jacqueline k. faherty , adric r. riedel erini lambrides ... · erini lambrides 2, haley fica ,...

85
Draft version May 26, 2016 Preprint typeset using L A T E X style emulateapj v. 01/23/15 POPULATION PROPERTIES OF BROWN DWARF ANALOGS TO EXOPLANETS * Jacqueline K. Faherty 1,2,9 , Adric R. Riedel 2,3 , Kelle L. Cruz 2,3,11 , Jonathan Gagne 1, 10 , Joseph C. Filippazzo 2,4,11 , Erini Lambrides 2 , Haley Fica 2 , Alycia Weinberger 1 , John R. Thorstensen 8 , C. G. Tinney 7,12 , Vivienne Baldassare 2,5 , Emily Lemonier 2,6 , Emily L. Rice 2,4,11 Draft version May 26, 2016 ABSTRACT We present a kinematic analysis of 152 low surface gravity M7-L8 dwarfs by adding 18 new parallaxes (including 10 for comparative field objects), 38 new radial velocities, and 19 new proper motions. We also add low- or moderate-resolution near-infrared spectra for 43 sources confirming their low- surface gravity features. Among the full sample, we find 39 objects to be high-likelihood or new bona fide members of nearby moving groups, 92 objects to be ambiguous members and 21 objects that are non-members. Using this age calibrated sample, we investigate trends in gravity classification, photometric color, absolute magnitude, color-magnitude, luminosity and effective temperature. We find that gravity classification and photometric color clearly separate 5-130 Myr sources from > 3 Gyr field objects, but they do not correlate one-to-one with the narrower 5 -130 Myr age range. Sources with the same spectral subtype in the same group have systematically redder colors, but they are distributed between 1-4σ from the field sequences and the most extreme outlier switches between intermediate and low-gravity sources either confirmed in a group or not. The absolute magnitudes of low-gravity sources from J band through W 3 show a flux redistribution when compared to equivalent ly typed field brown dwarfs that is correlated with spectral subtype. Low-gravity late-type L dwarfs are fainter at J than the field sequence but brighter by W 3. Low-gravity M dwarfs are > 1 mag brighter than field dwarfs in all bands from J through W 3. Clouds, which are a far more dominant opacity source for L dwarfs, are the likely cause. On color magnitude diagrams, the latest-type low- gravity L dwarfs drive the elbow of the L/T transition up to 1 magnitude redder and 1 magnitude fainter than field dwarfs at M J but are consistent with or brighter than the elbow at M W1 and M W2 . We conclude that low-gravity dwarfs carry an extreme version of the cloud conditions of field objects to lower temperatures, which logically extends into the lowest mass directly imaged exoplanets. Furthermore, there is an indication on CMD’s (such as M J versus (J -W 2)) of increasingly redder sequences separated by gravity classification although it is not consistent across all CMD combinations. Examining bolometric luminosities for planets and low-gravity objects, we confirm that (in general) young M dwarfs are overluminous while young L dwarfs are normal compared to the field. Using model extracted radii, this translates into normal to slightly warmer M dwarf temperatures compared to the field sequence while lower temperatures for L dwarfs with no obvious correlation with assigned moving group. Keywords: Astrometry– stars: low-mass– brown dwarfs * THIS PAPER INCLUDES DATA GATHERED WITH THE 6.5 METER MAGELLAN TELESCOPES LOCATED AT LAS CAM- PANAS OBSERVATORY, CHILE. 1 Department of Terrestrial Magnetism, Carnegie Institu- tion of Washington, Washington, DC 20015, USA; jfa- [email protected] 2 Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10034; [email protected] 3 Department of Physics & Astronomy, Hunter College, 695 Park Avenue, New York, NY 10065, USA 4 Department of Engineering Science & Physics, College of Staten Island, 2800 Victory Blvd., Staten Island, NY 10301 USA 5 Department of Astronomy, University of Michigan, 1085 S. University, Ann Arbor, MI 48109 6 Department of Physics & Astronomy, Columbia University, Broadway and 116th St., New York, NY 10027 USA 7 School of Physics, UNSW Australia, 2052. Australia 8 Department of Physics and Astronomy, Dartmouth College, Hanover NH 03755, USA 9 Hubble Fellow 10 Sagan Fellow 11 Physics Program, The Graduate Center, City University of New York, New York, NY 10016 12 Australian Centre for Astrobiology, UNSW Australia, 2052. Australia 1. INTRODUCTION At masses <75 M Jup – the H-burning mass limit – , the interior of a source changes significantly. Below this mass limit, electron degeneracy pressure sufficiently slows contraction that the core of a given object is pre- vented from ever reaching the temperatures required for nuclear fusion (Hayashi & Nakano 1963, Kumar 1963). As a consequence, the evolution of substellar mass ob- jects produces a temperature, age, and mass degeneracy that leads to an important, and at times completely in- distinguishable, overlap in the physical properties of the lowest mass stars, brown dwarfs and planets. Objects with masses <75 M Jup cool through their lives with spectral energy distributions evolving as their atmospheric chemistry changes with decreasing tempera- tures. The spectral classification for sources in the range (3000 K > T eff > 250 K) corresponds to late-type M, L, T and Y with each class defined by the effects of chang- ing molecular species available in the photosphere (Kirk- patrick 2005, Burgasser et al. 2002a, Cushing et al. 2011). At the warmest temperatures, the atmosphere is too hot arXiv:1605.07927v1 [astro-ph.SR] 25 May 2016

Upload: others

Post on 30-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

Draft version May 26, 2016Preprint typeset using LATEX style emulateapj v. 01/23/15

POPULATION PROPERTIES OF BROWN DWARF ANALOGS TO EXOPLANETS∗

Jacqueline K. Faherty1,2,9, Adric R. Riedel2,3, Kelle L. Cruz2,3,11, Jonathan Gagne1, 10, Joseph C. Filippazzo2,4,11,Erini Lambrides2, Haley Fica2, Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne

Baldassare2,5, Emily Lemonier2,6, Emily L. Rice2,4,11

Draft version May 26, 2016

ABSTRACT

We present a kinematic analysis of 152 low surface gravity M7-L8 dwarfs by adding 18 new parallaxes(including 10 for comparative field objects), 38 new radial velocities, and 19 new proper motions.We also add low- or moderate-resolution near-infrared spectra for 43 sources confirming their low-surface gravity features. Among the full sample, we find 39 objects to be high-likelihood or new bonafide members of nearby moving groups, 92 objects to be ambiguous members and 21 objects thatare non-members. Using this age calibrated sample, we investigate trends in gravity classification,photometric color, absolute magnitude, color-magnitude, luminosity and effective temperature. Wefind that gravity classification and photometric color clearly separate 5-130 Myr sources from > 3 Gyrfield objects, but they do not correlate one-to-one with the narrower 5 -130 Myr age range. Sourceswith the same spectral subtype in the same group have systematically redder colors, but they aredistributed between 1-4σ from the field sequences and the most extreme outlier switches betweenintermediate and low-gravity sources either confirmed in a group or not. The absolute magnitudes oflow-gravity sources from J band through W3 show a flux redistribution when compared to equivalently typed field brown dwarfs that is correlated with spectral subtype. Low-gravity late-type L dwarfsare fainter at J than the field sequence but brighter by W3. Low-gravity M dwarfs are > 1 magbrighter than field dwarfs in all bands from J through W3. Clouds, which are a far more dominantopacity source for L dwarfs, are the likely cause. On color magnitude diagrams, the latest-type low-gravity L dwarfs drive the elbow of the L/T transition up to 1 magnitude redder and 1 magnitudefainter than field dwarfs at MJ but are consistent with or brighter than the elbow at MW1 andMW2. We conclude that low-gravity dwarfs carry an extreme version of the cloud conditions of fieldobjects to lower temperatures, which logically extends into the lowest mass directly imaged exoplanets.Furthermore, there is an indication on CMD’s (such as MJ versus (J-W2)) of increasingly reddersequences separated by gravity classification although it is not consistent across all CMD combinations.Examining bolometric luminosities for planets and low-gravity objects, we confirm that (in general)young M dwarfs are overluminous while young L dwarfs are normal compared to the field. Usingmodel extracted radii, this translates into normal to slightly warmer M dwarf temperatures comparedto the field sequence while lower temperatures for L dwarfs with no obvious correlation with assignedmoving group.Keywords: Astrometry– stars: low-mass– brown dwarfs

∗THIS PAPER INCLUDES DATA GATHERED WITH THE 6.5METER MAGELLAN TELESCOPES LOCATED AT LAS CAM-PANAS OBSERVATORY, CHILE.

