kek2014 v2

56
Towards Understanding QCD Phase Diagram Lattice and RHIC Experiments Atsushi Nakamura in Collaboration with K.Nagata Lattice QCD at finite temperature and density 20 Jan. 2014 KEK 1 /38 14120日月曜日

Upload: atsushi-nakamura

Post on 08-Jul-2015

161 views

Category:

Education


0 download

DESCRIPTION

presentation file version 2

TRANSCRIPT

Page 1: Kek2014 v2

Towards Understanding QCD Phase Diagram

Lattice and RHIC Experiments

Atsushi Nakamura in Collaboration with K.Nagata

Lattice QCD at finite temperature and density20 Jan. 2014 KEK

1 /38

14年1月20日月曜日

Page 2: Kek2014 v2

2

QCD Phase Diagram

From Wiki-Pedia “QCD matter”

Very Exciting !Now it’s time for

Lattice QCD.

But how do you reveal it?

Please No Sales-Talk !

14年1月20日月曜日

Page 3: Kek2014 v2

Canonical Partition Functions

Experiments

Lattice QCD Simulations

3 / 38

14年1月20日月曜日

Page 4: Kek2014 v2

A few years ago,

Nagata and I were looking for a Reduction formula for Wilson fermions in a finite density QCD project:

4

det �̃ = det�

Reduction Matrix Original Fermion Matrix

Z(µ) =�

DU det �(µ)e�SG

Rank(det �̃) < Rank (det �)Nagata and Nakamura Phys. Rev. D82 094027 (arXiv:1009.2149)

14年1月20日月曜日

Page 5: Kek2014 v2

5

Obtained formula has the form of the fugacity expansion

� � eµ/T Fugacity

Z(µ) =�

DU�

n

cn�ne�SG

=�

n

Zn�n

Zn : Canonical Partition Function

14年1月20日月曜日

Page 6: Kek2014 v2

If

Tr e�(H�µN̂)/T

=�

n

�n|e�(H�µN̂)/T |n�

=�

n

�n|e�H/T |n� eµn/T

=�

n

Zn(T )�n

Z(µ, T ) =

�� � eµ/T

Fugacity

Z(µ, T )

6 /38

Zn(T )

14年1月20日月曜日

Page 7: Kek2014 v2

RHIC(Relativistic Heavy Ion Collider)

7

14年1月20日月曜日

Page 8: Kek2014 v2

Multiplicity !Wao,

It is almost

Multiplicity Distribution of RHIC

Interesting !Zn

14年1月20日月曜日

Page 9: Kek2014 v2

We assumethe Fireballs created in High Energy Nuclear Collisons are described as

a Statistical System.with (chemical Potential)and T (Temperature)

µ

Grand Canonicalpartition functionZ(µ, T )

All QCD Phase Information is in Z(µ, T )

14年1月20日月曜日

Page 10: Kek2014 v2

Partition Function is Sum of the Probabilities with n ...If I know , then I have Zn.�

Experiment

10 /38number

14年1月20日月曜日

Page 11: Kek2014 v2

How can we extract from ?Pn = Zn�n

� unknown

Z+n = Z�n

We require (Particle-AntiParticle Symmetry)

Experiment

Zn

Observables in Experiments

14年1月20日月曜日

Page 12: Kek2014 v2

12

� = 1.0 � = 1.2

� = 1.4 � = 1.5

� = 1.534Final Value/38

Zn Zn

ZnZn

Z�n

Z�n

Z�n

Z�n

nn

n n

From Experiment

07:12-08:05

14年1月20日月曜日

Page 13: Kek2014 v2

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

-20 -15 -10 -5 0 5 10 15 20

sqrt(s)=62.4PnP-n

PP n-n

n 1e-10

1e-08

1e-06

0.0001

0.01

1

-20 -15 -10 -5 0 5 10 15 20

Net proton number

ZnZ-n

nZZ-n

sqrt(s)=62.4

�Fit

Experiment

Z+n = Z�nDemand

14年1月20日月曜日

Page 14: Kek2014 v2

Fitted are very consistent with those by Freeze-out Analysis.

