javier hidalgo carrió dfki bremen & universität bremen robotics innovation center ...

19
Javier Hidalgo Carrió DFKI Bremen & Universität Bremen Robotics Innovation Center www.dfki.de/robotics [email protected] Navigation and Slip Kinematics for High Performance Motion Models

Upload: marcia-simon

Post on 30-Dec-2015

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Javier Hidalgo Carrió DFKI Bremen & Universität Bremen Robotics Innovation Center  javier.hidalgo_carrio@dfki.de Navigation and Slip

Javier Hidalgo Carrió

DFKI Bremen & Universität Bremen

Robotics Innovation Center

www.dfki.de/robotics

[email protected]

Navigation and Slip Kinematics for HighPerformance Motion Models

Page 2: Javier Hidalgo Carrió DFKI Bremen & Universität Bremen Robotics Innovation Center  javier.hidalgo_carrio@dfki.de Navigation and Slip

2

Outline

Motivation

State of the Art

Kinematics Modeling Approach

Results

Conclusion and Questions

Page 3: Javier Hidalgo Carrió DFKI Bremen & Universität Bremen Robotics Innovation Center  javier.hidalgo_carrio@dfki.de Navigation and Slip

3

Motivation

The common 3D-planar assumption does not capture the complexity of the system

Page 4: Javier Hidalgo Carrió DFKI Bremen & Universität Bremen Robotics Innovation Center  javier.hidalgo_carrio@dfki.de Navigation and Slip

4

Motivation

To find a common solution to easily extend to other systems.Transformation vs Geometric approach

Page 5: Javier Hidalgo Carrió DFKI Bremen & Universität Bremen Robotics Innovation Center  javier.hidalgo_carrio@dfki.de Navigation and Slip

5

State of the Art

Page 6: Javier Hidalgo Carrió DFKI Bremen & Universität Bremen Robotics Innovation Center  javier.hidalgo_carrio@dfki.de Navigation and Slip

6

State of the Art

P. Muir and C. Neuman (1986): Kinematics Modeling of Wheeled Mobile Robots

Page 7: Javier Hidalgo Carrió DFKI Bremen & Universität Bremen Robotics Innovation Center  javier.hidalgo_carrio@dfki.de Navigation and Slip

7

State of the Art

M. Tarokh and G. J. McDermott (2005): Kinematics Modeling and Analysis of Articulated rovers

P. Muir and C. Neuman (1986): Kinematics Modeling of Wheeled Mobile Robots

Page 8: Javier Hidalgo Carrió DFKI Bremen & Universität Bremen Robotics Innovation Center  javier.hidalgo_carrio@dfki.de Navigation and Slip

8

State of the Art

M.Görner and G. Hirzinger (2010): Analysis and Evaluation of [..] Eight-legged Walking robot

B. Gassmann (2005): Localization of Walking Robots M. Tarokh and G. J. McDermott (2005): Kinematics Modeling and Analysis of

Articulated rovers P. Muir and C. Neuman (1986): Kinematics Modeling of Wheeled Mobile Robots

Page 9: Javier Hidalgo Carrió DFKI Bremen & Universität Bremen Robotics Innovation Center  javier.hidalgo_carrio@dfki.de Navigation and Slip

9

Kinematics Modeling

ATTITUDE

Page 10: Javier Hidalgo Carrió DFKI Bremen & Universität Bremen Robotics Innovation Center  javier.hidalgo_carrio@dfki.de Navigation and Slip

10

Kinematics Modeling

ATTITUDE

3D slip vector at the contact point with the ground

Page 11: Javier Hidalgo Carrió DFKI Bremen & Universität Bremen Robotics Innovation Center  javier.hidalgo_carrio@dfki.de Navigation and Slip

11

Kinematics Modeling

ATTITUDE

Ground contact angle which defines the direction of motion of the wheel.

Page 12: Javier Hidalgo Carrió DFKI Bremen & Universität Bremen Robotics Innovation Center  javier.hidalgo_carrio@dfki.de Navigation and Slip

12

Kinematics Modeling

ATTITUDEJ3j J1j

J2j J0j

Page 13: Javier Hidalgo Carrió DFKI Bremen & Universität Bremen Robotics Innovation Center  javier.hidalgo_carrio@dfki.de Navigation and Slip

13

Kinematics Modeling

Least-Squares optimization to minimize the error of an overdetermined system.

It is important to define the single contribution of each wheels to the final movement (wheel-weighting matrix C).

Page 14: Javier Hidalgo Carrió DFKI Bremen & Universität Bremen Robotics Innovation Center  javier.hidalgo_carrio@dfki.de Navigation and Slip

14

Results

Space Hall test at DFKI using Vicon System as ground truth

ASGUARD

Page 15: Javier Hidalgo Carrió DFKI Bremen & Universität Bremen Robotics Innovation Center  javier.hidalgo_carrio@dfki.de Navigation and Slip

15

Results

The localization results are much better than the conventional odometry

Page 16: Javier Hidalgo Carrió DFKI Bremen & Universität Bremen Robotics Innovation Center  javier.hidalgo_carrio@dfki.de Navigation and Slip

16

Results

The wheel-weighting matrix defines the center of rotation

Page 17: Javier Hidalgo Carrió DFKI Bremen & Universität Bremen Robotics Innovation Center  javier.hidalgo_carrio@dfki.de Navigation and Slip

17

Results

Slip vector analysis of each single wheel-contact point

Page 18: Javier Hidalgo Carrió DFKI Bremen & Universität Bremen Robotics Innovation Center  javier.hidalgo_carrio@dfki.de Navigation and Slip

18

Conclusions

3. Definition of a wheel-weighting matrix to define each wheel contribution

1. Full Kinematics model of a leg-wheel hybrid system (including slip vector)

2. Improvements on motion models (dead-reckoning)

4. Better selection of the contact point

5. Field testing results are next to come

Page 19: Javier Hidalgo Carrió DFKI Bremen & Universität Bremen Robotics Innovation Center  javier.hidalgo_carrio@dfki.de Navigation and Slip

Thank you very much for your attention!!

DFKI Bremen & Universität Bremen

Robotics Innovation Center

Director: Prof. Dr. Frank Kirchner

www.dfki.de/robotics

[email protected]