1 Department of Terrestrial Magnetism, Carnegie Institu-tion of Washington, Washington, DC 20015, USA; [email protected]

2 Department of Astrophysics, American Museum of NaturalHistory, Central Park West at 79th Street, New York, NY 10034;[email protected]

3 Department of Physics & Astronomy, Hunter College, 695 ParkAvenue, New York, NY 10065, USA

4 Department of Engineering Science & Physics, College ofStaten Island, 2800 Victory Blvd., Staten Island, NY 10301 USA

5 Department of Astronomy, University of Michigan, 1085 S.University, Ann Arbor, MI 48109

6 Department of Physics & Astronomy, Columbia University,Broadway and 116th St., New York, NY 10027 USA

7 School of Physics, UNSW Australia, 2052. Australia8 Department of Physics and Astronomy, Dartmouth College,

Hanover NH 03755, USA9 Hubble Fellow10 Sagan Fellow11 Physics Program, The Graduate Center, City University of

New York, New York, NY 1001612 Australian Centre for Astrobiology, UNSW Australia, 2052.

Australia

1. INTRODUCTION

At masses <∼ 75 MJup – the H-burning mass limit– , the interior of a source changes significantly. Belowthis mass limit, electron degeneracy pressure sufficientlyslows contraction that the core of a given object is pre-vented from ever reaching the temperatures required fornuclear fusion (Hayashi & Nakano 1963, Kumar 1963).As a consequence, the evolution of substellar mass ob-jects produces a temperature, age, and mass degeneracythat leads to an important, and at times completely in-distinguishable, overlap in the physical properties of thelowest mass stars, brown dwarfs and planets.

Objects with masses <∼ 75 MJup cool through theirlives with spectral energy distributions evolving as theiratmospheric chemistry changes with decreasing tempera-tures. The spectral classification for sources in the range(3000 K > Teff > 250 K) corresponds to late-type M, L,T and Y with each class defined by the effects of chang-ing molecular species available in the photosphere (Kirk-patrick 2005, Burgasser et al. 2002a, Cushing et al. 2011).At the warmest temperatures, the atmosphere is too hot

arX

iv:1

605.

0792

7v1

[as

tro-

ph.S

R]

25

May

201

6

Page 2: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

2 Faherty et al.

for the condensation of solids (Allard & Hauschildt 1995;Lodders 1999). But as the Teff falls below 2500 K, bothliquid (e.g. Fe) and solid (e.g. CaTiO3, VO) mineraland metal condensates settle into discrete cloud layers(Ackerman & Marley 2001; Tsuji et al. 1996b,a; Woitke& Helling 2004; Allard et al. 2001).

As temperatures cool further, cloud layers form at suchdeep levels in the photosphere that they have little orno impact on the emergent spectrum. This transitionbetween “cloudy” to “cloudless” objects occurs rapidlyover a narrow temperature range (1200-1400 K, corre-sponding to the transition between L-type and T-typespectra) and drives extreme photometric, spectroscopic,and luminosity changes (Burgasser et al. 2002b, Tinneyet al. 2003, Faherty et al. 2012, 2014a, Dupuy & Liu2012, Radigan et al. 2012, Artigau et al. 2009). Violentstorms (like those seen on Jupiter), along with magnetic-activity-inducing aurorae, have been noted as environ-mental conditions likely to be present at the L-T transi-tion ( Metchev et al. 2015, Radigan et al. 2012, Apai et al.2013, Hallinan et al. 2015, Buenzli et al. 2014,Gillon et al.2013, Buenzli et al. 2015, Faherty et al. 2014a, Burgasseret al. 2014).

Confounding our understanding of cloud formation inlow-temperature atmospheres is mounting evidence fora correlation between cloud properties and youth. Lowsurface gravity brown dwarfs, thought to be young, haveunusually red near to mid-infrared colors and a fainterabsolute magnitude through ∼ 2.5 µm when compared totheir older spectral counterparts with field surface grav-ities (Faherty et al. 2012, Faherty et al. 2013, Filippazzoet al. 2015, Liu et al. 2013, Gagne et al. 2015b). Metchev& Hillenbrand (2006) made the first connection betweenage and cloudiness in their study of the young companionHD 203030B, whose transition to the cloud-free T spec-tral class appears to be delayed by the presence of thickclouds. In a detailed study of the prototypical isolated,young brown dwarf 2M0355+1133, Faherty et al. (2013)found that the deviant colors and fainter absolute mag-nitudes were best explained by enhanced dust, or thickphotospheric clouds, shifting flux to longer wavelengths.At the coldest temperatures, where clouds should allbut have dispersed below the photosphere in field browndwarfs, Burgasser et al. (2010b) studied the T8 dwarfRoss 458 C and found clouds must be considered as animportant opacity source for young T dwarfs.

Exoplanet studies have independently found similartrends with age and cloud properties. The young plan-etary mass companions 2M1207 b (< 10 MJup) andHR8799 b (< 10 MJup), are exceedingly red in the near-infrared and up to 2 magnitudes fainter than field browndwarfs of similar Teff (Marois et al. 2008, 2010, Mohantyet al. 2007). To reproduce their anomalous observables,theorists have developed “enhanced” cloudy atmosphericmodels with non-equilibrium chemistry (Marley et al.2012, Barman et al. 2011a,b, Madhusudhan et al. 2011)in which lower surface gravity alters the vertical mixingwhich then leads to high altitude clouds with differingphysical composition (e.g. thicker or thinner aggrega-tions).

In general, M, L, T, and Y classifications identifybrown dwarfs. If the source is older (> 2 - 3 Gyr),late-type M and early L dwarfs are stars. But if thesource is young (< 1 Gyr), even those warmer classifi-

cations will describe an object that is < 75 MJup. Todate, all directly imaged giant exoplanets have observ-able properties which lead to their classification squarelyin this well-studied regime. Planetary mass companionssuch as 2M1207 b, 51 Eri b, β Pictoris b, ROXs 42Bb, and the giant planets orbiting HR8799, have observ-ables that are similar to L or T brown dwarfs (Chauvinet al. 2004, Macintosh et al. 2015, Lagrange et al. 2010,Marois et al. 2008, 2010, Currie et al. 2014, Kraus et al.2014). Furthermore, there exists a population of “classi-cal” brown dwarfs that overlap in effective temperature,age – many in the same moving group – , and mass withdirectly observed planetary mass companions (e.g. PSO318, SDSS1110, 0047+6803, Liu et al. 2013, Gagne et al.2015c, Gizis et al. 2012, 2015). Studies of these two pop-ulations in concert may resolve questions of the forma-tion of companions versus isolated equivalents as well asuntangle atmosphere, temperature, age, and metallicityeffects on the observables.

In this work we examine this new population of sus-pected young, low surface gravity sources that are ex-cellent exoplanet analogs. In section 2 we explain thesample examined in this work and in section 3 we de-scribe the imaging and spectral data acquired. In section4 we review new near-infrared spectral types designatedin this work and in section 5 we discuss how we measurednew radial velocities. In section 6 we assess the likelihoodof membership in nearby moving groups such as β Pic-toris, AB Doradus, Argus, Columba, TW Hydrae, andTucana Horologium. In section 7 we review the diversityof the whole sample in spectral features, infrared colors,absolute magnitudes, bolometric luminosities and effec-tive temperatures. In section 8 we place the young browndwarf sample in context with directly imaged planetarymass companions. Conclusions are presented in section9.

2. THE SAMPLE

Given the age-mass degeneracy of substellar mass ob-jects and an age range of ∼5 - 130 Myr for groups suchas TW Hydrae (5-15 Myr; Weinberger et al. 2013), βPictoris (20-26 Myr; Binks & Jeffries 2014, Malo et al.2014), and AB Doradus (110 - 130 Myr; Barenfeld et al.2013, Zuckerman et al. 2004) the target temperature forour sample was Teff < 3000 K, or, equivalently, sourceswith spectral types of M7 or later. This cut-off restrictedus to < 0.07 M� or the classic brown dwarf boundary(Kumar 1963, Hayashi & Nakano 1963).