0

2

4

6

8

10

12

0 50 100 150 200

!

sNN1/2

Chemical Freeze-Out

x This work

J.Cleymans, H.Oeschler, K.Redlich and S.WheatonPhys. Rev. C73, 034905 (2006)

Freeze-out

�� � eµ/T

14年1月20日月曜日

Page 15: Kek2014 v2

�s = 19.6GeV

�s = 27GeV

�s = 39GeV

�s = 62.4GeV

�s = 200GeV

from RHIC dataZn

1e-18

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

-25 -20 -15 -10 -5 0 5 10 15 20 25

'Zn_19.6'

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

-25 -20 -15 -10 -5 0 5 10 15 20 25

'Zn_27'

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

-25 -20 -15 -10 -5 0 5 10 15 20 25

'Zn_39'

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

-20 -15 -10 -5 0 5 10 15 20

'Zn_62.4'

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

-15 -10 -5 0 5 10 15

'Zn_200'

Experiment

15 /38

14年1月20日月曜日

Page 16: Kek2014 v2

Now we have Zn of RHIC data (sqrt(s)= 10.5,19.6, 27, 39, 62.4, 200 GeV)

µ/T

T

Wao ! We can calculate at any density !This includes all QCD Phase information !

(� � eµ/T )14年1月20日月曜日

Page 17: Kek2014 v2

Do not forget that your n is finite !

I need cooling down

14年1月20日月曜日

Page 18: Kek2014 v2

Moments �k

�k ⌘✓T

@

◆k

logZ

14年1月20日月曜日

Page 19: Kek2014 v2

What happens ?

if we increase these points 15%if we dropthese points

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1 1.1 1.2 1.3 1.4 1.5 1.6

freeze-out point

/T

42

=19.6 GeV

0.35

0.4

0.45

0.5

0.55

0.6

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5/T

Number Susceptibility

freeze-out point

=27 GeV

Number Susceptibilityps = 27GeV

Usually we consider

(only) here.

14年1月20日月曜日

Page 20: Kek2014 v2

0.35

0.4

0.45

0.5

0.55

0.6

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7µ/T

Number Susceptibility, sNN1/2=19.6

freeze-out point

0.35

0.4

0.45

0.5

0.55

0.6

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5µ/T

Number Susceptibility, sNN1/2=27

freeze-out point

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4µ/T

Number Susceptibility, sNN1/2=39

freeze-out point

0.38 0.4

0.42 0.44 0.46 0.48

0.5 0.52 0.54 0.56 0.58

0.6

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1µ/T

Number Susceptibility, sNN1/2=62.4

freeze-out point

0.4

0.45

0.5

0.55

0.6

0.65

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1µ/T

Number Susceptibility, sNN1/2=200

freeze-out point

Susceptivility

14年1月20日月曜日

Page 21: Kek2014 v2

-1

-0.5

0

0.5

1

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4µ/T

R42, sNN1/2=19.6

freeze-out point

0.6 0.7 0.8 0.9

1 1.1 1.2 1.3 1.4 1.5

0.86 0.88 0.9 0.92 0.94 0.96 0.98 1µ/T

R42, sNN1/2=27

freeze-out point

0.4 0.6 0.8

1 1.2 1.4 1.6 1.8

2 2.2

0.5 0.6 0.7 0.8 0.9 1µ/T

R42, sNN1/2=39

freeze-out point

0.5

0.6

0.7

0.8

0.9

1

1.1

0.35 0.4 0.45 0.5 0.55 0.6 0.65µ/T

R42, sNN1/2=62.4

freeze-out point

0.2

0.4

0.6

0.8

1

1.2

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45µ/T

R42, sNN1/2=200

freeze-out point

Kurtosis

Usually we consider (only) here.

