keam 2014 physics solutions for all codes a1, a2, a3 & a4

16
1 SCIENCE INSTITUTE KERAL ENGG. 2014 PHYSICS EXPLANATION FOR A1 VERSION 1. 2 l g T % error in g = % error in l + 2x % error in T 1 × 2 + 2 × 3 8% 3. Displacement of the dropped body + Displacement of the thrown body = Total height 2 2 1 1 2 2 gt ut gt h - = h t u = 100 4 25 t s = = Distance to the meeting point from top = 2 1 2 gt = 4.9 × 4 2 = 78.4 5. In first 3 seconds, 2 1 2 S ut at = + 12 = u × 3 + 1 2 × a × 3 2 12 = 3u + 9 2 a 3 = u + 1.5 a -------(1) In first 6 seconds, 42 = u × 6 + 2 1 6 2 a × × 7 = u + 3a ----------(2) Solve (1) & (2) to get a 6. Impulse = change in P = 2mv Impulse 2m v = 7. L r P = × 1 2 1 2 1 1 i j k = - - 9. X component of velocity x dx v dt = 8 x v t = Y component of velocity 6 y v t = Resultant velocity 2 2 x y v v v = + 10t = 11. Acceleration 2 120 60 10 / 6 f a ms m - = = = Tension = ( ) mg a = 2 (10 + 10) = 20 N 12. 2 7 10 TE mv = 13. By work-energy theorem 2 2 1 . .........(1) 2 4 v Fx mv = - 2 1 .( ) .........(2) 2 F x y mv + = (2) 4 (1) 3 x y x = 4 3 x y x = -

Upload: lokesh-kumar

Post on 14-May-2017

235 views

Category:

Documents


1 download

TRANSCRIPT

1

SCIENCE INSTITUTE KERAL ENGG. 2014 PHYSICS

EXPLANATION FOR A1 VERSION

1. 2

lg

T∝

⇒% error in g = % error in l + 2x % error in T

⇒1 × 2 + 2 × 3

⇒8%

3. Displacement of the dropped body +

Displacement of the thrown body = Total

height

2 21 1

2 2gt ut gt h+ − =

⇒ h

tu

= ⇒100

425

t s= =

Distance to the meeting point from top

= 21

2gt

= 4.9 × 42

= 78.4

5. In first 3 seconds, 21

2S ut at= + ⇒

12 = u × 3 + 1

2× a × 32

12 = 3u + 9

2a ⇒3 = u + 1.5 a -------(1)

In first 6 seconds,

42 = u × 6 + 216

2a× ×

7 = u + 3a ----------(2)

Solve (1) & (2) to get a

6. Impulse = change in P

= 2mv

Impulse

2mv =

7. L r P= ×

1 2 1

2 1 1

i j k

= −−

9. X component of velocity xdx

vdt

=

8xv t=

Y component of velocity 6yv t=

Resultant velocity 2 2x yv v v= +

10t=

11. Acceleration 2120 6010 /

6

fa m s

m

−= = =

Tension = ( )m g a+

= 2 (10 + 10) = 20 N

12. 27

10TE mv=

13. By work-energy theorem

2

21. .........(1)

2 4

vF x m v

= −

21.( ) .........(2)

2F x y mv+ =

(2) 4

(1) 3

x y

x

+⇒ =

4

3

xy x= −

2

( x = the initial thickness penetrated and y the

additional thickness penetrated)

15. Applying law of conservation of angular

momentum,

1 1 2 2 1 2( )I I I Iω ω ω+ = +

3 31 12 10 5 ( 10 )4I I− −× + × = +

31 0.5 10I −⇒ = ×

16. 0t

t

ω ωα −= = t

t

ω

= 02

t

πυ

=2

π

( 0υ = 1800 rpm = 1800

30,60

= t = 2 × 60 s)

17. Centripetal force = 2mv

r-------(1)

Angular momentum L = mvr

L

vmr

⇒ =

(1) ⇒2

.m L

CFr mr =

19. Energy required = 1

nMgR

n +

(here n = 1)