The suspicion of membership in a nearby moving groupshould be accompanied by observed signatures of youthas kinematics alone leave doubt about chance contami-nation from the field sample. As such, for this work wefocused on > M7 objects with confirmed spectral signa-tures of low-gravity in either the optical or the infrared.We note that while there are isolated T dwarfs thoughtto be young (e.g. SDSS 1110, Gagne et al. 2015a, CF-BDSIR 2149, Delorme et al. 2012), their spectral pecu-liarities appear to be subtle making them more difficultto identify and investigate (see also Best et al. 2015).

For isolated late-type M and L dwarfs suspected tobe young, there are strong spectral differences in thestrength of the alkali lines and metal oxide absorptionbands as well as the shape of the near-infrared H- band(∼1.65 µm) compared to older field age counterparts (e.g.

Page 3: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

Brown Dwarf Analogs to Exoplanets 3

Lucas et al. 2001; Gorlova et al. 2003; Luhman et al.2004; McGovern et al. 2004; Allers et al. 2007; Rice et al.2010, 2011, Patience et al. 2012; Faherty et al. 2013).Physically this can be explained by a change in the bal-ance between ionized and neutral atomic and molecularspecies, as a result of lower surface gravity and, con-sequently, lower gas densities in the photospheric lay-ers (Kirkpatrick et al. 2006). Furthermore, a lower sur-face gravity is linked to an increase in collision inducedH2 absorption (see e.g. Canty et al. 2013, Tokunaga &Kobayashi 1999). Changes in the amount of this absorp-tion result in the K- band (∼ 2.2 µm) being suppressed(or enhanced) and the shape of the H band being mode-ified to cause the “peaky” H band relative to water opac-ity seen in young sources (see Rice et al. 2011).

The collection of brown dwarfs with spectral signaturesof a low-surface gravity is increasing13. Gagne et al.(2014c, 2015b,c) presented a bayesian analysis of thebrown dwarf population looking for potential new mov-ing group members and uncovered numerous low-gravitysources. Allers & Liu (2013) presented a near-infraredspectroscopic study of a large number of known sources.Aside from those extensive studies, objects have been re-ported singly in paper (e.g. Kirkpatrick et al. 2006, Liuet al. 2013, Gagne et al. 2014a,b, 2015a, Faherty et al.2013, Rice et al. 2010, Gizis et al. 2012, Gauza et al.2015) or included as a subset to a larger compilation offield objects (e.g. Cruz et al. 2007, Kirkpatrick et al.2010, Reid et al. 2007, Thompson et al. 2013). The ob-jects within this paper were drawn from the literatureas well as our ongoing search for new low-surface gravityobjects.

The 15214 low-surface gravity objects examined in thiswork are listed in Table 1 with their coordinates, spectraltypes, gravity classifications (optical and infrared as ap-plicable), 2MASS and WISE photometry. There are 48sources in this sample that are lacking an optical spectraltype and 8 sources lacking an infrared spectral type. Ofthe 96 objects with both optical and near-infrared data,there are 67 sources (70%) that have a different opticalspectral type than the infrared although the majority arewithin 1 subtype of each other.

For assigning a gravity designation, there are two clas-sification systems based on spectral features. The Cruzet al. (2009) system uses optical spectra and assigns alow-surface gravity (γ), intermediate gravity (β), or fieldgravity (‘—’ in Table 1 and throughout) based on thestrength of metal oxide absorption bands and alkali lines.In certain cases a classification of δ is also used for ob-jects that look more extreme than γ (see Gagne et al.2015b). In this work we label objects as δ in tables butplot them and discuss them along with γ sources. On theCruz et al. (2009) scheme, γ and β objects are thought tobe younger than the Pleiades (age < ∼ 120 Myr, Staufferet al. 1998). The Allers & Liu (2013) system uses near-infrared spectra and evaluates spectral indices to assigna very low-gravity (vl-g), intermediate gravity (int-g), or

13 Our group maintains a listing of known isolated field ob-jects noted as having gravity sensitive features on a web-basedcompendiumhttp : //www.bdnyc.org/young bds

14 While this paper was awaiting acceptance, Aller et al. (2016)reported a sample of AB Doradus late-type M and L dwarfs. Thoseobjects are not included in this analysis but should be consideredin future work.

field gravity (fld-g) to a given source. As discussed inAllers & Liu (2013), the optical and near-infrared grav-ity systems are broadly consistent. However, to anchoreither requires an age-calibrated sample to ground thegravity designations as age-indicators.

Figure 1 shows a histogram distribution of the spec-tral subtypes in the optical and the infrared highlightingthe gravity classification. There are 51 objects classifiedoptically as γ and 80 with the equivalent infrared clas-sification. There are 27 objects classified optically as βand 57 with the equivalent infrared classification. Of theobjects which have both optical and infrared gravity des-ignations, 16 sources (17%) have different gravity classifi-cations from the two methods and 23 objects (24%) havea low-gravity infrared classification but are not noted aspeculiar in the optical. For simplification of the text (andin large part because the two systems are generally con-sistent), we have adopted the convention that any objectclassified as vl-g or int-g in the infrared is referred to asγ or β (respectively) in the text, Tables, and Figures.

3. DATA

The sample of 152 M7-L8 ultracool dwarfs comprisingour sample were placed on follow-up programs – eitherimaging (parallax, proper motion), spectroscopy (radialvelocity) or both – to determine kinematic membershipin a nearby moving group. Below we describe the datacollected for the suspected young brown dwarf sample.

3.1. Parallax and Proper Motion Imaging

The astrometric images for this program were obtainedusing three different instruments and telescopes in thenorthern and southern hemispheres. We report paral-laxes for eight low-gravity and ten field dwarfs. For 19objects, we report proper motion alone as we lack enoughepochs to decouple parallaxes. An additional 13 objectshave not yet been imaged by either the northern or south-ern instruments, and so we report proper motions usingthe time baseline between 2MASS and WISE.

3.1.1. Northern Hemisphere Targets

For Northern Hemisphere astrometry targets, we ob-tained I-band images with the MDM Observatory 2.4mHiltner telescope on Kitt Peak, Arizona. Parallaxes arebeing measured for both low-surface gravity and field ul-tracool dwarfs and for this work we report 5 of the formerand 10 of the latter (field dwarfs used for comparison inthe analysis discussed in Section 7).

For most observations at MDM, we used a thinnedSITe CCD detector (named “echelle”) with 2048x2048pixels and an image scale of 0′′.275 pixel−1. This suf-fered a hardware failure and was unavailable for someof the runs. As a substitute, we began using “Nellie”, athick, frontside-illuminated STIS CCD which gave 0′′.240pixel−1. The change in instrument made no discernibledifference to the astrometry. Table 2 gives the perti-nent astrometric information. In addition to the parallaximaging, we took V -band images and determined V − Icolors for the field stars for use in the parallax reductionand analysis. For a single target field (1552+2948) weused SDSS colors instead. The reduction and analysiswas similar to that described in Thorstensen (2003) andThorstensen et al. (2008), with some modifications.

Page 4: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

4 Faherty et al.

Parallax observations through a broadband filter aresubject to differential color refraction (DCR). The effec-tive wavelength of the light reaching the detector for eachstar will depend on its spectral energy distribution. Con-sequently, the target and reference stars can be observedto have different positions depending on how far fromthe zenith the target is observed at each epoch. In previ-ous studies we approximated the I-band DCR correctionas a simple linear trend with V − I color, amountingto 5 mas per unit V − I per unit tan z (where z is thezenith distance of each observation). We checked this byexplicitly computing the correction for stars of varyingcolor using library spectra from Pickles (1998), a tab-ulation of the I passband from Bessell (1990), and theatmospheric refraction as a function of wavelength ap-propriate to the observatory’s elevation. The synthesizedcorrections agreed very well with the empirically-derivedlinear correction. However, the library spectra did notextend to objects as red as the present sample and mostare so faint in V that we could not measure V − I ac-curately. We therefore computed DCR corrections usingthe spectral classifications of our targets and spectra ofL and T-dwarfs assembled by Neill Reid15. The result-ing corrections typically amounted to ∼ 25 mas per unittan z, that is, the DCR expected on the basis of the linearrelation for a star with (V − I) ≈ 5.

