key$findings$of$the$amap$ 2015$assessmenton$black$ … · mean$posicon$of$the$arccc$frontin$$...

20
Key Findings of the AMAP 2015 Assessment on Black Carbon and Tropospheric Ozone as ArcCc Climate Forcers Lead authors: Patricia K. Quinn (NOAA PMEL) and Andreas Stohl (NILU) Authors: Steve Arnold, Alexander Baklanov, Terje Berntsen, Jesper Christensen, Sabine Eckhardt, Mark Flanner, Andreas Herber, Ulrik Korsholm, Kaarle Kupiainen, Joakim Langer, Kathy Law, Sarah Monks, Boris Quennehen, Knut von Salzen, Maria Sand, Julia Schmale, Vigdis Vestreng, ChrisCne Wiedinmyer Contribu2ng authors: Chaoyi Jiao, Sangeeta Sharma, Maryam Namazi, Ribu Cherian, Nikos Daskalakis, Chris Heyes, Øivind Hodnebrog, Maria Kanakidou, Zbigniew Klimont, Marianne Lund, Gunnar Myhre, Stelios Myriokefalitakis, Dirk Olivie, Johannes Quaas, JeanChristophe Raut, Bjørn Samset, Michael Schulz, Ragnhild Skeie, David Parrish, Markus Amann

Upload: others

Post on 27-Apr-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Key$Findings$of$the$AMAP$ 2015$Assessmenton$Black$ … · Mean$posiCon$of$the$ArcCc$Frontin$$ Winter$and$Summer$$ •%The$ArcCc$Front(temperature$gradient)$$ forms$abarrier$to$transportof$pollutants.$

Key  Findings  of  the  AMAP  2015  Assessment  on  Black  Carbon  and  Tropospheric  Ozone  as  ArcCc  Climate  Forcers  

Lead  authors:  Patricia  K.  Quinn  (NOAA  PMEL)  and  Andreas  Stohl  (NILU)    Authors:  Steve  Arnold,  Alexander  Baklanov,  Terje  Berntsen,  Jesper  Christensen,  Sabine  Eckhardt,  Mark  Flanner,  Andreas  Herber,  Ulrik  Korsholm,  Kaarle  Kupiainen,  Joakim  Langer,  Kathy  Law,  Sarah  Monks,  Boris  Quennehen,  Knut  von  Salzen,  Maria  Sand,  Julia  Schmale,  Vigdis  Vestreng,  ChrisCne  Wiedinmyer      Contribu2ng  authors:  Chaoyi  Jiao,  Sangeeta  Sharma,  Maryam  Namazi,  Ribu  Cherian,  Nikos  Daskalakis,  Chris  Heyes,  Øivind  Hodnebrog,  Maria  Kanakidou,  Zbigniew  Klimont,  Marianne  Lund,  Gunnar  Myhre,  Stelios  Myriokefalitakis,  Dirk  Olivie,  Johannes  Quaas,  Jean-­‐Christophe  Raut,  Bjørn  Samset,  Michael  Schulz,  Ragnhild  Skeie,  David  Parrish,  Markus  Amann  

Page 2: Key$Findings$of$the$AMAP$ 2015$Assessmenton$Black$ … · Mean$posiCon$of$the$ArcCc$Frontin$$ Winter$and$Summer$$ •%The$ArcCc$Front(temperature$gradient)$$ forms$abarrier$to$transportof$pollutants.$

2015  –  2017:  United  States  

For  U.S.  à  Secretary  of  State  

AMAP  Expert  Group  on  BC  &  O3  

AMAP  Expert  Group  on  CH4  

USA  

Page 3: Key$Findings$of$the$AMAP$ 2015$Assessmenton$Black$ … · Mean$posiCon$of$the$ArcCc$Frontin$$ Winter$and$Summer$$ •%The$ArcCc$Front(temperature$gradient)$$ forms$abarrier$to$transportof$pollutants.$

Mean  posiCon  of  the  ArcCc  Front  in    Winter  and  Summer    

•   The  ArcCc  Front  (temperature  gradient)    forms  a  barrier  to  transport  of  pollutants.    •  Summer - the front is confinedto a much smaller, high latitude region.