20. Total energy = − KE

21. Area of the big drop = Area of the droplets

2 2 21 24 4 4R r rπ π π= +

⇒ 2 21 2R r r= +

23. Pressure difference = Pressure due to 10 mm

of Hg = 1 cm of Hg

h gω ωρ = Pressure due to 10mm of Hg

Hg Hghhω

ω

ρρ

= = 1 13.6

13.61

× = cm

24. 21

2W kx=

21' (2 )

2W k x=

21' 3

2W W k x− = ×

3W=

3J=

25. 3

rms

RTV

M=

3

A

RT

mN=

26. 2

1

1T

Tη = − 2

1

1T

Tη⇒ = −

2

1

0.8T

T⇒ = 2 10.8T T⇒ =

In the second case

2

1

500.6

T

T

− =

T2 – 50 = 0.6 T1

0.8 T1 – 50 = 0.6 T1

0.2 T1 = 50

T1 = 250 K

T2 = 200 K

27. 2V

nC R=

n = no of degrees of freedom

28. Tree translational and two rotational degrees

of freedom

29. Comparing with standard equation of SHM,

we get 2ω =

2

ω=

31. Here, given y = 0.707 A

2

Ay =

3

KE = 2 2 21( )

2m A yω −

Put ,2

Ay =

KE = 2

2 21( )

2 2

Am Aω −

=2

TE

33.

A1

N4N3N2N1

A2 A3

A1, A2 & A 3 = Antinodes

N1, N2, N3 & N4 = Nodes

34. In stretched string all harmonics are present.

35. Electric field near the sheet F

Eq

=

12

19

1.6 10

1.6 10E

×=×

= 107

But 02

Eσε

=

02 Eσ ε⇒ =

Total charge = Areaσ ×

02 E Areaε= ×

(The charge will be negative)

38. Centripetal force = Coulomb’s force

2

1 22

0

1.

4

q qmv

r rπε=

2 1 2

04

q qv

rmπε⇒ =

Period 2 r

Tv

π=

2 2

22

4 rT

v

π=

2 2

2 0

1 2

4 4r rmT

q q

π πε×=

39. Electric field F

Eq

=

1000

2= = 500

Potential difference = E × distance

= 500 × 2 × 10 – 2 = 10 V

40. Current through 4 Ω resistor near xy =

4

14

A=

Current through the 4 Ω resistor parallel to

4 Ω = 1 A

Total current in the circuit = 2A

Total potential difference = ( .)effI R×

= 2 × 8

= 16 V

41. PD across R = 2V

IR = 2

⇒ ( )10

2500

RR

=+

⇒ 125R = Ω

42. s pI I=

5

55

E Err R R

=+ +

r R⇒ =

43. Power loss = I2R P

IV

=

2P

RV =

⇒ Power loss 2

1

v∝

44. Charge in internal energy =I2Rt

= 12 × 50 × 2 × 60

= 6 kJ

4

46. 2I

TmB

π=

2 24I

TmB

π=

22

4I

mT

π=

2 5

2 5

4 9 109

16 1016

π

π

× ×=× ×

= 4 Am2

2 2 2

2

q B rKE

m= -----(1)