To minimize DCR effects, we restricted the parallaxobservations to hour angles within ±2 h of the meridian.The effect of DCR on parallax is mainly along the east-west (or X) direction, and the X-component of refractionis proportional to tan z sin p, where p is the parallacticangle. This quantity averaged 0.12 for our observations,reflecting a slight westward bias in hour angle, and itsstandard deviation was 0.15. We are therefore confidentthat the DCR correction is not affecting our results un-duly.

As in previous papers, we used our parallax observa-tions to estimate distances using a Bayesian formalismthat takes into account proper motion, parallax, anda plausible range of absolute magnitude (Thorstensen2003). For these targets we assumed a large spread inabsolute magnitude, so that it had essentially no effecton the distance, and used a velocity distribution char-acteristic of a disk population to formulate the proper-motion prior. For most of the targets, the parallax πwas precise enough that the Lutz-Kelker correction andother Bayesian priors had little effect on the estimateddistance, which was therefore close to 1/π.

Table 3 lists our measured parallaxes and proper mo-tions and Table 4 shows the comparison with literaturevalues for four sources with previously reported values.In the case of MDM measured proper motions, they arerelative to the reference stars, and not absolute. Al-though the formal errors of the proper motions are typi-cally 1-2 mas yr−1, this precision is spurious in that thedispersion of the reference star proper motions is usuallyover 10 mas yr−1, so the relative zero point is correspond-ingly uncertain.

3.1.2. Southern Hemisphere Targets

We observed 16 of the most southernly targets withthe Carnegie Astrometric Planet Search Camera (CAP-

15 Available at http://www.stsci.edu/∼inr/ultracool.html

SCam) on the 100-inch du Pont telescope and five withthe FourStar imaging camera (Persson et al. 2013) on theMagellan Baade Telescope. In the case of both programs,we are continually imaging objects for the purpose ofmeasuring parallaxes. However, for this work we reportparallaxes (and proper motions) for only 3 objects withCAPScam. The remaining 18 objects (13 – CAPScam, 5– FourStar) need more epochs to decouple parallax fromproper motion and will be the subject of a future paper.

A description of the CAPSCam instrument and the ba-sic data reduction techniques are described in Boss et al.(2009) and Anglada-Escude et al. (2012). CAPSCam uti-lizes a Hawaii-2RG HyViSI detector filtered to a band-pass of 100 nm centered at 865 nm with 2048 x 2048pixels, each subtending 0.196′′ on a side. CAPSCam wasbuilt to simultaneously image bright target stars in a 64x 64 pixel guide window allowing short exposures whileobtaining longer exposures of fainter reference stars inthe full frame window (e.g. Weinberger et al. 2013). Thebrown dwarfs targeted in this program were generallyfainter than the astrometric reference stars so we workedwith only the full frame window. Data were processedas described in Weinberger et al. (2013). For exposuretimes, we used 30s - 120s for our bright targets and 150s- 300s for our faint targets with no coadds in an 8 - 12point dither pattern contained in a 15′′ box. Pertinentastrometric information for parallax targets is given inTable 2.

FourStar is a near-infrared mosaic imager (Perssonet al. 2013) with four 2048 x 2048 Teledyne HAWAII-2RG arrays that produce a 10.9′ x 10.9′ field of view at aplate scale of 0.159′′ pixel−1. Each target was observedwith the J3 (1.22–1.36µm) narrow band filter and cen-tered in chip 2. This procedure has proven successful inour astrometric program for late-T and Y dwarfs (e.g.Tinney et al. 2012, 2014, Faherty et al. 2014b). Expo-sure times of 15s with 2 coadds in an 11 point ditherpattern contained in a 15′′ box were used for each tar-get. The images were processed as described in Tinneyet al. (2014).

In the case of the 18 proper motion only targets fromeither CAPSCam or FourStar, we combine our latest im-age with that of 2MASS (∆t listed in Table 5). Propermotions were calculated using the astrometric strategydescribed in Faherty et al. (2009). Results are listed inTable 5.

For three CAPSCam targets there is sufficient data tosolve for both proper motions and parallaxes. For thesesources, the astrometric pipeline described in Weinbergeret al. (2013) was employed. Table 3 lists our measuredparallaxes and proper motions and Table 4 shows thecomparison with literature values for 0241-0326.

3.2. Low and Medium Resolution Spectroscopy

3.2.1. FIRE

We used the 6.5m Baade Magellan telescope and theFolded-port InfraRed Echellette (FIRE; Simcoe et al.2013) spectrograph to obtain near-infrared spectra of 36sources. Observations were made over 7 runs between2013 July and 2014 September. For all observations, weused the echellette mode and the 0.6′′ slit (resolutionλ/∆λ ∼ 6000) covering the full 0.8 - 2.5 µm band witha spatial resolution of 0.18′′/pixel. Exposure times for

Page 5: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

Brown Dwarf Analogs to Exoplanets 5

each source and number of images acquired are listedin Table 6. Immediately after each science image, weobtained an A star for telluric correction and obtained aThAr lamp spectra. At the start of the night we obtaineddome flats and Xe flash lamps to construct a pixel-to-pixel response calibration. Data were reduced using theFIREHOSE package which is based on the MASE andSpeX reduction tools (Bochanski et al. 2009, Cushinget al. 2004, Vacca et al. 2003).

3.2.2. IRTF

We used the 3m NASA Infrared Telescope Facil-ity (IRTF) to obtain low-resolution near-infrared spec-troscopy for 10 targets. We used either the 0.′′5 slit orthe 0.′′8 slit depending on conditions. All observationswere aligned to the parallactic angle to obtain R ≡ λ /∆λ ≈ 120 spectral data over the wavelength range of 0.7– 2.5 µm. Exposure times for each source and number ofimages acquired are listed in Table 6. Immediately aftereach science observation we observed an A0 star at a sim-ilar airmass for telluric corrections and flux calibration,as well as an exposure of an internal flat-field and Ar arclamp. All data were reduced using the SpeXtool packageversion 3.4 using standard settings (Cushing et al. 2004,Vacca et al. 2003).

3.2.3. TSpec

We used the Triple Spectrograph (TSpec) at the 5 mHale Telescope at Palomar Observatory to obtain near-infrared spectra of two targets. TSpec uses a 1024 x2048 HAWAII-2 array to cover simultaneously the rangefrom 1.0 to 2.45µm (Herter et al. 2008). With a 1.1x 43′′ slit, it achieves a resolution of ∼2500. Observa-tions were acquired in an ABBA nod sequence with anexposure time per nod position of 300s (see Table 6) soas to mitigate problems with changing OH backgroundlevels. Observations of A0 stars were taken near in timeand near in airmass to the target objects and were usedfor telluric correction and flux calibration. Dome flatswere taken to calibrate the pixel-to-pixel response. Datawere reduced using a modified version of Spextool (seeKirkpatrick et al. 2011).

3.3. High Resolution Spectroscopy

3.3.1. Keck II NIRSPEC

The Keck II near-infrared SPECtrograph (NIRSPEC)is a Nasmyth focus spectrograph designed to obtain spec-tra at wavelengths from 0.95 – 5.5µm (McLean et al.1998). It offers a choice of low-resolution and cross-dispersed high resolution spectrographic modes, with op-tional adaptive optics guidance. In high-resolution mode,it can achieve resolving powers of up to R=25000 usinga 3 pixel entrance slit, with two orders visible on theoutput spectrum (selectable by filter).

Multiple observations of 17 sources were taken in highresolution mode on Keck II on 14, 15, and 16 September2008, using the NIRSPEC-5 filter to obtain H-band spec-tra in Order 49 (1.545 – 1.570µm). Observational datafor each source are listed in Table 7. The data were re-duced using the IDL-based spectroscopy reduction pack-age REDSPEC. Many of our observations had very lowsignal-to-noise, and so multiple exposures were co-addedbefore extracting spectra. We tested this procedure by

using objects with sufficient signal-to-noise prior to co-adding, and by comparing individual against co-addedspectra. The resulting individual exposure spectra werealmost identical to those obtained by co-adding prior torunning REDSPEC reductions. Heliocentric radial ve-locity corrections were calculated with the IRAF taskrvcorrect , and applied using custom python code.