•   Winter  -­‐    the  front  can  extend  to    40°N  over  northern  Europe  and  Asia.    •   Northern  Eurasia  is  the  major  source  region  to  the  ArcCc  at  low  alCtudes:    

•   extension  of  ArcCc  Front  to  near  40°N    at  this  longitude  •   snow-­‐covered  surfaces  (reduces  temperature  gradient)  •   lots  of  polluCon  sources    

•   Warmer  source  regions  and  convecCve    fire  plumes  can  impact  higher    alCtudes  within  the  ArcCc  

Summer   Winter  

Long-­‐Range  Transport  of  Pollutants  to  the  ArcCc  

Page 4: Key$Findings$of$the$AMAP$ 2015$Assessmenton$Black$ … · Mean$posiCon$of$the$ArcCc$Frontin$$ Winter$and$Summer$$ •%The$ArcCc$Front(temperature$gradient)$$ forms$abarrier$to$transportof$pollutants.$

Forcing  mechanisms  by  Black  Carbon  within  the  ArcCc    

Page 5: Key$Findings$of$the$AMAP$ 2015$Assessmenton$Black$ … · Mean$posiCon$of$the$ArcCc$Frontin$$ Winter$and$Summer$$ •%The$ArcCc$Front(temperature$gradient)$$ forms$abarrier$to$transportof$pollutants.$

Forcing  mechanisms  by  Black  Carbon  within  the  ArcCc    

Forcing  exerted  outside  the  ArcCc  can  strongly  impact  ArcCc  climate  through  the  poleward  heat  flux,  and  may  be  a  stronger  source  of  ArcCc  warming  than  within-­‐ArcCc  BC  in  the  present  climate.  

Page 6: Key$Findings$of$the$AMAP$ 2015$Assessmenton$Black$ … · Mean$posiCon$of$the$ArcCc$Frontin$$ Winter$and$Summer$$ •%The$ArcCc$Front(temperature$gradient)$$ forms$abarrier$to$transportof$pollutants.$

!

AMAP  Global  Climate  Model  approach  to  calculaCng  the  radiaCve  forcing  by  SLCFs  and  associated  climate  response    

•  A  mulC-­‐model  ensemble  was  used  to  esCmate  the  contribuCons  of  emissions  of  non-­‐CH4  Short-­‐Lived  Climate  Forcers  (SLCFs)  to  changes  in  ArcCc  climate.  

•  Impacts  of  emissions  were  first  evaluated  in  terms  of  atmospheric  direct  and  indirect  and  snow/ice  radiaCve  forcing  in  the  ArcCc  (>  60N).  

•  ArcCc  equilibrium  surface  temperature  response  was  then  derived  by  translaCng  the  radiaCve  forcings  with  the  use  of  climate  sensiCvity  parameters  (e.g.,  Shindell  and  Faluvegi,  2009)  for  atmospheric  direct  and  snow/ice  radiaCve  forcing.  

•   Within-­‐ArcCc  and  Extra-­‐ArCc  forcing  were  included  in  the  analysis.  

Page 7: Key$Findings$of$the$AMAP$ 2015$Assessmenton$Black$ … · Mean$posiCon$of$the$ArcCc$Frontin$$ Winter$and$Summer$$ •%The$ArcCc$Front(temperature$gradient)$$ forms$abarrier$to$transportof$pollutants.$

Canada                                              United  States                                Nordic  Countries                                    

Russia                                            Rest  of  Europe                      East  and  South  Asia  

Also  included  Rest  of  world  

(ROW)  

Emissions  from  which  geographical  regions  most  impact  ArcCc  atmospheric  composiCon  and  climate?  

CANA USAM NORD

RUSS ASIAOEUR

Page 8: Key$Findings$of$the$AMAP$ 2015$Assessmenton$Black$ … · Mean$posiCon$of$the$ArcCc$Frontin$$ Winter$and$Summer$$ •%The$ArcCc$Front(temperature$gradient)$$ forms$abarrier$to$transportof$pollutants.$

Emissions  from  which  source  sectors  most  impact  ArcCc  atmospheric  composiCon  and  climate?  

