jan m. rabaey the devices digital integrated circuits© prentice hall 1995 introduction

49
Jan M. Rabaey The Devices Digital Integrated Circuits © Prentice Hall 1995 Introduction Introduction

Upload: patrick-nicholson

Post on 28-Dec-2015

312 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

Jan M. Rabaey

The Devices

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Page 2: Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

Goal of this chapter

• Present intuitive understanding of device operation

• Introduction of basic device equations

• Introduction of models for manual analysis

• Introduction of models for SPICE simulation

• Analysis of secondary and deep-sub-microneffects

• Future trends

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Page 3: Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

The Diode

n

p

p

n

B A SiO2Al

A

B

Al

A

B

Cross-section of pn-junction in an IC process

One-dimensionalrepresentation diode symbol

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Page 4: Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

Depletion Region

hole diffusionelectron diffusion

p n

hole driftelectron drift

ChargeDensity

Distancex+

-

ElectricalxField

x

PotentialV

W2-W1

(a) Current flow.

(b) Charge density.

(c) Electric field.

(d) Electrostaticpotential.

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Page 5: Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

Diode Current

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Page 6: Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

Models for Manual Analysis

VD

ID = IS(eVD/T – 1)+

VD

+

+

–VDon

ID

(a) Ideal diode model (b) First-order diode model

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Page 7: Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

Junction Capacitance

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Page 8: Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

Diode Switching Time

Vsrc

t = 0

V1

V2

VD

Rsrc

t = T

ID

Time

VD

ON OFF ON

Space chargeExcess charge

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Page 9: Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

Secondary Effects

–25.0 –15.0 –5.0 5.0

VD (V)

–0.1

I D (A

)0.1

0

0

Avalanche Breakdown

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Page 10: Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

Diode Model

ID

RS

CD

+

-

VD

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Page 11: Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

SPICE Parameters

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Page 12: Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

The MOS Transistor

n+n+

p-substrate

Field-Oxyde

(SiO2)

p+ stopper

Polysilicon

Gate Oxyde

DrainSource

Gate

Bulk Contact

CROSS-SECTION of NMOS Transistor

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Page 13: Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

Cross-Section of CMOS Technology

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Page 14: Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

MOS transistors Types and Symbols

D

S

G

D

S

G

G

S

D D

S

G

NMOS Enhancement NMOS

PMOS

Depletion

Enhancement

B

NMOS withBulk Contact

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Page 15: Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

n+n+

p-substrate

Field-Oxyde

(SiO2)

p+ stopper

Polysilicon

Gate Oxyde

DrainSource

Gate

Bulk Contact

CROSS-SECTION of NMOS Transistor

Transistor: No Voltages

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Page 16: Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

Introduction to VLSI Design © Steven P. Levitan 1998IntroductionIntroduction

Transistor “Off” Vgs<Vt

Vgd

Vgs

Ids

Vds

I=V/R

No Channel exists: Enhancement mode transistor

R

n+n+

p-substrate

DSG

B

VGS

+

-

Depletion

Region

n-channel

Vds does not matter

Ids

Page 17: Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

Threshold Voltage: Concept

n+n+

p-substrate

DSG

B

VGS

+

-

Depletion

Region

n-channel

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Page 18: Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

The Threshold Voltage

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

GND

Out

?A

B

Body Effect

Page 19: Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

Introduction to VLSI Design © Steven P. Levitan 1998IntroductionIntroduction

n+n+

p-substrate

DSG

B

VGS

+

-

Depletion

Region

n-channel

Channel Formation Vgs>Vt

Vgd

Vgs

Ids

Vds

I=V/R

Positive Charge on Gate:Channel exists, but no current

since Vds = 0

R

Ids

Page 20: Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

Current-Voltage Relations

n+n+

p-substrate

D

SG

B

VGS

xL

V(x) +–

VDS

ID

MOS transistor and its bias conditions

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Page 21: Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

Introduction to VLSI Design © Steven P. Levitan 1998IntroductionIntroduction

Linear Region Vgs>Vt & Vgd>Vt

Positive Charge on Gate:Channel exists, Current Flows

since Vds > 0Ids = k’(W/L)((Vgs-Vt)Vds-Vds

2/2)

R

Vgd

Vgs

Ids

Vds

I=V/R

R= 1/(k’(W/L)(Vgs-Vt))

n+n+

p-substrate

DSG

B

VGS

+

-

Depletion

Region

n-channel

Ids

Page 22: Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

Transistor in Saturation

n+n+

S

G

VGS

D

VDS > VGS - VT

VGS - VT+-

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Page 23: Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

Introduction to VLSI Design © Steven P. Levitan 1998IntroductionIntroduction

Saturation: Vgs>Vt & Vgd<Vt

Positive Charge on Gate:Channel exists, Current Flows

since Vds > 0But: channel is “pinched off”

Ids = (k’/2)(W/L)(Vgs-Vt)2

Vgdn+n+

p-substrate

DSG

B

VGS

+

-

Depletion

Region

n-channel

Vgs

Ids

“constant current source”

Ids

Vds

Vgs

Ids

Page 24: Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

Current-Voltage Relations

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Page 25: Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

I-V Relation

0.0 1.0 2.0 3.0 4.0 5.0

VDS (V)

1

2

I D (

mA

)

0.0 1.0 2.0 3.0VGS (V)

0.010

0.020

÷ I

D

VT

SubthresholdCurrent

Triode Saturation

VGS = 5V

VGS = 3V

VGS = 4V

VGS = 2V

VGS = 1V

(a) ID as a function of VDS (b) ID as a function of VGS

(for VDS = 5V).