22

qBqB m

mυ π υ

π= ⇒ =

2 2 2 24

(1)2

m rKE

m

π υ⇒ =

2 2 2 22 m rπ υ=

49. (1 cos )W mB θ= − 0( 180 )θ =

52. V(max) = BANω

53. ps s

p p s

IN V

N V I= =

330 4

5524

p ps

s

N IN

I

× ×⇒ = = =

54. Average energy density of magnetic field =

= 20

1

2Eε

2

121 18.85 10

2 2− = × × ×

= 1

2× 4.43 × 10 – 12 = 2.2 × 10 – 12 J

57. tanµ ρ=

tan 60=

3=

1

sinCµ

= 1 1sin

3C −

⇒ =

60. sind nθ λ= here n = 2

2

sind

λθ = ⇒ 7

6

2 5 10sin

2.5 10θ

× ×=×

2

sin5

θ⇒ =

61. 1

2

h

mmKEλ λ= ⇒ ∝

62. Time for 50% decay = One half life

Time for 87.5% decay = Three half lives

Time interval between 50% decay and 87.5%

decay = Two half lives

63. 1 2

23 30R R A R A= = ∝

Area ∝ R2

2/3

(1) 125 25

(2) 27 9

Area

Area = =

64. KE hυ φ= −

' 2KE h υ φ= × −

2hυ φ= − ⇒more than twice the initial value

67. The out put .y A B C= +

68. Voltage gain = Current gain × resistance gain

= 49 × 10

2

= 245

71. LOS distance = 2 2Rh Rh+

8Rh=

5

KERAL ENGG. 2014 PHYSICS

EXPLANATION FOR A2 VERSION

55. 2

lg

T∝

⇒% error in g = % error in l + 2x % error in T

⇒1 × 2 + 2 × 3

⇒8%

57 Displacement of the dropped body +

Displacement of the thrown body = Total

height

2 21 1

2 2gt ut gt h+ − =

⇒ h

tu

= ⇒100

425

t s= =

Distance to the meeting point from top

= 21

2gt

= 4.9 × 42

= 78.4

59 In first 3 seconds, 21

2S ut at= + ⇒

12 = u × 3 + 1

2× a × 32

12 = 3u + 9

2a ⇒3 = u + 1.5 a -------(1)

In first 6 seconds,

42 = u × 6 + 216

2a× ×

7 = u + 3a ----------(2)

Solve (1) & (2) to get a

60. Impulse = change in P

= 2mv

Impulse

2mv =

61 L r P= ×

1 2 1

2 1 1

i j k

= −−

63. X component of velocity xdx

vdt

=

8xv t=

Y component of velocity 6yv t=

Resultant velocity 2 2x yv v v= +

10t=

65. Acceleration 2120 6010 /

6

fa m s

m

−= = =

Tension = ( )m g a+

= 2 (10 + 10) = 20 N

66. 27

10TE mv=

67 By work-energy theorem

2

21. .........(1)

2 4

vF x m v

= −

21.( ) .........(2)

2F x y mv+ =

(2) 4

(1) 3

x y

x

+⇒ =

4

3

xy x= −

( x = the initial thickness penetrated and y the

additional thickness penetrated)

69. Applying law of conservation of angular

momentum,

1 1 2 2 1 2( )I I I Iω ω ω+ = +

6

3 31 12 10 5 ( 10 )4I I− −× + × = +

31 0.5 10I −⇒ = ×

70. 0t

t

ω ωα −= = t

t

ω

= 02

t

πυ

=2

π

( 0υ = 1800 rpm = 1800

30,60

= t = 2 × 60 s)

71. Centripetal force = 2mv

r-------(1)

Angular momentum L = mvr

L

vmr

⇒ =

(1) ⇒2

.m L

CFr mr =

1. Energy required = 1

nMgR

n +

(here n = 1)

2. Total energy = − KE

3. Area of the big drop = Area of the droplets

2 2 21 24 4 4R r rπ π π= +

⇒ 2 21 2R r r= +

5 Pressure difference = Pressure due to 10 mm

of Hg = 1 cm of Hg

h gω ωρ = Pressure due to 10mm of Hg

Hg Hghhω

ω

ρρ

= = 1 13.6

13.61

× = cm

6 21

2W kx=

21' (2 )

2W k x=

21' 3

2W W k x− = ×

3W=

3J=

7 3

rms

RTV

M=

3

A

RT

mN=

8. 2

1

1T

Tη = − 2

1

1T

Tη⇒ = −

2

1

0.8T

T⇒ = 2 10.8T T⇒ =

In the second case

2

1

500.6

T

T

− =

T2 – 50 = 0.6 T1

0.8 T1 – 50 = 0.6 T1

0.2 T1 = 50

T1 = 250 K

T2 = 200 K

9 2V

nC R=

n = no of degrees of freedom

10. Tree translational and two rotational degrees

of freedom

11 Comparing with standard equation of SHM,

we get 2ω =

2

ω=

13. Here, given y = 0.707 A

2

Ay =

KE = 2 2 21( )

2m A yω −

Put ,2

Ay =

KE = 2

2 21( )

2 2

Am Aω −

7

=2

TE

15

A1

N4N3N2N1

A2 A3

A1, A2 & A 3 = Antinodes

N1, N2, N3 & N4 = Nodes

16. In stretched string all harmonics are present.

17 Electric field near the sheet F

Eq

=

12

19

1.6 10

1.6 10E

×=×

= 107

But 02

Eσε

=

02 Eσ ε⇒ =

Total charge = Areaσ ×

02 E Areaε= ×

(The charge will be negative)

20. Centripetal force = Coulomb’s force

2

1 22

0

1.