14年1月20日月曜日

Page 22: Kek2014 v2

22

Multiplicity tells us

Not only Freeze-out points

Information of wider regions

Nmax →largeWider

14年1月20日月曜日

Page 23: Kek2014 v2

Lee-Yang Zeros

23

14年1月20日月曜日

Page 24: Kek2014 v2

Lee-Yang ZerosZeros of in Complex Fugacity Plane.

Z(↵k) = 0

Great Idea to investigate a Statistical System

�xxxxxx

Phase Transition

Z(�)

24 /38

(1952)

14年1月20日月曜日

Page 25: Kek2014 v2

25

Lee-Yang Zeros

Non-trivial to obtain.But once they are got, it is easy to figure out the Free-energy

Lee-Yang zeros

F: Free-energy

: zeros�k

2-d Electro-Magnetic

F: Potential

:Point charge�k

Z(�, T ) = e�F/T

14年1月20日月曜日

Page 26: Kek2014 v2

26

-1-0.5

0 0.5

1 -1-0.5

0 0.5

1

-10

-5

0

5

10

15

20

’out’

F (�) = ��

k

log(� � �k)

14年1月20日月曜日

Page 27: Kek2014 v2

cut Baum-Kuchen (cBK) Algorithm

1

1

 Number ofZeros in

Contour C

A Coutour is cut into four pieces

if there are zeros inside.50 - 100 number

of significant digits

i ( )

and

27/38

14年1月20日月曜日

Page 28: Kek2014 v2

28

Is this myOriginal ?

I donot think so.

Let us waituntil someone

claims.

14年1月20日月曜日

Page 29: Kek2014 v2

28

Is this myOriginal ?

I donot think so.

Let us waituntil someone

claims.

Riemann (1826 - 1866)

It’s me !

14年1月20日月曜日

Page 30: Kek2014 v2

Lee-Yang Zeros: RHIC Experiments

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Im[! B

]

Re[!B]

sNN1/2=19.6

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Im[! B

]

Re[!B]

sNN1/2=27

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Im[! B

]

Re[!B]

sNN1/2=39

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Im[! B

]

Re[!B]

sNN1/2=62.4

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Im[! B

]

Re[!B]

sNN1/2=200

Experiment

29/40

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

cos(t), cos(t),sin(t)’plotXY11.5’

14年1月20日月曜日

Page 31: Kek2014 v2

30

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Im[! B

]

Re[!B]

sNN1/2=200

14年1月20日月曜日

Page 32: Kek2014 v2

Lee-Yang Zeros Lattice QCD

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Im[!]

Re[!]

T/Tc=0.99

� = 1.85

T/Tc � 0.99

Z(�) =�

m

Z3m � �3m

Zn = 0 n �= 3munless

� = ei�

� =2�

3Periodicity

( )

31 /38

14年1月20日月曜日

Page 33: Kek2014 v2

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Im[!]

Re[!]

T/Tc=0.99

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

'./plotXY_B1870'cos(t), sin(t)

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

'./plotXY_B1890'cos(t), sin(t)

� = 1.85

� = 1.87

� = 1.89

T/Tc � 0.99

T/Tc � 1.01

T/Tc � 1.04

32 /38

14年1月20日月曜日

Page 34: Kek2014 v2

Lee-Yang Zeros Lattice QCD

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Im[!]

Re[!]

T/Tc=1.20⇠ = eµ/T

The Unit Cirle in

Imaginary

⇠µ

Roberge-WeiseTransition !