•  DomesCc  combusCon  (seasonally  varying)  •  Transport    •  Energy  producCon  and  industrial  processes  •  Gas  flaring  •  Agricultural  waste  burning  •  Grass  and  forest  fires  •  Shipping  emissions  –  current  and  projected  

Page 9: Key$Findings$of$the$AMAP$ 2015$Assessmenton$Black$ … · Mean$posiCon$of$the$ArcCc$Frontin$$ Winter$and$Summer$$ •%The$ArcCc$Front(temperature$gradient)$$ forms$abarrier$to$transportof$pollutants.$

0  

1000  

2000  

3000  

4000  

5000  

6000  

United  States   Canada   Russia   Nordic  Countries  

Rest  of  Europe  

East  and  South  Asia  

Rest  of  World  

Arc2c  BC  burden  (Mg)  

NorESM   CESM   SMHI-­‐MATCH   CanAM  

ContribuCon  of  different  emission  regions  to  BC  burdens  in  the  ArcCc  as  simulated  by  four  models  using  the  same  emissions  for  2010  

Transport  

Grass  +

 Forest  F

ires  

Grass  +

 Forest  F

ires  

Gas  F

larin

g  

DomesCc  

Transport  

DomesCc  

Transport  

DomesCc  ArcCc  BC  burden  (Mg)  

Page 10: Key$Findings$of$the$AMAP$ 2015$Assessmenton$Black$ … · Mean$posiCon$of$the$ArcCc$Frontin$$ Winter$and$Summer$$ •%The$ArcCc$Front(temperature$gradient)$$ forms$abarrier$to$transportof$pollutants.$

0  

50  

100  

150  

200  

250  

300  

350  

400  

450  

500  

United  States   Canada   Russia   Nordic  Countries  

Rest  of  Europe  

East  and  South  Asia  

Rest  of  World  

mW  m

-­‐2  

ArcCc  BC  direct  radiaCve  forcing  

NorESM   CESM   SMHI-­‐MATCH   CanAM  

DomesCc  

 Fires  Flaring  

ArcCc  annual  mean  BC  atmospheric  direct  RF  (in  mWm-­‐2)    for  each  emission  region  

Measure  of  the  heaCng  of  the  atmosphere  by  absorpCon  of  solar  radiaCon  by  BC  

Page 11: Key$Findings$of$the$AMAP$ 2015$Assessmenton$Black$ … · Mean$posiCon$of$the$ArcCc$Frontin$$ Winter$and$Summer$$ •%The$ArcCc$Front(temperature$gradient)$$ forms$abarrier$to$transportof$pollutants.$

RadiaCve  forcing  is  not  a  suitable  metric  for  assessing  ArcCc  surface  temperature  response  because:    •  Species  (BC)  that  absorb  solar  radiaCon  in  the  upper  ArcCc  troposphere  may  cool  

the  surface  despite  exerCng  a  posiCve  radiaCve  forcing  (Shindell  and  Faluvegi,  2009:  Sand  et  al.,  2013;  Flanner,  2013)  

BC  layer  near  the  surface  

BC  layer  alor  

•  BC  in  the  lower  atmosphere  warms  by  deposiCng  energy  near  the  surface  by  either  atmospheric  heaCng  or  BC  in  snow  and  ice  

•  BC  alor  cools  the  surface  due  to  surface  dimming  and  a  reducCon  in  poleward  heat  flux  into  the  ArcCc  resulCng  from  heaCng  of  the  upper  troposphere  by  BC  

Page 12: Key$Findings$of$the$AMAP$ 2015$Assessmenton$Black$ … · Mean$posiCon$of$the$ArcCc$Frontin$$ Winter$and$Summer$$ •%The$ArcCc$Front(temperature$gradient)$$ forms$abarrier$to$transportof$pollutants.$

Simulated  verCcal  profiles  of  BC  in  the  ArcCc  atmosphere  caused  by  emissions  from  different  laCtude  bands  

AlCtudes  where  BC  is  expected  to  cool  the  ArcCc  surface  

AlCtudes  where  BC  is  expected  to  warm  the  ArcCc  surface  

BC  emissions  from  low  laCtudes  that  reach  the  ArcCc  are  more  likely  to  reside  at  high  alCtudes  where  they  exert  a  cooling  effect.  

Pressure, hPa

BC mass mixing ratio, ng/kg

10 15 2050

0

100

200

300

400

500

600

700

800

900

1000

90°S - 30°N

30°N - 40°N

40°N - 50°N

50°N - 60°N

60°N - 90°N

BC  mass  mixing  raCo,  ng/kg  

Pressure,  hPa  

(Flanner,  2013)  

60N  –  90N  

90S  –  30N  

50N  –  60N  

40N  –  50N  

Page 13: Key$Findings$of$the$AMAP$ 2015$Assessmenton$Black$ … · Mean$posiCon$of$the$ArcCc$Frontin$$ Winter$and$Summer$$ •%The$ArcCc$Front(temperature$gradient)$$ forms$abarrier$to$transportof$pollutants.$

RadiaCve  forcing  is  not  a  suitable  metric  for  assessing  ArcCc  surface  temperature  response  because:  

•  Species  (BC)  that  absorb  solar  radiaCon  in  the  upper  ArcCc  troposphere  may  cool  the  surface  despite  exerCng  a  posiCve  radiaCve  forcing  (Shindell  and  Faluvegi,  2009:  Sand  et  al.,  2013;  Flanner,  2013)  

•  RadiaCve  forcing  by  BC  outside  of  the  ArcCc  can  cause  substanCal  ArcCc  warming  by  increasing  the  poleward  heat  flux  

•  Forcing  by  the  snow/albedo  effect  triggers  strong  local  feedbacks  enhancing  regional  warming.  