4

q qmv

r rπε=

2 1 2

04

q qv

rmπε⇒ =

Period 2 r

Tv

π=

2 2

22

4 rT

v

π=

2 2

2 0

1 2

4 4r rmT

q q

π πε×=

21 Electric field F

Eq

=

1000

2= = 500

Potential difference = E × distance

= 500 × 2 × 10 – 2 = 10 V

22. Current through 4 Ω resistor near xy =

4

14

A=

Current through the 4 Ω resistor parallel to

4 Ω = 1 A

Total current in the circuit = 2A

Total potential difference = ( .)effI R×

= 2 × 8

= 16 V

23 PD across R = 2V

IR = 2

⇒ ( )10

2500

RR

=+

⇒ 125R = Ω

24 s pI I=

5

55

E Err R R

=+ +

r R⇒ =

25 Power loss = I2R P

IV

=

2P

RV =

⇒ Power loss 2

1

v∝

26. Charge in internal energy =I2Rt

= 12 × 50 × 2 × 60

= 6 kJ

28 2I

TmB

π=

2 24I

TmB

π=

22

4I

mT

π=

8

2 5

2 5

4 9 109

16 1016

π

π

× ×=× ×

= 4 Am2

2 2 2

2

q B rKE

m= -----(1)

22

qBqB m

mυ π υ

π= ⇒ =

2 2 2 24

(1)2

m rKE

m

π υ⇒ =

2 2 2 22 m rπ υ=

31. (1 cos )W mB θ= − 0( 180 )θ =

34 V(max) = BANω

35 ps s

p p s

IN V

N V I= =

330 4

5524

p ps

s

N IN

I

× ×⇒ = = =

36. Average energy density of magnetic field =

= 20

1

2Eε

2

121 18.85 10

2 2− = × × ×

= 1

2× 4.43 × 10 – 12 = 2.2 × 10 – 12 J

39 tanµ ρ=

tan 60=

3=

1

sinCµ

= 1 1sin

3C −

⇒ =

42 sind nθ λ= here n = 2

2

sind

λθ = ⇒ 7

6

2 5 10sin

2.5 10θ

× ×=×

2

sin5

θ⇒ =

43. 1

2

h

mmKEλ λ= ⇒ ∝

44 Time for 50% decay = One half life

Time for 87.5% decay = Three half lives

Time interval between 50% decay and 87.5%

decay = Two half lives

45 1 2

23 30R R A R A= = ∝

Area ∝ R2

2/3

(1) 125 25

(2) 27 9

Area

Area = =

46 KE hυ φ= −

' 2KE h υ φ= × −

2hυ φ= − ⇒more than twice the initial value

49. The out put .y A B C= +

50 Voltage gain = Current gain × resistance gain

= 49 × 10

2

= 245

53. LOS distance = 2 2Rh Rh+

8Rh=

9

KERAL ENGG. 2014 PHYSICS

EXPLANATION FOR A3 VERSION

32. 2

lg

T∝

⇒% error in g = % error in l + 2x % error in T

⇒1 × 2 + 2 × 3

⇒8%

34. Displacement of the dropped body +

Displacement of the thrown body = Total

height

2 21 1

2 2gt ut gt h+ − =

⇒ h

tu

= ⇒100

425

t s= =

Distance to the meeting point from top

= 21

2gt

= 4.9 × 42

= 78.4

36. In first 3 seconds, 21

2S ut at= + ⇒

12 = u × 3 + 1

2× a × 32

12 = 3u + 9

2a ⇒3 = u + 1.5 a -------(1)

In first 6 seconds,

42 = u × 6 + 216

2a× ×

7 = u + 3a ----------(2)

Solve (1) & (2) to get a

37 Impulse = change in P

= 2mv

Impulse

2mv =

38. L r P= ×

1 2 1

2 1 1

i j k

= −−

40. X component of velocity xdx

vdt

=

8xv t=

Y component of velocity 6yv t=

Resultant velocity 2 2x yv v v= +

10t=

42. Acceleration 2120 6010 /

6

fa m s

m

−= = =

Tension = ( )m g a+

= 2 (10 + 10) = 20 N

43. 27

10TE mv=

44. By work-energy theorem

2

21. .........(1)