T/Tc � 1.20

33 /38

(� � eµ/T )

14年1月20日月曜日

Page 35: Kek2014 v2

-1 -0.5 0 0.5 1

Im[ q

]

Re[ ]

-1

-0.5

0

0.5

1

q

q

10 43

8 43

T/Tc=1.08

-1 -0.5 0 0.5 1Re[ B]

B

10 43

�q �B = �q3

34 /38

14年1月20日月曜日

Page 36: Kek2014 v2

A Message to Experimentalists

In the Lee-Yang Diagram constructed from your multiplicity,

Zeroshere �q�B

No Roberge-Weise Transition T � TRW� 1.2Tc

Your Temperature

35 /38

14年1月20日月曜日

Page 37: Kek2014 v2

Lee-Yang Zeros: RHIC Experiments

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Im[! B

]

Re[!B]

sNN1/2=19.6

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Im[! B

]

Re[!B]

sNN1/2=27

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Im[! B

]

Re[!B]

sNN1/2=39

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Im[! B

]

Re[!B]

sNN1/2=62.4

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Im[! B

]

Re[!B]

sNN1/2=200

36/38

14年1月20日月曜日

Page 38: Kek2014 v2

Effects of NmaxKim’s Model

37

Z(µq) = I0 + (⇠3q + ⇠�3q )I1 +(⇠6q + ⇠�6

q )I2 + · · ·Ik :Modified Bessel

In Confinement

Lesson from the Model

Nmax Large

Lee Yang ZerosLarge regions|µ|

It should be so!14年1月20日月曜日

Page 39: Kek2014 v2

SummaryGrand-Partition functions, , provide us the QCD phase information, which can be constructed from .

Lattice QCD can calculate But we need much more works to obtain reliable

Experiments provide us the multiplicitiesWe can calculate from them.

Present data are those of net-proton, which are not conserved quantities.

Either correction, or ask experimentalists to measure net-baryon

Charge multiplicity is a conserved quantity, and another probe.

Large Nmax are wanted, but even finite Nmax data give us the lower bound.

Lee-Yang zeros provide us a new tool of the QCD phase study.

They are sensitive to the data, i.e., they teach us which regions are important.

38

Zn

Zn

Zn

Z(µ, T )

14年1月20日月曜日

Page 40: Kek2014 v2

Backup Slide

39

14年1月20日月曜日

Page 41: Kek2014 v2

BES(Beem Energy Scan)

14年1月20日月曜日

Page 42: Kek2014 v2

Find Rooms where No Criminal.

The Target is in other Room.

Not here ! Then, ..

Hunting the QCD Phase Transition Regions

Lower Bound14年1月20日月曜日

Page 43: Kek2014 v2

0.15

0.16

0.17Te

mpe

ratu

re (G

eV)

0 0.1 0.2 0.3 0.4 0.5Chemical Potential (GeV)!

200

62.439

27

19.6

Freeze-out PointLower bound determined by susceptivility

Phase Transition Regions estimated byLee-Yang Zero distribution

Lower bound determined by negative Kurtosis

14年1月20日月曜日

Page 44: Kek2014 v2

Other Messages

Net proton multiplicity is Not a conserved quantity.

Baryon multiplicity is perfect

Can you estimate Baryon multiplicity from that of Proton ?

Another conserved quantity is the Charge multiplicity. It should work as well.

43

14年1月20日月曜日

Page 45: Kek2014 v2

44 /40

You have a Big Chance to find QCD phase Transition !

14年1月20日月曜日

Page 46: Kek2014 v2

Canonical Partition Functionsis a Bridge

between Two Approachesto Study QCD Phase

Lattice QCD Simulaitions

Experiments

45 /40

14年1月20日月曜日

Page 47: Kek2014 v2

Lattice QCD Canonical Approach

Miller and RedlichPhys. Rev. D35 (1987) 2524

A.Hasenfratz and ToussaintNucl. Phys.B371 (1992) 539

Barbour and BellNucl. Phys. B372 (1992) 385

Engels, Kaczmarek, Karsch and LaermannNucl.Phys. B558 (1999) 307

deForcrand and KratochvilaNucl. Phys. B (P.S.) 153 (2006) 62 (hep-lat/0602024)

