads/7/8/6/8/78684366/2.0... · 2018-09-04 · Kinematics Notes Part 2 Vectors, Simple Problems, Graphs of Motion 1 February

Kinematics Notes Part 2

Vectors, Simple Problems, Graphs of Motion 6

February 17 2017

p.70 #1

p. 70 #1, 6, 7

p.70 6,7

p. 70 #1, 6, 7

p73 #24­26

p. 73 #24‐26

Uniform/non­uniform Acc

v (m/s)

t (s)t (s)

v (m/s) v (m/s)

t (s)

Uniform & Non‐uniform AccelerationVelocity• v=Δd/t• slope on a PT graph • can be uniform (constant, straight line) • or non‐uniform (changing, curved line)• use a tangent line on a curve

Acceleration• a = Δv/t• slope on a VT graph• can be uniform (constant, straight line) • or non‐uniform (changing, curved line)

> use a tangent line on a curve

Notice that we use the terms constant, average and instantaneous accelerationFig. 2.22 on page 64

t (s)t (s)

a (m/s2)

t (s)

a (m/s2) a (m/s2)

p.64 Figure 2.22

Graph & Slope Comparisons : P‐T, V‐T, A‐T Graphs

v: Const, Ave, Inst

If instantaneous = average, then it's constant.Meaning... that if the velocity at any given point on a line is the same as the average from start to finish, the velocity must not be changing. This is also true for acceleration.

Page 7: Kinematics Notes Part 2 - Weeblyclogankvhs.weebly.com/uploads/7/8/6/8/78684366/2.0... · 2018-09-04 · Kinematics Notes Part 2 Vectors, Simple Problems, Graphs of Motion 1 February

Kinematics Notes Part 2

Vectors, Simple Problems, Graphs of Motion 7

February 17 2017

a: Const, Ave, Inst PT VT Summary P1