2 4

vF x m v

= −

21.( ) .........(2)

2F x y mv+ =

(2) 4

(1) 3

x y

x

+⇒ =

4

3

xy x= −

( x = the initial thickness penetrated and y the

additional thickness penetrated)

46. Applying law of conservation of angular

momentum,

1 1 2 2 1 2( )I I I Iω ω ω+ = +

10

3 31 12 10 5 ( 10 )4I I− −× + × = +

31 0.5 10I −⇒ = ×

47. 0t

t

ω ωα −= = t

t

ω

= 02

t

πυ

=2

π

( 0υ = 1800 rpm = 1800

30,60

= t = 2 × 60 s)

48. Centripetal force = 2mv

r-------(1)

Angular momentum L = mvr

L

vmr

⇒ =

(1) ⇒2

.m L

CFr mr =

50 Energy required = 1

nMgR

n +

(here n = 1)

51. Total energy = − KE

52. Area of the big drop = Area of the droplets

2 2 21 24 4 4R r rπ π π= +

⇒ 2 21 2R r r= +

54. Pressure difference = Pressure due to 10 mm

of Hg = 1 cm of Hg

h gω ωρ = Pressure due to 10mm of Hg

Hg Hghhω

ω

ρρ

= = 1 13.6

13.61

× = cm

55. 21

2W kx=

21' (2 )

2W k x=

21' 3

2W W k x− = ×

3W=

3J=

56. 3

rms

RTV

M=

3

A

RT

mN=

57 2

1

1T

Tη = − 2

1

1T

Tη⇒ = −

2

1

0.8T

T⇒ = 2 10.8T T⇒ =

In the second case

2

1

500.6

T

T

− =

T2 – 50 = 0.6 T1

0.8 T1 – 50 = 0.6 T1

0.2 T1 = 50

T1 = 250 K

T2 = 200 K

58. 2V

nC R=

n = no of degrees of freedom

59. Tree translational and two rotational degrees

of freedom

60. Comparing with standard equation of SHM,

we get 2ω =

2

ω=

62. Here, given y = 0.707 A

2

Ay =

KE = 2 2 21( )

2m A yω −

Put ,2

Ay =

KE = 2

2 21( )

2 2

Am Aω −

11

=2

TE

64

A1

N4N3N2N1

A2 A3

A1, A2 & A 3 = Antinodes

N1, N2, N3 & N4 = Nodes

65 In stretched string all harmonics are present.

66. Electric field near the sheet F

Eq

=

12

19

1.6 10

1.6 10E

×=×

= 107

But 02

Eσε

=

02 Eσ ε⇒ =

Total charge = Areaσ ×

02 E Areaε= ×

(The charge will be negative)

69. Centripetal force = Coulomb’s force

2

1 22

0

1.

4

q qmv

r rπε=

2 1 2

04

q qv

rmπε⇒ =

Period 2 r

Tv

π=

2 2

22

4 rT

v

π=

2 2

2 0

1 2

4 4r rmT

q q

π πε×=

70. Electric field F

Eq

=

1000

2= = 500

Potential difference = E × distance

= 500 × 2 × 10 – 2 = 10 V

71 Current through 4 Ω resistor near xy =

4

14

A=

Current through the 4 Ω resistor parallel to

4 Ω = 1 A

Total current in the circuit = 2A

Total potential difference = ( .)effI R×

= 2 × 8

= 16 V

72 PD across R = 2V

IR = 2

⇒ ( )10

2500

RR

=+

⇒ 125R = Ω

31. s pI I=

5

55

E Err R R

=+ +

r R⇒ =

32. Power loss = I2R P

IV

=

2P

RV =

⇒ Power loss 2

1

v∝

33. Charge in internal energy =I2Rt

= 12 × 50 × 2 × 60

= 6 kJ

35. 2I

TmB

π=

2 24I

TmB

π=

22

4I

mT

π=

12

2 5

2 5

4 9 109

16 1016

π

π

× ×=× ×

= 4 Am2

2 2 2

2

q B rKE

m= -----(1)

