jump then climb: can rearrangements predict the occurrence ... › hal-01938800 › file ›...

2
HAL Id: hal-01938800 https://hal.archives-ouvertes.fr/hal-01938800 Submitted on 28 Nov 2018 HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Jump then Climb: can rearrangements predict the occurrence of mutational bursts? Guillaume Beslon, Vincent Liard, Santiago Elena To cite this version: Guillaume Beslon, Vincent Liard, Santiago Elena. Jump then Climb: can rearrangements predict the occurrence of mutational bursts?. Evolution 2018 - Congress on Evolutionary Biology, Aug 2018, Montpellier, France. pp.1. hal-01938800

Upload: others

Post on 10-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Jump then Climb: can rearrangements predict the occurrence ... › hal-01938800 › file › poster_Evolution… · The jump-and-climb process is rooted in the combinatorics of mutaonal

HAL Id: hal-01938800https://hal.archives-ouvertes.fr/hal-01938800

Submitted on 28 Nov 2018

HAL is a multi-disciplinary open accessarchive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come fromteaching and research institutions in France orabroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, estdestinée au dépôt et à la diffusion de documentsscientifiques de niveau recherche, publiés ou non,émanant des établissements d’enseignement et derecherche français ou étrangers, des laboratoirespublics ou privés.

Jump then Climb: can rearrangements predict theoccurrence of mutational bursts?

Guillaume Beslon, Vincent Liard, Santiago Elena

To cite this version:Guillaume Beslon, Vincent Liard, Santiago Elena. Jump then Climb: can rearrangements predictthe occurrence of mutational bursts?. Evolution 2018 - Congress on Evolutionary Biology, Aug 2018,Montpellier, France. pp.1. �hal-01938800�

Page 2: Jump then Climb: can rearrangements predict the occurrence ... › hal-01938800 › file › poster_Evolution… · The jump-and-climb process is rooted in the combinatorics of mutaonal

Ques%on:predictabilityofevolu%onatthemolecularlevel

JumpthenClimb:canrearrangementspredicttheoccurrenceofmuta%onalbursts?

GuillaumeBeslon1,VincentLiard1,San6agoF.Elena2,31:INRIA-Beagleteam(INSA-Lyon),Lyon,France

2:IBMCP(CSIC-UPV),Valencia,Spain;3:SantaFeIns6tute,SantaFeNM,USA

•  Duetothestochas6cnatureofmuta6ons,evolu6onisgenerallysupposedtobeunpredictableatthemolecularlevel.•  Butmuta6onsarefiltered-outbyselec6onwhichmayintroducecorrela6onsinthemuta6onalpaSerns.•  Therearemanydifferentkindsofmuta6onalevents(switches,InDels,rearrangements,HGT…).•  Someoftheseeventsmaypoten6atetheoccurrenceofothers,resul6nginanon-randomfixa6on.

! Howtostudythisprocess?

•  Modelingandsimula6oncanbeusedtostudyhowarandomspontaneousmuta6onalprocesscanturnintoanon-randomprocesswhenlookingatfixedmuta6ons.

•  Weneedamodelinwhichmuta6onalpaSernscanaccountforthevarietyofmoleculareventsthatcanalterrealgenomes.•  Themodelshouldincludeacomplexgenotype-to-phenotypemap.•  Bothproper6esareatthecoreoftheAevolmodel(www.aevol.fr).

!HereweusedAevoltotesttheinterac%onsbetweenthedifferentkindofmuta%ons…

Method:InSilicoexperimentalevolu%onwiththeAevolmodel

Results:Randomspontaneouseventsdon’tfixindependently

Discussion:Canrearrangementsbeusedaspredictorofmolecularevolu%on?

TheAevolmodel:Aevol is an In Silico ExperimentalEvo lu6on p la[orm that mode l smicroorganisms evolu6on with explicitselec6on and replica6on processes (A).Aevol uses a realis6c genome structure(B.1) and a sound genotype-to-phenotypemap (B). All func6onal levelsare modeled as mathema6cal func6ons(B.2-3).Fitnessiscomputedbycomparingthe phenotype with a predefined target(in red on B.3). Muta6on operatorsincludechromosomalrearrangements(C.1),switchesandIndels(C.2).

Experimentalframework:•  Weevolved30viralwild-typesbysimula6ng200,000genera6onsofevolu6on under a high muta6onpressure(10-4mut.bp-1.gen-1).

•  EachWThasbeencloned30xandthe 900 clones were furtherevolvedfor30,000genera6ons.