3.3.2. Gemini South Phoenix

The Phoenix instrument (previously on Gemini South)is a long-slit, high resolution infrared echelle spectro-graph, designed to obtain spectra between 1 – 5 µm atresolutions between R=50000 and R=80000. Spectra arenot cross-dispersed, leaving only a narrow range of a sin-gle order selectable by order-sorting filters.

Observations of 18 sources were taken during semester2007B and 2009B using the H6420 filter to select H-bandspectra in Order 36 (1.551 – 1.558 µm). Spectra werereduced using the supplied IDL Phoenix reduction codes.Observational data for each source are listed in Table 7.

3.3.3. Magellan Clay MIKE

The Magellan Inamori Kyocera Echelle (MIKE) on theMagellan II (Clay) telescope is a cross-dispersed, highresolution optical spectrograph, designed to cover the en-tire optical spectrum range (divided into two channels,blue: 0.32 – 0.48 µm, and red: 0.44 – 1.00 µm) at aresolving power of R∼28,000 (blue) and R∼22,000 (red)using the 1.0” slit. The output spectra contain a largerange of overlapping echelle orders, each covering roughly0.02µm of the red optical spectrum.

Red-side spectra were taken on 4 July 2006, 1 Novem-ber 2006, and 2 November 2006. The observations com-prise 17 target and standard spectra, with additionalB-type and white dwarf flux calibrators. Observationaldata for each source are listed in Table 7. Spectra werereduced using the IDL MIKE echelle pipeline16, and or-ders 38 – 52 (0.92 – 0.65µm) were extracted from everyspectrum. Many of those orders were unusable for ourpurposes, and were not used in the final solutions. Tel-luric atmospheric features dominate the wavebands cov-ered by orders 38 (telluric O2), 45 (A band), and 50 (Bband). The orders higher (bluer) than 44 typically hadinsufficient signal due to the extreme faint and red colorsof the target objects.

4. NEW NEAR-INFRARED SPECTRAL TYPES

We obtained spectra with FIRE, SpeX, and TSpecfor 43 targets to investigate near-infrared signatures ofyouth. Each object had either demonstrated optical low-surface gravity features, but were missing (or had poor)near infrared data, or had low signal to noise near in-frared spectra. Determining the spectral type and grav-ity classification for peculiar sources has its difficulties.Primarily because one wants to ground the peculiar ob-ject type by comparing to an equivalent field source.However, as will be seen in section 7, the low grav-ity sequence does not easily follow from the field se-quence. In the infrared, Allers & Liu (2013) have pre-sented a method for determining gravity classification us-ing indices. Alternatively, the population of low gravity

16 http://web.mit.edu/burles/www/MIKE/ checked 19 JUNE2014

Page 6: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

6 Faherty et al.

sources (especially earlier L types) has grown in numbersuch that templates of peculiar sources can be made forcomparison (e.g. Gagne et al. 2015b, Cruz et al. submit-ted). For this work, we have defaulted to a visual matchto templates or known sources – grounded by their opti-cal data – as our primary spectral typing method. How-ever we also check each source against indices to ensureconsistency.

In the case of each new spectrum, we visually comparedto the library of spectra in the SpeX prism library17 aswell as the low gravity templates discussed in Gagne et al.2015b. For the FIRE and TSpec echelle spectra, we firstbinned them to prism resolution (∼ 120). This visualcheck to known objects gave the match we found mostreliable for this work in both type and gravity classifi-cation and it is listed in the “SpT adopted” column inTable 9. Figures 3 - 4 show two example spectra (prismand binned down FIRE data) compared visually to bothfield and very low gravity sources, as representations ofour spectral typing method.

As a secondary check, we report the indices analysisof each object. A near infrared spectral subtype is arequired input for evaluating the gravity classificationwith the Allers & Liu (2013) system so we first appliedthe subtype indices (as described in Allers & Liu 2013)and list the results in the “SpT Allers13” column in Table9. Once we had determined the closest near infraredtype, we evaluated the medium resolution (for FIRE andTSpec data) and/or the low resolution gravity indices(for Prism data). We list the results of each in Table9. In general we found that matching visually to lowgravity templates or known objects versus using indiceswere consistent within 1 subtype.

5. RADIAL VELOCITIES

Radial velocities from NIRSPEC, Phoenix, and MIKEwere calculated using a custom python routine, whichuses cross-correlation with standard brown dwarfs toachieve 1 km s−1 radial velocity precision. Useable spec-tra have resolving power of R=20,000 or higher, and gen-erally signal-to-noise of at least 20. All data were cor-rected to heliocentric radial velocity by shifting the wave-length grid. Brown dwarf standards – sourced primarilyfrom Blake et al. (2010) – were observed and correctedwith the same settings as the targets, and paired withobjects of matching spectral type. Given that our radialvelocity sample is bimodal with peaks at L0 and L4, ourspectra are fit against relatively few standards.

The python code calculates radial velocities on the fly,and operates on optical and infrared data without modi-fication. The radial velocity inputs were the wavelength,flux, and uncertainty data as three one-dimensional ar-rays, for both the target and the standard. The targetand standard spectra were first cropped to only the por-tion where they overlap, and then interpolated onto alog-normal wavelength grid.

From there, 5000 trials were conducted with differ-ent randomized Gaussian noise added to the wavelengthgrids of the target and standard, according to the per-element uncertainties. This was done to account for theuncertainties on the fluxes and to provide a method ofquantifying the uncertainty on the output radial velocity.

17 http://pono.ucsd.edu/∼adam/browndwarfs/spexprism/

For each of the 5000 trials, the two spectra were cross-correlated to produce a wavelength shift between them.A small 400-element region around the peak of the cross-correlation function was fit with a Gaussian and a linearterm, to locate the exact peak of the cross-correlationon a sub-element basis. The widths (and therefore per-measurement errors) of the cross-correlation peak werediscarded, assumed to be accounted for in the actualspread of the resulting set of peaks.

The results of the 5000 trials formed (in well-determined cases) a Gaussian histogram centered on theradial velocity shift between the two systems. The widthof that Gaussian was taken to represent the uncertaintyin the measured radial velocity. This pixel shift was con-verted into km s−1 radial velocity, and corrected for theknown velocity of the standard. Semi-independent verifi-cation of the radial velocities was accomplished by mea-suring the velocity relative to two different standards,or where available, using multiple orders from the samespectrum.

The process was sensitive to virtually all unwanted pro-cesses that produce features in the brown dwarf spectra.Chief among these were cosmic rays and detector hot pix-els, which were pixel-scale events removed from the spec-tra prior to interpolation onto the grid and provide verylittle signal in the RV correlation. The most importanteffect was telluric lines, which appeared like normal spec-tral features but did not track the radial velocity of thestar. These were dealt with by identifying orders whosecontamination was severe enough to produce discordantradial velocities and avoiding them in the analysis.

Table 7 lists the final radial velocity values for eachsource. Table 8 shows a comparison of sources for whichthere was a literature value.

5.1. Instrument-specific Differences

MIKE data has multiple echelle orders, and allstars were measured against two L2 dwarf standards:LHS 2924 and BRI 1222-1221 (Mohanty et al. 2003). Allorders were examined by eye, and determinations weremade as to whether they contained sufficient signal fora believable radial velocity. This was corroborated bycross-checking the result against other orders from thesame star and radial velocity. Some orders had broadercross-correlation functions, and the Gaussian was fit toa 200 pixel region around the peak rather than the stan-dard 100 pixels. In other orders, a small a-physical sec-ondary peak in the final results appeared, and was re-moved from the Gaussian fit for the final radial velocityfor that order.

After visual inspection, the most consistent orders –both within the match between the two stars, and be-tween the two standards – were combined into a weightedmean and weighted standard deviation. For all stars,the results of orders 39-44, collectively covering 0.77µm– 0.89µm – were deemed sufficiently reliable (despite thepresence of telluric water features) to be used in the finalresult.