22

qBqB m

mυ π υ

π= ⇒ =

2 2 2 24

(1)2

m rKE

m

π υ⇒ =

2 2 2 22 m rπ υ=

38. (1 cos )W mB θ= − 0( 180 )θ =

41. V(max) = BANω

42. ps s

p p s

IN V

N V I= =

330 4

5524

p ps

s

N IN

I

× ×⇒ = = =

43 Average energy density of magnetic field =

= 20

1

2Eε

2

121 18.85 10

2 2− = × × ×

= 1

2× 4.43 × 10 – 12 = 2.2 × 10 – 12 J

46 tanµ ρ=

tan 60=

3=

1

sinCµ

= 1 1sin

3C −

⇒ =

49. sind nθ λ= here n = 2

2

sind

λθ = ⇒ 7

6

2 5 10sin

2.5 10θ

× ×=×

2

sin5

θ⇒ =

50 1

2

h

mmKEλ λ= ⇒ ∝

51 Time for 50% decay = One half life

Time for 87.5% decay = Three half lives

Time interval between 50% decay and 87.5%

decay = Two half lives

52. 1 2

23 30R R A R A= = ∝

Area ∝ R2

2/3

(1) 125 25

(2) 27 9

Area

Area = =

53. KE hυ φ= −

' 2KE h υ φ= × −

2hυ φ= − ⇒more than twice the initial value

56 The out put .y A B C= +

57 Voltage gain = Current gain × resistance gain

= 49 × 10

2

= 245

60 LOS distance = 2 2Rh Rh+

8Rh=

13

KERAL ENGG. 2014 PHYSICS

EXPLANATION FOR A4 VERSION

13. 2

lg

T∝

⇒% error in g = % error in l + 2x % error in T

⇒1 × 2 + 2 × 3

⇒8%

15 Displacement of the dropped body +

Displacement of the thrown body = Total

height

2 21 1

2 2gt ut gt h+ − =

⇒ h

tu

= ⇒100

425

t s= =

Distance to the meeting point from top

= 21

2gt

= 4.9 × 42

= 78.4

17. In first 3 seconds, 21

2S ut at= + ⇒

12 = u × 3 + 1

2× a × 32

12 = 3u + 9

2a ⇒3 = u + 1.5 a -------(1)

In first 6 seconds,

42 = u × 6 + 216

2a× ×

7 = u + 3a ----------(2)

Solve (1) & (2) to get a

18. Impulse = change in P

= 2mv

Impulse

2mv =

19 L r P= ×

1 2 1

2 1 1

i j k

= −−

21 X component of velocity xdx

vdt

=

8xv t=

Y component of velocity 6yv t=

Resultant velocity 2 2x yv v v= +

10t=

23 Acceleration 2120 6010 /

6

fa m s

m

−= = =

Tension = ( )m g a+

= 2 (10 + 10) = 20 N

24. 27

10TE mv=

25. By work-energy theorem

2

21. .........(1)

2 4

vF x m v

= −

21.( ) .........(2)

2F x y mv+ =

(2) 4

(1) 3

x y

x

+⇒ =

4

3

xy x= −

( x = the initial thickness penetrated and y the

additional thickness penetrated)

27 Applying law of conservation of angular

momentum,

1 1 2 2 1 2( )I I I Iω ω ω+ = +

3 31 12 10 5 ( 10 )4I I− −× + × = +

14

31 0.5 10I −⇒ = ×

28. 0t

t

ω ωα −= = t

t

ω

= 02

t

πυ

=2

π

( 0υ = 1800 rpm = 1800

30,60

= t = 2 × 60 s)

29. Centripetal force = 2mv

r-------(1)

Angular momentum L = mvr

L

vmr

⇒ =

(1) ⇒2

.m L

CFr mr =

31 Energy required = 1

nMgR

n +

(here n = 1)

32. Total energy = − KE

33. Area of the big drop = Area of the droplets

2 2 21 24 4 4R r rπ π π= +

⇒ 2 21 2R r r= +

35. Pressure difference = Pressure due to 10 mm

of Hg = 1 cm of Hg

h gω ωρ = Pressure due to 10mm of Hg

Hg Hghhω

ω

ρρ

= = 1 13.6

13.61

× = cm

36. 21

2W kx=

21' (2 )