•  Weanalyzedthesequenceoffixedmuta6onsintermsof(1)effectonfitness, genome size, robustnessand evolvability (2) wai6ng 6mebetweentwomuta6onalevents.

Genome size

FavorableDeleteriousNeutral

Switch/InDelRearrangement

Evolu%onarydynamics:•  215 of the 900 clones significantlyimprovedtheirfitness.

•  Fitness gain ocen occurs duringshort muta6onal bursts with rapidfixa6onofmuta6onalevents.

•  Theseburstsarecharacterizedbyastrongincreaseofevolvability.

•  More than 50%of the bursts startwithasegmentalduplica6on.

•  Compared to spontaneous rates,muta6ons are rare, except duringthebursts.

Wai%ng%mebetweenmuta%ons:Delays from the previous fixa6onevent (top) and to the next one(boSom)arees6matedperkindofmuta6on for the 215 clones thatsignificantly gain fitness (Hodges–Lehmann es6mator). Segmentalduplica6ons show a strong skew:they are fixed acer a “muta6onaldesert” and are likely to beimmediately followed by anothermuta6onfixa6onevent.InDelsarealso skewed although the skew islesspronounced.

Inourexperimentevolu%onproceedsby“jump-and-climb”steps:1.  Thevirusesclimbtheirlocalfitnesspeak.Thisprocessmainly

reliesonsubs6tu6ons.2.  Atthetopofthefitnesspeak,no

morefavorablesubs6tu6onsareavailable.S6llmanyrearrangementsremaintobetested.

3.  Arearrangementisfixed;virusesjumptoanewpeakwherenewfavorablesubs6tu6onsareavailable.Theclimbingprocessstartsagain.

Thissequen6alprocessenablespar6alpredic6onat themolecular level:fixa6onofarearrangementopensthepathtonewadapta6ons…

Thejump-and-climbprocessisrootedinthecombinatoricsofmuta%onaleventsIncompactedgenomes,likeviralones,thecombinatoricsofpointmuta6onsisquicklyexhausted.Yet,thecombinatoricsofrearrangementsismuchlargerandcannotbeexploredinareasonable6me.Whenfixed,theyopennewpathsinthefitnesslandscapethatenablefixa6onofpreviouslyimpossiblepointmuta6ons…Similarprocesseshavebeenobservedinviruses(e.g.Chikungunya)andbacteria(Blountetal.,2012).Ourresultsopenthreeimportantques6ons:(1)isthisprocessrestrictedtoshort,compact,genomesorcanitbegeneralized,e.g.tocancerevolu6on?(2)Arethereother“jumping”muta6onalevents(3)cantheseeventsbeusedtopredictdiseaseemergenceorevolu6onofdrugresistance?

CloneWT2C1

1

23

(A)Popula6ononagridandgenera6onalevolu6onaryloop

Localselec6onandreplica6on

scale : 471 bp(B.1)Genome

(B.2)Proteome (B.3)Phenotype

(B)Genomedecodingandfitnessevalua6on

Func6onalspace

Func6onalspace

Ac6va6onlevel

Ac6va6onlevel

scale : 471 bp

scal

e : 4

71 b

p

scale : 471 bp

scale : 471 bp

scal

e : 4

71 b

p

scale : 471 bp

scale : 471 bpscale : 471 bpscale : 471 bpscale : 471 bpscale : 471 bp

(C)Genomereplica6onwithrandomrearrangementsandmuta6ons

scale : 471 bpscale : 471 bpscale : 471 bpscale : 471 bpscale : 471 bpscale : 471 bp

(C.1)Chromosomalrearrangements

Targetfunc6on

(C.2)Switches,Indels

ExampleofadigitalvirusWTacer200,000genera6onsofevolu6onontheAevolpla[orm

Es6matedwai6ng6me

frompreviousmuta6onfixa6onevent

Es6matedwai6ng6me

tonextmuta6onfixa6onevent

Smallins.

(916

)

429531

620

211

620

1932

1238

398 426

1193

376

770*** **

**

Switche

s(117

2)

Smalldel.

(911

)

Duplica6

ons

(168

)

Largede

l.(29)

Translo

c.

(8)

Inversions

(64)

661

2020

Popula6on Bestfinalclone

mRNAs Genes

Phenotypeofthebestindividual(coloredarea),phenotypesofthewholepopula6on(bluelines),targetphenotype(redcurve)

NeighborsinthefitnesslandscapeofWT2C1

Pointmuta%ons 521Smallinser%ons 65646Smalldele%ons 3126Duplica%ons 141149320Largedele%ons 270920Transloca%ons 140607480Inversions 270920