6. COMPUTING KINEMATIC PROBABILITIES IN NEARBYYOUNG MOVING GROUPS

Among the 152 brown dwarfs investigated for kine-matic membership in this work, we report 37 new radialvelocities, 8 new parallaxes, and 33 new proper motions

Page 7: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

Brown Dwarf Analogs to Exoplanets 7

(13 of which are reported as new from 2MASS to WISEproper motion measurements). In total 27 targets havefull kinematics (a parallax, proper motion and radial ve-locity), and the remaining 123 have only partial kine-matics – 16 have a parallax and proper motion but noradial velocity, 26 have radial velocity and proper mo-tion but no parallax, and 81 have proper motions but noparallax or radial velocity measurement. All astrometricinformation for this sample is listed in Table 10.

As discussed in Section 2, there are 51 objects classifiedoptically as γ and 80 with the equivalent infrared clas-sification. There are also 27 objects classified opticallyas β and 57 with the equivalent infrared classification.Given the gravity indications, we regard each object asa potentially young source and investigate membershipin a group within 100 pc of the Sun. To assess the likeli-hood of membership, we employed four different tools toexamine the available kinematic data:

• BANYAN-I Bayesian statistical calculator (Maloet al. 2013) and its successor,

• BANYAN-II (Gagne et al. 2014d),

• LACEwING (Riedel 2015), and

• Convergent point method of Rodriguez et al.(2013).

The plurality of measurements in combination with avisual inspection of an objects kinematics against bonafide members listed in (Malo et al. 2013) along with theindividual kinematic boxes of Zuckerman & Song (2004)drove our decision on group membership.

The four different methods test for membership in dif-ferent sets of groups - LACEwING considers 14 distinctgroups, BANYAN I and II consider 7 groups (or 8 in-cluding the “Old” object classification), and the conver-gence method tests for membership in 6 groups. Eachmethod has its benefits and flaws. For instance BanyanI is a fast bayesian formalism that uses flat priors butassumes (probably unrealistically) that radial velocity,and proper motion in a given direction are Gaussian.Banyan II deals better with transforming measurementsto probabilities based on the distribution of known mem-bers (does not assume a Gaussian distribution) howeverit likely has incomplete/imperfect lists of bonafide mem-bers. LACEwING is similar to Banyan I in its assump-tion that radial velocity, and proper motion in a givendirection are Gaussian but it requires fitting a model to a(arguably much cleaner list of) bonafide members of mul-tiple groups not covered by the other methods. The con-vergent point method is a simple yet different approachthat estimates the probability of membership in a knowngroup by measuring the proper motions in directions par-allel and perpendicular to the location of a given groupsconvergent point. Unfortunately, this method does nottake into account measured radial velocities or distances.Given the benefits and flaws of each method, we chose totake the output of each into consideration as we decidedon membership for each target. For an adequate com-parison, we only considered membership in six groups:TW Hydrae, β Pictoris, Tucana Horologium, Columba,Argus (which is not tested by the Convergence code),and AB Doradus. All other groups could not be consis-tently checked. Therefore they may be mentioned (e.g.

Chamaeleon near, Octans, Hyades) but are only consid-ered tentative until further kinematic investigation.

Furthermore, the output of each code should be viewedslightly differently. In Malo et al. (2013), the authorsadopt a membership probability threshold of 90% to re-cover bona fide members. Banyan II supplements with acontamination probability and finds this number shouldbe < a few percent with a high membership probability(we impose > 90% based on Banyan I) in order to recoverbona fide members (Gagne et al. 2014d). LACEwING (asdescribed in Riedel 2015) finds < 20% - 60% is low prob-ability and > 60% is high probability for group member-ship. Convergent point reports distinct probabilities foreach group between 0 - 100% (hence objects can have >90% probability of membership in more than one group).As with Banyan I, we impose > 90% as a high probabilitythreshold for membership on convergent point as well.

In assessing the membership probability, we found fourdifferent categories for describing an object:

• Non-member, NM: An object that is kinematicallyeliminated from falling into a nearby group regard-less of future astrometric measurements

• Ambiguous member, AM: An object that requiresupdated astrometric precision because it could ei-ther belong to more than one group or it can notbe differentiated from the field

• High-likelihood member, HLM: An object thatdoes not have full kinematics but is regarded ashigh confidence (> 90% in Banayan I, > 90% inBanyan II with < 5% contamination, > 90% inconvergent point, > 60% in LACEwING) in threeof the four codes, and

• Bona fide member, BM: An object regarded as ahigh-likelihood member with full kinematics (paral-lax, proper motion, radial velocity) demonstratingthat it is in line with known higher mass bona fidemembers of nearby groups.

6.1. Full Kinematic Sample

For the 28 targets with full kinematics, we compute theXYZ spatial positions and UVW velocities following theformalism of Johnson & Soderblom (1987), which em-ploys U/X in the direction of the Galactic center, pro-viding a right-handed coordinate system. In general, theresulting values are limited by the parallax precision. Forthese 28 objects, visual inspection against the positionsand velocities of the bona fide members in each group (aslisted by Malo et al. 2013) gave an obvious and strongindication of membership. We used the four other meth-ods listed above as confirmation for the visual inspec-tion. The XYZ spatial positions and UVW velocities forsystems with full kinematic information are given in Ta-ble 11. A visual example of the phase-space motions of0045+1634, a new bona fide member of Argus, is shownin Figure 2. Among the full kinematic sample, we found11 objects stand out as bona fide members, 9 objectsare classified as ambiguous, and 8 are classified as non-members. The outcome of assessing the likelihood ofmembership from each kinematic method is listed in Ta-ble 12.

Page 8: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

8 Faherty et al.

6.2. Partial Kinematic Sample

Having only partial kinematics for 124 objects limitsour ability to definitively place these targets in a nearbygroup. As stated above, the BANYAN I/II, ConvergentPoint, and LACEwING methods use varying techniquesto yield membership probabilities. We list the outcomesof assessing the likelihood of membership for each sourcein Table 12. As can be seen from this tabulation, theresults varied across methods. In the case of an objectlike 2322-6151, all methods yield a probability of mem-bership in the Tucana Horologium moving group withthree of the 4 yielding > 90% membership. The mostdifficult cases were objects like 1154-3400, where eachmethod yielded a moderate to high probability in a dif-ferent group (Banyan I and Banyan II both predict Ar-gus, LACEwING predicts TW Hydrae, and Convergentpoint predicts Chameleon-near). Our approach to theanalysis was to be conservative with group membershipto eliminate assigning objects to groups that were un-certain. In all we concluded that there were 28 objectsto be regarded as high likelihood members (HLM) of aknown group, 83 objects that were ambiguous (AM), and13 objects that were non-members (NM). Adding thefull kinematic sample the final tally is 28 high likelihoodmembers (HLM), 11 bona fide group members (BM), 92ambiguous (AM), and 21 non-members (NM).

6.3. Comparison with Previous Works

Among the 152 brown dwarfs examined in this work,11 are newly identified as low-gravity and 141 have beenpreviously discussed in the literature for membership ina nearby moving group (e.g. Gagne et al. 2015b,c). Sev-eral of the objects – 2M0355, PSO318, 0047+6803, 1741-4642, 2154-1055, 0608-2753 – have been the subject ofsingle-object papers (Faherty et al. 2013, Liu et al. 2013,Schneider et al. 2014, Gagne et al. 2014a,b, Rice et al.2010). The remaining 129 objects were examined formembership in a nearby group primarily by Gagne et al.(2014d) – hereafter G14 – , and Gagne et al. 2015b –hereafter G15 – using BANYAN II.

There are 69 objects from our sample included in G14,73 objects in G15 and 6 in both. In G14, there is a hi-erarchical probability structure that categorizes poten-tial members as: (1) Bona fide, (2) High probability, (3)Moderate probability and, (4) Low Probability18. Thatstructure is not used in G15, but replaced by noting theprobability of membership in a group (multiple groups ifdeemed necessary) along with its contamination poten-tial.

