jones matrix lecture

21
1 Polarization Jones vector & matrices Phys 375

Upload: der-untiringe-kaefer

Post on 06-Jan-2016

217 views

Category:

Documents


0 download

DESCRIPTION

Very good lecture about Jones matrix.

TRANSCRIPT

Page 1: Jones Matrix Lecture

7/17/2019 Jones Matrix Lecture

http://slidepdf.com/reader/full/jones-matrix-lecture 1/21

1

PolarizationJones vector & matrices

Phys 375

Page 2: Jones Matrix Lecture

7/17/2019 Jones Matrix Lecture

http://slidepdf.com/reader/full/jones-matrix-lecture 2/21

2

Matrix treatment of polarization

Consider a light ray with an instantaneous !

vector as shown

( ) ( ) ( )t  z  E  jt  z  E it  z  E   y x   ,ˆ,ˆ,   +=

x

y

Ex

Ey

( )

( ) y

 x

t kz i

oy y

t kz i

ox x

e E  E 

e E  E 

ϕ ω 

ϕ ω 

+−

+−

=

=

Page 3: Jones Matrix Lecture

7/17/2019 Jones Matrix Lecture

http://slidepdf.com/reader/full/jones-matrix-lecture 3/21

3

Matrix treatment of polarization Com"ining the components

#he terms in "rac$ets represents the complexamplitude of the plane wave

( )   ( )

[ ]   ( )

( )t kz i

o

t kz ii

oy

i

ox

t kz i

oy

t kz i

ox

e E  E 

ee E   je E i E 

e E   je E i E 

 y x

 y x

ω 

ω ϕ ϕ 

ϕ ω ϕ ω 

+−+−

=

+=

+=

~

ˆˆ

ˆˆ

Page 4: Jones Matrix Lecture

7/17/2019 Jones Matrix Lecture

http://slidepdf.com/reader/full/jones-matrix-lecture 4/21

4

Jones %ectors #he state of polarization of light is determined "y

 the relative amplitudes ox' oy( and'

 the relative phases δ ) ϕy ! ϕx (

of these components

#he complex amplitude is written as a two!

element matrix' the Jones vector 

=

=

=   δ 

ϕ 

ϕ 

ϕ 

i

oy

oxi

 yi

oy

i

ox

oy

ox

o e E  E e

e E e E 

 E  E  E    x

 x

~

~

~

Page 5: Jones Matrix Lecture

7/17/2019 Jones Matrix Lecture

http://slidepdf.com/reader/full/jones-matrix-lecture 5/21

5

Jones vector* +orizontally polarized light

#he electric field oscillations areonly along the x!axis

#he Jones vector is then written'

where we have set the phase ϕx ),' for convenience

=

=

=

=

0

1

00~

~~

 A Ae E 

 E 

 E  E 

 xi

ox

oy

ox

o

ϕ x

y

#he arrows indicate

the sense ofmovement as the

"eam approaches you

The normalized form

is

0

1

 E 

Page 6: Jones Matrix Lecture

7/17/2019 Jones Matrix Lecture

http://slidepdf.com/reader/full/jones-matrix-lecture 6/21

6

x

y

Jones vector* %ertically polarized light

#he electric field oscillations

are only along the y!axis

#he Jones vector is then

written'

-here we have set thephase ϕy ) ,' for

convenience

=

=

=

=

1

000

~

~~

 A

 Ae E 

 E 

 E  E 

 yi

oyoy

ox

o   ϕ 

The normalized form

is

1

0

 E 

Page 7: Jones Matrix Lecture

7/17/2019 Jones Matrix Lecture

http://slidepdf.com/reader/full/jones-matrix-lecture 7/21

7

Jones vector* .inearly polarized light at

an ar"itrary angle /f the phases are such that δ ) mπ for

m ) ,' ±0' ±1' ±3' 2

#hen we must have'

and the Jones vector is simply a line

inclined at an angle α ) tan!0oyox(

since we can write

( )oy

oxm

 y

 x

 E 

 E 

 E 

 E 1−=

( )

−=

=

α 

α 

sin

cos1~

~~   m

oy

ox

o   A

 E 

 E  E 

x

y

 

Page 8: Jones Matrix Lecture

7/17/2019 Jones Matrix Lecture

http://slidepdf.com/reader/full/jones-matrix-lecture 8/21

8

Circular polarization

4uppose ox ) oy ) and x leads y "y6,o)

π1

 t the instant x reachesits maximumdisplacement (' y iszero

  fourth of a period later'x is zero and y)

x

y

t=0, Ey = 0, Ex = +A

t=T/4, Ey = +A, Ex = 0

t=T/8, Ey = +Asin 45o, Ex = Acos45o

Page 9: Jones Matrix Lecture

7/17/2019 Jones Matrix Lecture

http://slidepdf.com/reader/full/jones-matrix-lecture 9/21

9

Circular polarization

#he Jones vector for this case 8 where x leads y is

#he normalized form is'

#his vector represents circularly polarized light' where

rotates countercloc$wise' viewed head!on

#his mode is called left!circularly polarized light -hat is the corresponding vector for right!circularly

polarized light9

=

=

=

i A

 Ae

 A

e E 

e E  E    ii

oy

i

ox

o   y

 x 1~

2π ϕ 

ϕ 

i

1

21

− i

1

2

1Replace / !ith "  / to #et

Page 10: Jones Matrix Lecture

7/17/2019 Jones Matrix Lecture

http://slidepdf.com/reader/full/jones-matrix-lecture 10/21

10

lliptically polarized light

/f ox ≠ oy ' e:g: if ox) and oy

 ) ;