As  a  result,  calculated  radiaCve  forcings  were  translated  into  the  ArcCc  equilibrium  surface  temperature  response  using  regional  climate  sensiCvity  parameters.  

     

Page 14: Key$Findings$of$the$AMAP$ 2015$Assessmenton$Black$ … · Mean$posiCon$of$the$ArcCc$Frontin$$ Winter$and$Summer$$ •%The$ArcCc$Front(temperature$gradient)$$ forms$abarrier$to$transportof$pollutants.$

NorESM CESM CanAM SMHI-MATCH

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

Arctic Ts, °C

BC BC in snow OC SO4

Global  (total)  contribuCons  to  annual-­‐mean  ArcCc  equilibrium  surface  temperature  response  (K)  due  to  atmospheric  BC,  organic  carbon  (OC),  and  

sulfate,  and  BC  in  snow  

Net  surface  temperature  response  for  all  components  averaged  over  all  models  is  0.35K:    

Atmospheric  BC  0.4    BC  in  snow    0.22  Organic  Carbon  -­‐0.04  Sulfate      -­‐0.23  

Does  not  include  cloud  indirect  effects!  

Page 15: Key$Findings$of$the$AMAP$ 2015$Assessmenton$Black$ … · Mean$posiCon$of$the$ArcCc$Frontin$$ Winter$and$Summer$$ •%The$ArcCc$Front(temperature$gradient)$$ forms$abarrier$to$transportof$pollutants.$

0.25

0.20

0.15

0.10

0.05

0

-0.05

-0.10

Arctic Ts, °C

UnitedStates

Canada Russia NordicCountries

Rest ofEurope

East andSouth Asia

Rest ofWorld

BC in atmosphereBC in snow OC SO4 O3

Global  (total)  contribuCons  to  annual-­‐mean  ArcCc  equilibrium  surface  temperature  response  (K)  due  to  BC,  OC,  and  SO4  from  each  emission  region  

DomesCc  Fires  Flares  

DomesCc  Fires  

Russia:  Warming  due  to  BC  emissions/forcing  within  the  ArcCc  Asia  &  ROW:  Warming  due  to  forcing  exerted  outside  of  the  ArcCc  and  poleward  heat  transport  

Solid  fill  –  within  ArcCc  radiaCve  forcing  Dashed  fill  –  extra-­‐ArcCc  radiaCve  forcing  

Page 16: Key$Findings$of$the$AMAP$ 2015$Assessmenton$Black$ … · Mean$posiCon$of$the$ArcCc$Frontin$$ Winter$and$Summer$$ •%The$ArcCc$Front(temperature$gradient)$$ forms$abarrier$to$transportof$pollutants.$

BC in snow

BC in atmosphere

OC

SO4

Arctic Ts response per unit emission, °C per Tg/y

1.0

1.2

1.4

0.4

0.6

0.8

0.2

0

-0.2UnitedStates

Canada Russia NordicCountries

Rest ofEurope

East andSouth Asia

Rest ofWorld

ArcCc  sensiCvity  (in  K)  per  unit  emission  for  each  emission  region  and  sector    (DomesCc,  EIW,  Transport,  Agricultural  waste  burning,  Forest  fires,  Flaring)  

Temperature  response  normalized  by  unit  emission,  °C  per  Tg/y  

•  Allows  for  the  effecCveness  of  regional  emission  miCgaCon  opCons  to  be  evaluated  

•  Flaring  emissions  from  Russia  –  largest  sensiCvity  

•  ArcCc  is  also  sensiCve  to  Nordic  emissions  due  to  efficient,  low-­‐alCtude  transport  

Page 17: Key$Findings$of$the$AMAP$ 2015$Assessmenton$Black$ … · Mean$posiCon$of$the$ArcCc$Frontin$$ Winter$and$Summer$$ •%The$ArcCc$Front(temperature$gradient)$$ forms$abarrier$to$transportof$pollutants.$