2W k x=

21' 3

2W W k x− = ×

3W=

3J=

37 3

rms

RTV

M=

3

A

RT

mN=

38 2

1

1T

Tη = − 2

1

1T

Tη⇒ = −

2

1

0.8T

T⇒ = 2 10.8T T⇒ =

In the second case

2

1

500.6

T

T

− =

T2 – 50 = 0.6 T1

0.8 T1 – 50 = 0.6 T1

0.2 T1 = 50

T1 = 250 K

T2 = 200 K

39 2V

nC R=

n = no of degrees of freedom

40. Tree translational and two rotational degrees

of freedom

41. Comparing with standard equation of SHM,

we get 2ω =

2

ω=

43. Here, given y = 0.707 A

2

Ay =

KE = 2 2 21( )

2m A yω −

Put ,2

Ay =

KE = 2

2 21( )

2 2

Am Aω −

15

=2

TE

45

.

A1

N4N3N2N1

A2 A3

A1, A2 & A 3 = Antinodes

N1, N2, N3 & N4 = Nodes

46. In stretched string all harmonics are present.

47. Electric field near the sheet F

Eq

=

12

19

1.6 10

1.6 10E

×=×

= 107

But 02

Eσε

=

02 Eσ ε⇒ =

Total charge = Areaσ ×

02 E Areaε= ×

(The charge will be negative)

50. Centripetal force = Coulomb’s force

2

1 22

0

1.

4

q qmv

r rπε=

2 1 2

04

q qv

rmπε⇒ =

Period 2 r

Tv

π=

2 2

22

4 rT

v

π=

2 2

2 0

1 2

4 4r rmT

q q

π πε×=

51. Electric field F

Eq

=

1000

2= = 500

Potential difference = E × distance

= 500 × 2 × 10 – 2 = 10 V

52 Current through 4 Ω resistor near xy =

4

14

A=

Current through the 4 Ω resistor parallel to

4 Ω = 1 A

Total current in the circuit = 2A

Total potential difference = ( .)effI R×

= 2 × 8

= 16 V

53. PD across R = 2V

IR = 2

⇒ ( )10

2500

RR

=+

⇒ 125R = Ω

54. s pI I=

5

55

E Err R R

=+ +

r R⇒ =

55. Power loss = I2R P

IV

=

2P

RV =

⇒ Power loss 2

1

v∝

56 Charge in internal energy =I2Rt

= 12 × 50 × 2 × 60

= 6 kJ

58. 2I

TmB

π=

2 24I

TmB

π=

22

4I

mT

π=

16

2 5

2 5

4 9 109

16 1016

π

π

× ×=× ×

= 4 Am2

2 2 2

2

q B rKE

m= -----(1)

22

qBqB m

mυ π υ

π= ⇒ =

2 2 2 24

(1)2

m rKE

m

π υ⇒ =

2 2 2 22 m rπ υ=

61 (1 cos )W mB θ= − 0( 180 )θ =

64. V(max) = BANω

65. ps s

p p s

IN V

N V I= =

330 4

5524

p ps

s

N IN

I

× ×⇒ = = =

66. Average energy density of magnetic field =

= 20

1

2Eε

2

121 18.85 10

2 2− = × × ×

= 1

2× 4.43 × 10 – 12 = 2.2 × 10 – 12 J

69 tanµ ρ=

tan 60=

3=

1

sinCµ

= 1 1sin

3C −

⇒ =

72 sind nθ λ= here n = 2

2

sind

λθ = ⇒ 7

6

2 5 10sin

2.5 10θ

× ×=×

2

sin5

θ⇒ =

1. 1

2

h

mmKEλ λ= ⇒ ∝

2 Time for 50% decay = One half life

Time for 87.5% decay = Three half lives

Time interval between 50% decay and 87.5%

decay = Two half lives

3. 1 2

23 30R R A R A= = ∝

Area ∝ R2

2/3

(1) 125 25

(2) 27 9

Area

Area = =

4 KE hυ φ= −

' 2KE h υ φ= × −

2hυ φ= − ⇒more than twice the initial value

7. The out put .y A B C= +

8 Voltage gain = Current gain × resistance gain

= 49 × 10

2

= 245

11 LOS distance = 2 2Rh Rh+

8Rh=