Sq

ua

re D

ep

end

en

ce

VDS = VGS-VT

NMOS Enhancement Transistor: W = 100 m, L = 20 m

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Page 26: Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

A model for manual analysis

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Page 27: Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

Introduction to VLSI Design © Steven P. Levitan 1998IntroductionIntroduction

Saturation Effects

Which is the resistor?

Discharge of 1pf capacitor, with Vgs of 3,4,5 volts. Also, 12k resistor.

Page 28: Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

Introduction to VLSI Design © Steven P. Levitan 1998IntroductionIntroduction

Regions of Operation Summary

REGION NMOSVtn = .7vk’ = 80A/V2

PMOSVtp = -.7vk’ = 27mA/V2

Off Vgs<Vtn

Ids=0Vgs>Vtp

Ids=0

Linear Vgs>Vtn & Vgd>Vtn Vgs<Vt & Vgd<Vtp

Ids= k’(W/L)(Vgs-Vt)Vds-Vds2/2)

Saturation Vgs>Vtn & Vgd<Vtn Vgs<Vtp & Vgd>Vtp

Ids= (k’/2)(W/L)(Vgs-Vt)2(1+Vds)

Page 29: Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

Introduction to VLSI Design © Steven P. Levitan 1998IntroductionIntroduction

Computed Curves

Vgs = 5v

Vgs = 4.5v

Vgs = 4.0v

Linear Resistor

Page 30: Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

Introduction to VLSI Design © Steven P. Levitan 1998IntroductionIntroduction

Spice Curves

Vgs = 5v

Vgs = 4v

Vgs = 3v

Vgs = 2v

Vgs = 1v

Page 31: Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

Fitting level-1 model for manual analysis

VGS = 5 V

VDS = 5 V VDS

ID

Long-channel

approximation

Short-channelI-V curve

Region of

matching

Select k’ and such that best matching is obtained @ Vgs= Vds = VDD

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Page 32: Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

Introduction to VLSI Design © Steven P. Levitan 1998IntroductionIntroduction

Retrofitted Level 1 Parameters1.2um CMOS

NMOS» VTO = 0.743 V

» K’ = 19.6 A/V2 (20 vs 80) = 0.06 V-1

PMOS» VTO = -0.739 V

» K’ = 5.4 A/V2 (5 vs 27) = 0.19 V-1

Page 33: Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

Dynamic Behavior of MOS Transistor

DS

G

B

CGDCGS

CSB CDBCGB

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Page 34: Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

The Gate Capacitance

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Page 35: Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

Average Gate Capacitance

Most important regions in digital design: saturation and cut-off

Different distributions of gate capacitance for varying

operating conditions

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Page 36: Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

Diffusion Capacitance

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Page 37: Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

The Sub-Micron MOS Transistor

• Threshold Variations

• Parasitic Resistances

• Velocity Sauturation and Mobility Degradation

• Subthreshold Conduction

• Latchup

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Page 38: Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

Parasitic Resistances

W

LD

Drain

Draincontact

Polysilicon gate

DS

G

RS RD

VGS,eff

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Page 39: Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

Velocity Saturation (2)

VDS (V)

I D (

mA

)

Lin

ea

r D

ep

en

de

nc

e

VGS = 5

VGS = 4

VGS = 3

VGS = 2

VGS = 1

0.0 1.0 2.0 3.0 4.0 5.0

0.5

1.0

1.5

(a) ID as a function of VDS (b) ID as a function of VGS(for VDS = 5 V).

0.0 1.0 2.0 3.0VGS (V)

0

0.5

I D (

mA

)

Linear Dependence on VGSDigital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Page 40: Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

Sub-Threshold Conduction

0.0 1.0 2.0 3.0VGS (V)

10 12

10 10

10 8

10 6

10 4

10 2

ln(I

D)

(A)

Subthreshold exponential region

Linear region

VT

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Page 41: Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

Latchup

(a) Origin of latchup (b) Equivalent circuit

VDD

Rpsubs

Rnwell p-source

n-source

n+ n+p+ p+ p+ n+

p-substrateRpsubs

Rnwell

VDD

n-well

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Page 42: Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

SPICE MODELS

Level 1: Long Channel Equations - Very Simple

Level 2: Physical Model - Includes VelocitySaturation and Threshold Variations

Level 3: Semi-Emperical - Based on curve fittingto measured devices

Level 4 (BSIM): Emperical - Simple and Popular

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Page 43: Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

MAIN MOS SPICE PARAMETERS

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Page 44: Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

SPICE Parameters for Parasitics

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Page 45: Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

SPICE Transistors Parameters

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Page 46: Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

Technology Evolution

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Page 47: Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

Spice Parameters for Parasitics

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Page 48: Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

Process Variations

Devices parameters vary between runs and even on the same die!

Variations in the process parameters, such as impurity concentration den-sities, oxide thicknesses, and diffusion depths. These are caused by non-uniform conditions during the deposition and/or the diffusion of theimpurities. This introduces variations in the sheet resistances and transis-tor parameters such as the threshold voltage.

Variations in the dimensions of the devices, mainly resulting from thelimited resolution of the photolithographic process. This causes (W/L)variations in MOS transistors and mismatches in the emitter areas ofbipolar devices.

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction

Page 49: Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction

Impact of Device Variations

1.10 1.20 1.30 1.40 1.50 1.60

Leff (in mm)

1.50

1.70

1.90

2.10

De

lay

(nse

c)

–0.90 –0.80 –0.70 –0.60 –0.50

VTp (V)

1.50

1.70

1.90

2.10

De

lay

(nse

c)

Delay of Adder circuit as a function of variations in L and VT

Digital Integrated Circuits © Prentice Hall 1995IntroductionIntroduction