#he Jones vector can "e written

iB

 A

iB A co$ntercloc%!ise

cloc%!ise

&ere A'(

Page 11: Jones Matrix Lecture

7/17/2019 Jones Matrix Lecture

http://slidepdf.com/reader/full/jones-matrix-lecture 11/21

11

Jones vector and polarization

/n general' the Jones vector for the ar"itrarycase is an ellipse δ≠ mπ< δ≠m01(π(

( )

+=

=

δ δ 

δ sincos

~

i B

 A

e E 

 E  E  i

oy

ox

o

a

)

Eox

Eoy

x

y

22

cos22tan

oyox E  E 

 E  E  oyox

=

δ α 

 

Page 12: Jones Matrix Lecture

7/17/2019 Jones Matrix Lecture

http://slidepdf.com/reader/full/jones-matrix-lecture 12/21

12

=ptical elements* .inear polarizer 

4electively removes all or most of the !

vi"rations except in a given direction

TA

x

y

*inear polarizer 

Page 13: Jones Matrix Lecture

7/17/2019 Jones Matrix Lecture

http://slidepdf.com/reader/full/jones-matrix-lecture 13/21

13

Jones matrix for a linear polarizer 

=

1

0

1

0

d c

ba

=

10

00 M 

onsider a linear polarizer !ith transmission axis alon# theertical -y. *et a matrix represent the polarizer

operatin# on ertically polarized li#ht

The transmitted li#ht m$st also )e ertically polarized Th$s,

Th$s,*inear polarizer !ith TA

ertical

=

0

0

0

1

d c

ba

1peratin# on horizontally polarized li#ht,

Page 14: Jones Matrix Lecture

7/17/2019 Jones Matrix Lecture

http://slidepdf.com/reader/full/jones-matrix-lecture 14/21

14

Jones matrix for a linear polarizer 

>or a linear polarizer with a transmission

axis at θ

=

θ θ θ 

θ θ θ 2

2

sincossin

cossincos M 

Page 15: Jones Matrix Lecture

7/17/2019 Jones Matrix Lecture

http://slidepdf.com/reader/full/jones-matrix-lecture 15/21

15

=ptical elements* Phase retarder 

/ntroduces a phase difference ?ϕ( "etweenorthogonal components

#he fast axis>( and slow axis 4( are shown

2A

x

y

Retardation plate

3A

Page 16: Jones Matrix Lecture

7/17/2019 Jones Matrix Lecture

http://slidepdf.com/reader/full/jones-matrix-lecture 16/21

16

Jones matrix of a phase retarder 

-e wish to find a matrix which will transform the elements

as follows*

/t is easy to show "y inspection that'

+ere εx and εy represent the advance in phase of the

components

( )

( ) y y y

 x x x

i

oy

i

oy

i

ox

i

ox

e E oe E 

e E oe E 

ε ϕ ϕ 

ε ϕ ϕ 

+

+

int

int

=  y

 x

i

i

e

e

 M  ε 

ε 

0

0

Page 17: Jones Matrix Lecture

7/17/2019 Jones Matrix Lecture

http://slidepdf.com/reader/full/jones-matrix-lecture 17/21

17

Jones matrix of a @uarter -ave Plate

Consider a Auarter wave plate for which B?εB )π1

>or εy ! εx ) π1 4low axis vertical( .et εx ) !π and εy ) π

#he matrix representing a @uarter wave plate'

with its slow axis vertical is'

=

=

  −−

ie

e

e M 

  i

i

i

0

01

0

0   4

4

4   π 

π 

π 

Page 18: Jones Matrix Lecture

7/17/2019 Jones Matrix Lecture

http://slidepdf.com/reader/full/jones-matrix-lecture 18/21

18

Jones matrices* +alf!wave Plate

>or B?εB ) π

=

=

−=

=

−−

10

01

0

0

10

01

0

0

2

2

2

2

2

2

π 

π 

π 

π 

π 

π 

i

i

i

i

i

i

ee

e M 

ee

e M  &, 3A ertical

&, 3A horizontal

Page 19: Jones Matrix Lecture

7/17/2019 Jones Matrix Lecture

http://slidepdf.com/reader/full/jones-matrix-lecture 19/21

19

=ptical elements*

@uarter+alf wave plate -hen the net phase difference

 ?ϕ ) π1 * @uarter!wave plate

 ?ϕ ) π * +alf!wave plate  /

 

Page 20: Jones Matrix Lecture

7/17/2019 Jones Matrix Lecture

http://slidepdf.com/reader/full/jones-matrix-lecture 20/21

20

=ptical elements* Dotator  Dotates the direction of linearly polarized

light "y a particular angle θ

x

y

Rotator 

3A

Page 21: Jones Matrix Lecture

7/17/2019 Jones Matrix Lecture

http://slidepdf.com/reader/full/jones-matrix-lecture 21/21

21

Jones matrix for a rotator 

 n !vector oscillating linearly at θ is rotated "y

an angle β

#hus' the light must "e converted to one thatoscillates linearly at β  θ (

=ne then finds

( )

( )

+

+=

θ β 

θ β 

θ 

θ 

sin

cos

sin

cos

d c

ba

  −=β β 

β β 

cossin

sincos M