jorn bruggeman , bas kooijman , bob kooi , anne-willem ... · •our 4‐parameter, trait‐based...

1
• Our 4parameter, traitbased phytoplankton model is able to reproduce key ecosystem features, while accounting for biodiversity • Caveat: without winterreset, most biodiversity is lost in time (> 10 years). Selected phytoplankton traits: investment in assimilation... 1. light harvesting: “cellspecific chlorophyll” 2. nutrient harvesting: “surfacetovolume ratio” ... measured in fractions κ i of structural (nontrait) biomass Physics: • Turbulent water column, ocean top 150m, depthdependent turbulence/diffusivity: GOTM (http://www.gotm.net), k‐ε model • Real surface forcing: ERA40 data (http://www.ecmwf.int), lat = 55°, lon = 20° Biota: • Start with homogeneous trait distribution, low biomass: “start of spring” • No explicit predation (but maintenance) • Competition between trait classes through shared external nutrient pool only Marine ecosystems harbor myriads of species. The combination of individual species defines the system as a whole. However, knowledge on individual species is extremely limited, in particular from a modelers point of view. Also, most marine ecosystem research has no need for speciesexplicit models. Question: How to model bulk parameters (e.g. total carbon), while accounting for biodiversity, yet leaving out individual species? Approach: bridging interspecies gaps • all species share a common makeup: the omnipotent population • differences between species = differences in parameter values • parameters that describe interspecies differences: traits Jorn Bruggeman a , Bas Kooijman a , Bob Kooi a , Anne-Willem Omta a , Henk Dijkstra b , Marc van Raalte c , Ben Sommeijer c a Vrije Universiteit Amsterdam, b Colorado State University, c Centrum voor Wiskunde en Informatica More information: [email protected], http://www.bio.vu.nl/thb/ time scale source of plasticity physiological: within generation ecological: few generations evolutionary: many generations physiological adaptation of individual changes in species composition evolution of properties of species • An infinite number of phytoplankton species is represented by the twotrait population model, plus continuous distributions for trait values • Natural boundaries for trait distributions trait value too small: low assimilation extinction trait value too high: high maintenance extinction • Discretize trait distributions, allow for change in frequency for every trait class The model is inspired by the work of Kooijman (“Dynamic energy and mass budgets in biological systems”, Cambridge University Press, 2000). It accommodates the following processes: How can ecosystem features change? This study focuses on the ecological time scale. • Physiological and evolutionary time scales fit into one theoretical framework (Popul Ecol 46: 1325, J Math Biol 34: 579612) movement along fitness gradient, in direction of (local) optimum • Can ecological time scale be incorporated in the same framework? • Challenge: collapse trait distributions into single adapting population Trait tradeoff in different environments. Investment in assimilation brings costs in maintenance and growth. Low light, low nutrient environments favor some investment (top left), whereas high light, high nutrient environments discourage investment (bottom right). Asymmetric limitation favors asymmetric investment. Competitive exclusion occurs in homogeneous setting (J Math Biol 50: 133160). In this study, spatial and temporal heterogeneity permits some coexistence, but realistic biodiversity is shortlived. “deep chorophyll maximum” “succession”, e.g. small A:V large A:V large small cell size total biomass: no trait-effect seen structural biomass light harvesting nutrient harvesting 1 1 2 1 κ κ κ + + nutrient + + 2 1 2 1 κ κ κ + + 1 2 1 1 κ κ + + + + 1 2 3 1. assimilation: proportional to external substrate and trait biomass 2. growth: substrates are combined to form new biomass; capped by structurespecific maximum rate, hyperbolic in substrate arrival 3. maintenance/death: biomass turnover proportional to (sum of) all biomasses

Upload: others

Post on 27-Nov-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Jorn Bruggeman , Bas Kooijman , Bob Kooi , Anne-Willem ... · •Our 4‐parameter, trait‐based phytoplankton model is able to reproduce key ecosystem features, while accounting

• Our 4‐parameter, trait‐based phytoplankton model is able to reproduce key ecosystem features, while accounting for biodiversity

• Caveat: without winter‐reset, most biodiversity is lost in time (> 10 years).

Selected phytoplankton traits: investment in assimilation...1. light harvesting: “cell‐specific chlorophyll”2. nutrient harvesting: “surface‐to‐volume ratio”

... measured in fractions κi of structural (non‐trait) biomass

Physics:• Turbulent water column, ocean top 150m, depth‐dependent turbulence/diffusivity: GOTM (http://www.gotm.net), k‐εmodel

• Real surface forcing: ERA‐40 data (http://www.ecmwf.int), lat = 55°, lon = ‐20°

Biota:• Start with homogeneous trait distribution, low biomass: “start of spring”• No explicit predation (but maintenance)• Competition between trait classes through shared external nutrient pool only

Marine ecosystems harbor myriads of species. The combination of individual species defines the system as a whole. However, knowledge on individual species is extremely limited, in particular from a modelers point of view. Also, most marine ecosystem research has no need for species‐explicit models.

Question: How to model bulk parameters (e.g. total carbon), while accounting for biodiversity, yet leaving out individual species?

Approach: bridging inter‐species gaps• all species share a common make‐up: the omnipotent population• differences between species = differences in parameter values• parameters that describe inter‐species differences: traits

Jorn Bruggemana, Bas Kooijmana, Bob Kooia, Anne-Willem Omtaa, Henk Dijkstrab, Marc van Raaltec, Ben Sommeijerca Vrije Universiteit Amsterdam, b Colorado State University, c Centrum voor Wiskunde en Informatica

More information: [email protected], http://www.bio.vu.nl/thb/

time scale source of plasticity

physiological: within generation

ecological: few generations

evolutionary: many generations

physiological adaptation of individual

changes in species composition

evolution of properties of species

• An infinite number of phytoplankton species is represented by the two‐trait population model, plus continuous distributions for trait values

• Natural boundaries for trait distributions‐ trait value too small: low assimilation  extinction‐ trait value too high: high maintenance  extinction

• Discretize trait distributions, allow for change in frequency for every trait class

The model is inspired by the work of Kooijman (“Dynamic energy and mass budgets in biological systems”, Cambridge University Press, 2000). It accommodates the following processes:

How can ecosystem features change?

This study focuses on the ecological time scale.

• Physiological and evolutionary time scales fit into one theoretical framework (Popul Ecol 46: 13‐25, J Math Biol 34: 579‐612)‐movement along fitness gradient, in direction of (local) optimum

• Can ecological time scale be incorporated in the same framework?• Challenge: collapse trait distributions into single adapting population

Trait trade‐off in different environments.

Investment in assimilation brings costs in maintenance and growth. Low light, low nutrient environments favor some investment (top left), whereas high light, high nutrient environments discourage investment (bottom right). Asymmetric limitation favors  asymmetric investment.

Competitive exclusion occurs in homogeneous setting (J Math Biol 50: 133‐160). In this study, spatial and temporal heterogeneity permits some coexistence, but realistic biodiversity is short‐lived.

“deep chorophyllmaximum”

“succession”, e.g.small A:V large A:Vlarge small cell size

total biomass: no trait-effect seen

structural biomass

light harvesting

nutrient harvesting

1

1 21κκ κ+ +

nutrient

+

+

2

1 21κκ κ+ +

1 2

11 κ κ+ + +

+1

2

3

1. assimilation: proportional to external substrate and trait biomass2. growth: substrates are combined to form new biomass; capped by structure‐specific maximum 

rate, hyperbolic in substrate arrival3. maintenance/death: biomass turnover proportional to (sum of) all biomasses