Of the 69 objects from our sample examined in G14,three objects – 2M0355, 2M0123, and TWA 26 – weredeclared bona fide members of AB Doradus, TucanaHorologium, and TW Hydrae respectively. A further 29objects were deemed high probability members of Argus(2), AB Doradus (5), β Pictoris (4), Columba (4), andTucana Horologium (14). Ten objects were deemed mod-est probability members of AB Doradus (3), β Pictoris(3), Columba (1), Argus (1), and Tucana Horologium(2). Eight objects were deemed low probability mem-bers of Argus (1), AB Doradus (1), β Pictoris (4), and

18 See the G14 paper for a detailed description of how to inter-pret each probability category’

TW Hydrae (2). There were also 16 objects designatedas young field sources (aka “no group membership pos-sible”) and 3 objects designated as peripheral membersor contaminants in a group.

In Table 12, we use our new kinematics and show thepredictions from BANYAN I, BANYAN II, LACEwING,the convergent point and our plurality decision based onreviewing the results from all four methods with updatedastrometric measurements for many of the sources. Forthe G14 overlap, we agree with 2M0355, 2M0123, andTWA 26 being considered bona fide members. Amongthe high-likelihood sample from G14 we add a new ra-dial velocity, parallax, and/or proper motion to 19 ofthe 29 objects and confirm 11 objects as high-likelihoodmembers and demote 5 objects to ambiguous or non-member. Our re-evaluation of the kinematics also leadsus to demote 3 objects to ambiguous members ratherthan considering them high-likelihood sources in a givengroup. Among the moderate and low probability objectsin G14, we add new kinematics to 8 objects and find 5remain ambiguous and 3 are demoted to non-members.Our re-evaluation of the kinematics finds that 15 of thelow or moderate probability sources are ambiguous there-fore we can not say anything about membership. Theremaining 19 sources that were young field, periphery, orcontaminants in G14 are ambiguous or non-members inour analysis.

For the 67 objects in G15, we add three new kinematicpoints. One object is deemed high-likelihood while theother 2 are ambiguous. Otherwise, our re-evaluation ofthe kinematics leads us to classify 13 objects as high-likelihood members of groups while the remaining 54 areambiguous (52) or non-members (2).

In all, we find that when the Bayesian II analysis pre-dictions find group members have a high-likelihood ofmembership in a single group (> 99%) while yielding acontamination probability of <1%, the various kinematicmethods are consistent in their predictions and we takethis to mean that the source is a reliable member.

7. DIVERSITY OF YOUNG BROWN DWARFS

Each one of these moving group members is a possiblebenchmark for examining the evolutionary properties ofthe brown dwarf and directly imaged exoplanet popula-tions. In this section we evaluate the homogeneity anddiversity of the sample as a whole as well as the subsam-ples from each moving group.

7.1. Do Gravity Classifications Correspond With Age?

In total there are 51 optically classified γ objects (80infrared classified equivalents) as well as 27 optically clas-sified β objects ( 57 infrared equivalents). We confirm 20(28) of the γ objects and 5 (7) of the β objects respec-tively as high confidence or bona fide members of movinggroups. There are an additional 19 (44) γ objects and17 (41) β objects regarded as ambiguous members to aknown group, and 12 (10) γ objects and 5 (8) β objectsfound to be non members. As stated in Section 2, γclassified sources have spectral features indicating thatthey are a lower surface gravity than the β classified ob-jects. Furthermore, β classified sources are subtly butdistinctively different from the field sample, indicating– as noted in Allers & Liu 2013 and Cruz et al. 2009–that they are also younger but not to the extent of the γ

Page 9: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

Brown Dwarf Analogs to Exoplanets 9

objects. The age calibrated sample allows us to test howwell gravity features trace the age of an object.

In Table 13, we list the new members of each groupas well as their optical and/or near-infrared spectral andgravity classification. As stated in section 6.1, nine bonafide objects have full kinematics. For the 28 sources miss-ing a radial velocity or parallax but regarded as highconfidence members to a group, we list the kinematicallypredicted radial velocity and/or parallax from BANYANII – checked to be consistent with LACEwING predic-tions – in parentheses in Table 13.

In TW Hydrae and β Pictoris, which are the twoyoungest groups at ∼ 10 and ∼ 20 Myr respectively, thereare nine M7 or later objects, all of which have a gravityclassification of γ in both the infrared and optical. InAB Doradus, the oldest association at ∼110 - 130 Myr,there are eight sources with 4 optical γ (6 infrared) and1 optical β (2 infrared) objects. Similarly, in TucanaHorologium, where we have the most number of bonafide or high-likelihood members, 20 M7 or later, thereare 9 optical γ (10 infrared) and 3 optical β (5 infrared)objects.

Splitting the sample of BM/HLM objects into < 25Myr (β Pictoris, TW Hydrae), ∼ 40 Myr (TucanaHorologium, Columba, Argus), and > 100 Myr (AB Do-radus) categories, and using the default spectral typeand gravity classes used in plots within this text, we findthere are (9 γ, 0 β) in < 25 Myr, (14 γ, 8 β) in ∼ 40Myr, and (6γ, 2 β) in > 100 Myr associations. Whilethese are still small numbers, the lack of a correlation ofnumbers of (γ, β) objects as a function of bin, indicatesthat spectral features do not correspond one to one withage. We note that there are 25 objects that have both aninfrared and optical spectral type and while 6 have dif-fering gravity classifications, 19 are consistent with eachother affirming the diversity. Clearly, what have beenassigned as gravity sensitive features are influenced bysecondary parameters (see also discussions in Allers &Liu 2013, Liu et al. 2013, G15).

7.2. Photometric Properties: What Do the Colors TellUs?

The majority of flux for a brown dwarf emerges in theinfrared. Interestingly, an enormous amount of diversityamong the population can be found by examining in-frared colors alone (e.g. Kirkpatrick et al. 2008, Fahertyet al. 2009, 2013, Schmidt et al. 2010).

As quantified in Tables 15 - 16 and visualized in Fig-ures 5 - 14, the scatter for “normal” sources is pro-nounced, especially among the mid- to late- L dwarfs.Past works have attributed this to variations in effectivetemperature, metallicity, age, or atmosphere conditions(Faherty et al. 2013, Kirkpatrick et al. 2008, Patten et al.2006, Knapp et al. 2004).

In Figures 5 - 14 we plot infrared color combinationsfor the population. These can be used to examine trendsor lack thereof among the new age-calibrated sample.The spread for “normal” objects (grey shaded area) inFigures 5 - 14 was created by isolating sources withoutpeculiar spectral features (e.g. subdwarfs, low-gravityobjects, and unresolved binaries were eliminated), andonly keeping sources with photometric uncertainties inthe color shown < 0.2 mag. The list was gathered from

the dwarfarchives19 compendium and supplemented withthe large ultra cool dwarf surveys from Schmidt et al.(2010), Mace et al. (2013), Kirkpatrick et al. (2011), andWest et al. (2008) (for M dwarfs).

For the low gravity sample, spectral types, as well asgravity classifications, are from optical data unless onlyinfrared was available. We note that most sources plot-ted have spectral type uncertainties of 0.5. However, ascan be seen in Table 1, low-gravity sources can have upto a 2 type difference in subtype, as well as differinggravity indications between the optical and the infrared.We investigated whether isolating the smaller samplesof optical only or infrared only yielded different trendsthan this mixed sample, but found similar results in allcases. Hence we default to optical classifications anddesignations where available, as this is the wavelengthrange where the original spectral typing schemes for thisexpected temperature range were created.

Overplotted on the grey field sequences in Figures 5 -14 are the individual γ or β low-gravity objects. We havecolor coded each source by the group it has been assignedor labeled it as “young field?” for those with ambiguousor non conforming group kinematics. We have also giventhe β and γ objects different symbols so their trendscould be highlighted. Tables 17 - 18 give the infraredcolor of each source as well as its deviation from themean (see Tables 15 - 16) of normal objects in its spectralsubtype.

In general, the γ and β sources are systematically red-der than the mean for their subtype with the deviationfrom “normal” increasing with later spectral subtypes.Objects are most deviant from normal in the (J-W2)color (Figure 8) where they are an average of 2σ (orup to 1.85 mag) redder than the subtype mean valueacross all types, and least deviant in the (J-H) color(Figure 5) where they are an average of ∼ 0.7σ (or upto 0.6 mag) redder than the subtype mean value acrossall types. Typically, the γ sources mark the extreme redphotometric outliers for each subtype bin, although thereare a handful of extreme β sources (e.g. 0153-6744, aninfrared L3 β).