NorESM CESM CanAM SMHI-MATCH

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

Arctic Ts, °C

BC BC in snow OC SO4

Global  (total)  contribuCons  to  annual-­‐mean  ArcCc  equilibrium  surface  temperature  response  (K)  due  to  atmospheric  BC,  organic  carbon  (OC),  and  

sulfate,  and  BC  in  snow  

This  climate  response  represents  the  upper  limit  since  a  100%  reducCon  in  emissions  is  unrealisCc.    More  relevant  is  what  might  be  the  transient  response  to  a  realisCc  reducCon  in  BC,  OC,  and  SO4?  

Page 18: Key$Findings$of$the$AMAP$ 2015$Assessmenton$Black$ … · Mean$posiCon$of$the$ArcCc$Frontin$$ Winter$and$Summer$$ •%The$ArcCc$Front(temperature$gradient)$$ forms$abarrier$to$transportof$pollutants.$

-0.4

-0.3

-0.2

-0.1

0.0

0.1

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1Change in Arctic warming, °C

20752070206520602055205020452040203520302025202020152010

BC (atm)BC (snow)OCSO2

NOx

VOCCOCH4

Net

Transient  climate  response  based  on  Regional  Temperature  PotenCals  (RTP):  EsCmate  of  reduced  warming  in  the  ArcCc  in  response  to  a  miCgaCon  scenario  designed  to  achieve  large  reducCons  in  temperature  response  in  the  short  term  at  the  global  scale  (arer  UNEP/WMO,  2011  and  Shindell  et  al.,  2012).  

Change  in  ArcCc  warming,  °C  

2010                                                                              2050                                          2075  

Net  

CH4  

BC  (snow)  

BC  (atm)  

Averaged  over  2040  –  2050  (in  K):  Net  -­‐0.40    BC  -­‐0.23  CH4  -­‐0.17      Agrees  well  with  the  corresponding  net  average  from  ensemble-­‐mean  climate  states  based  on  4  ESMs  (-­‐0.3  to  -­‐0.6)    Note:  SO2  emissions  not  aggressive  in  this  scenario    Does  not  include  cloud  indirect  effects  

Page 19: Key$Findings$of$the$AMAP$ 2015$Assessmenton$Black$ … · Mean$posiCon$of$the$ArcCc$Frontin$$ Winter$and$Summer$$ •%The$ArcCc$Front(temperature$gradient)$$ forms$abarrier$to$transportof$pollutants.$

Summary  

•  The  impact  of  emissions  of  BC,  OC,  and  Sulfate  in  different  regions  and  sectors  on  ArcCc  burden,  radiaCve  forcing,  and  equilibrium  surface  temperature  have  been  esCmated.    EsCmates  of  equilibrium  surface  temperature  do  not  include  cloud  indirect  effects.  

•  The  best  esCmate  of  total  ArcCc  equlibrium  surface  temperature  response  due  to  the  direct  effect  of  current  emissions  is  0.35K  (0.40  from  BC  atm,  0.22  from  BC  snow,  -­‐0.04  from  OC,  -­‐0.23  from  SO4).  

•  Aerosol  emissions  from  the  domesCc  sector  from  East+South  Asia  have  the  largest  warming  effect  in  the  ArcCc.  

•  Emissions  from  Russia,  Asia,  and  ROW  roughly  contribute  the  same  amount  of  warming  to  the  ArcCc.  For  Asia  and  ROW,  half  of  this  warming  comes  from  forcing  exerted  outside  of  the  ArcCc.  

•  Per  unit  emission,  the  ArcCc  surface  temperature  is  most  sensiCve  to  Russian  flaring  emissions  (mostly  from  BC  in  snow).  

•  Two  models  that  include  esCmates  of  cloud  indirect  effects  indicate  that  cooling  effects  by  SO4  and  OC  emissions  could  be  substanCal.  It  is  likely  that  reducCons  in  sulfur  emissions  would  parCally  counteract  effects  of  reduced  BC  emissions  on  ArcCc  climate,  which  may  limit  the  effecCveness  of  miCgaCon  acCon.  

Page 20: Key$Findings$of$the$AMAP$ 2015$Assessmenton$Black$ … · Mean$posiCon$of$the$ArcCc$Frontin$$ Winter$and$Summer$$ •%The$ArcCc$Front(temperature$gradient)$$ forms$abarrier$to$transportof$pollutants.$