A.Li, Meng, Alexandru, K-F. LiuPoS LAT2008:032 and 178

Phys.Rev. D82(2010) 054502, D84 (2011) 071503

Danzer and GattringerarXiv:1204-1020 Europian Journal

Lattice

46 /40

14年1月20日月曜日

Page 48: Kek2014 v2

Lattice: How to Calculate

Fugacity ExpansionNagata and A. Nakamura, Phys. Rev. D82 (2010) 094027

Lattice

47 /40

Alexandru and Wenger, Phys.Rev.D83 (2011) 034502

14年1月20日月曜日

Page 49: Kek2014 v2

Four Excuses why not Baryon Multiplicities

1. This is a formulation. Let’s wait until Experimentalists measure Baryon multiplicities

2. After the Freeze-out, the proton number is essentially constant.

3. Expect the proton multiplicity is similar to the baryon multiplicity

4. By some event generators or models, let us calculate the proton and baryon multiplicity.From that data, we can estimate the baryon multiplicity.

48

14年1月20日月曜日

Page 50: Kek2014 v2

ZGC(µ) =�

Zn�n

�DU(

�an�n)(det�(0))Nf e�SG

=�

DU(�

an�n)(det�(0))Nf e�SG

=�

n

�n

�DUan(det�(0))Nf e�SG

Lattice

49

=

/40

14年1月20日月曜日

Page 51: Kek2014 v2

from lattice QCDZn

1e-160

1e-140

1e-120

1e-100

1e-80

1e-60

1e-40

1e-20

1

-60 -40 -20 0 20 40 60m=3n

·=Q�����RULJ·

1e-60

1e-50

1e-40

1e-30

1e-20

1e-10

1

-40 -30 -20 -10 0 10 20 30 40

m=3n

'Zn1950-orig'

1e-90

1e-80

1e-70

1e-60

1e-50

1e-40

1e-30

1e-20

1e-10

1

-50 -40 -30 -20 -10 0 10 20 30 40 50

m=3n

'Zn1850-orig'

1e-40

1e-35

1e-30

1e-25

1e-20

1e-15

1e-10

1e-05

1

-30 -20 -10 0 10 20 30

m=3n

'Zn2000-orig'

1e-40

1e-35

1e-30

1e-25

1e-20

1e-15

1e-10

1e-05

1

-30 -20 -10 0 10 20 30

m=3n

'Zn1900-orig'

1e-20

1e-19

1e-18

1e-17

1e-16

15 16 17 18 19 20m=3n

'Zn1850-orig'

Im(Zn) are used as an error

Lattice

50 /40

14年1月20日月曜日

Page 52: Kek2014 v2

A Strange Fact

There are Lee-Yang Zeros on the unit circle.

Theoretically, a bit annoying.

Phenomenologically, very natural

51 /40

14年1月20日月曜日

Page 53: Kek2014 v2

52

Z(µ) =� �

f

det �(mf , µf )e�SG

is REAL det �(m,µ)

if is pure Imaginary.µ

On the unit circle in complex plane.�

(� = eµ/T )

14年1月20日月曜日

Page 54: Kek2014 v2

53

det �(m,µ) is REAL and Positive,

if is pure Imaginary and m is sufficiently large.

µ

Z(µN ) =�

det �(Nucleon)e�SG > 0

Lee-Yang zeros on the unit circle tell usthat Nucleon is a composite.

14年1月20日月曜日

Page 55: Kek2014 v2

54

Current lattice QCD simulations assumes

mu = md

Z(µN ) =�

(det�(mq, µq))2 � det �(ms, µs) · · · e�SG

Z(µN ) can not take zero.

14年1月20日月曜日

Page 56: Kek2014 v2

55

µp = 2µu + µd

mu > md

µpPure imaginary does not mean

µu andµd are pure imaginary.

14年1月20日月曜日