The difference in age between the oldest moving groupinvestigated and the average age for field sources is morethan ∼ 3 Gyr (field age references Burgasser et al. 2015,Seifahrt et al. 2010, Faherty et al. 2009). As shown inFigures 5 - 14, the difference in photometric propertiesacross this large age gap is distinct. We also investigatedthe more subtle age difference changes to the photometricproperties across the 5 - 130 Myr sample. Isolating thesources that are confidently associated with a movinggroup, we conclude that there is no obvious correlationbetween the extreme color of an object and the age of thegroup. For example, 5-15 Myr TW Hydrae late-type Mand L dwarfs, 25 Myr β Pictoris spectral equivalents and30 -50 Myr Tucana Horologium spectral equivalents havesimilar photometric colors. The exceptions are TWA27Aand TWA28, which are 2-5σ redder than similar objectsin several colors. We note that Schneider et al. (2012a,b)postulate that these sources may have disks hence theirsurroundings may be contributing to the colors.

Comparing internally within the same moving group(assumed to have the same age and metallicity) we find

19 http://www.dwarfarchives.org

Page 10: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

10 Faherty et al.

that objects of the same spectral subtype show a largediversity in their photometric colors. The best exampleis at L0 where there are 5 Tucana Horologium members.The objects have systematically redder colors, but theyare distributed between 1-4σ from the field mean indicat-ing that since this is a coeval group, diversity must bedriven by yet another parameter. We note that depend-ing on the exact formation mechanism, metallicity varia-tions can not be completely outruled as also contributingto the diversity among objects in the same group.

Plotted as grey symbols throughout Figures 5 - 14 areobjects that are kinematically ambiguous or unassociatedwith any known group. Many of these sources, (such asthe L4γ 1615+4953 and the very oddly reddened M8γ0435-1441 – see discussion in Allers & Liu 2013 and Cruzet al. 2003), are among the reddest objects for their spec-tral bins and rival the associated kinematic members intheir spectral and photometric peculiarities. Conversely,there are several β sources, such as the L2β 0510-1843,that fall within the normal range in each color and areonly subtly spectrally different than field sources. Unfor-tunately, with no group association, we can not commenton the likelihood of age differences driving the diversity.It is likely that within this sample, there are objects inmoving groups not yet recognized, as well as sources thatare not young but mimic low surface gravity features dueto secondary parameters (e.g. atmosphere or metallicityvariations).

7.3. Flux Redistribution to Longer Wavelengths forYounger Objects

As discussed in section 7.2 above, low surface gravitybrown dwarfs are systematically redder for their givenspectral types. Hence, one might expect that they wouldnot logically follow the absolute magnitude sequence offield equivalents. Figures 15 - 20 show MJ through MW3

versus spectral type for all low surface gravity sourceswith parallaxes or, in a select few cases, with kinematicdistances. In Table 13 we mark the 25 sources for whichwe lack a parallax but have assumed the kinematic dis-tance to a moving group since the object was assessedas a high-likelihood member. The grey area throughouteach figure is the polynomial relation for the field pop-ulation at each band recalculated with all known browndwarfs with parallaxes. We list all new relations for bothfield and low gravity objects used in or calculated for thiswork in Table 19. Throughout Figures 15 - 20, individ-ual low surface gravity objects are over plotted and colorcoded by group membership and given a symbol repre-senting their gravity designation. The lower portion ofeach figure shows the deviation of each low-gravity sourcefrom the mean absolute magnitude value of the spectralsubtype.

7.3.1. Trends with Spectral Type

Focusing on the objects associated with known groups,there is a distinct difference between the behavior oflow-gravity late-type M dwarfs and L dwarfs. In Fig-ure 15, which shows the MJ band trend, the TW Hy-drae and Tucana Horologium late-type M’s are ∼ 2 mag-nitudes brighter than the field relations whereas the Ldwarfs are normal to ∼1 mag fainter than the field rela-tions. Moving to longer wavelengths, the flux shifts. By

MW3, nearly all sources regardless of spectral type havebrighter absolute magnitudes than the field polynomial.One plausible explanation for this redistribution of fluxis dust grains in the photosphere that absorb and rera-diate at cooler temperatures (hence longer wavelengths).Equally likely is the possibility that there exists thickerclouds or that there are higher lying clouds in the at-mospheres of these sources (e.g. Marocco et al. 2013,Hiranaka et al. 2015, Faherty et al. 2013).

One main consequence of the young sources deviat-ing from the field in some bands and not in others,is that the polynomial relations that use spectral typeand photometry to obtain distances, are inappropriatefor low-surface gravity objects. At bluer near-infraredbands, they would over estimate distances, whereas atredder near-infrared bands they would under-estimate.In Table 19 we have taken this into account and presentnew spectrophotometric polynomials for suspected youngsources at J through W3 bands. As discussed in Filip-pazzo et al. (2015), the flux redistribution hinges aroundK band. As a result, we recommend this spectral dis-tance polynomial relation for suspected young sources.

7.3.2. Trends with Age

Overall, we find that there is a clear difference in thebehavior of the absolute magnitudes as a function ofspectral type for the > ∼ 3 Gyr field trends in eachband compared to the behavior of the low surface grav-ity sources. Narrowing in on the 5 - 130 Myr range andcomparing equivalent spectral type sources in differinggroups (such as the L7 sources in AB Doradus and β Pic-toris or the Tucana Horologium late- M and L dwarfs)we find that there is no obvious correlation with age andabsolute magnitude trend. In the case of PSO318 (∼ 25Myr), 1119-1137, and 1147-2040 (∼ 5 -15 Myr) versus0047+6803 (∼ 110-130 Myr) or TWA 27A (∼ 5-15 Myr)versus 0123-6921 (∼30-50 Myr), the sources switch inbrightness depending on the band, but stay within 1σ ofeach other from J (∼ 1.25µ m) through W2 (∼ 4.6µ m).By MW3 (∼ 11.56µ m), TWA 27 A is over 1 magnitudebrighter than 0123-6921 although this might be due to adisk and not due to the source (Schneider et al. 2012a,b).Regardless, it does not appear that the younger sourcesshow an extreme version of the overall trend indicatingthat whatever causes the flux redistribution compared tothe field (> 3 Gyr sample) has a near equal impact from∼5-15 Myr through ∼110-130 Myr.

7.3.3. Trends with Non-Group Members and ExpandedExplanations for Diversity

The sources with non-conforming group kinematics(grey points) do not all trace the behavior of the bonafide/high-likelihood members. For instance, all but 2 ofthe γ or β “Young Field?” M7-L1 objects stay withinthe polynomial for each band. Furthermore, all but oneof those are classified as β, which is the more subtly al-tered gravity type. Conversely, the L3 and L4 γ and βsources move from within the field polynomial band tobeing 1-2σ brighter than equivalent sources between MJ

and MW3.There are several explanations for why a spectroscop-

ically classified low gravity object looks normal in otherparameters. Photometric variability may contributeslightly to their position on spectrophotometric diagrams

Page 11: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

Brown Dwarf Analogs to Exoplanets 11

(e.g. Allers et al. 2016) but it is unlikely to contributein a significant way. As shown in works such as Radiganet al. (2014), and Metchev et al. (2015), large amplitudephotometric variations (> 5%) among brown dwarfs arerare. Alternatively, rotational velocity could contributein a substantial way because it influences global circu-lation on a given source which causes or disrupts cloudpatterns. In this same vein, the distribution of cloudsby latitude on a given object may not be homogeneousin structure or grain size. Consequently, (as first pro-posed by Kirkpatrick et al. 2010) our viewing angle (e.g.pole-on or equatorial on) would impact the spectral andphotometric appearance. Unfortunately, there is littleinformation on the rotational velocity distribution of theyoung brown dwarf sample so testing this parameter willrequire additional data.

The simplest explanation is that sources falling within“normal” absolute magnitude and luminosity plots withnon-conforming kinematics to any known group may notbe young. Aganze et al. (2016) showed this to be thecase for the d/sdM7 object GJ 660.1B that had a pe-culiar near infrared spectrum which hinted that it wasyoung. However this object was co-moving with a highermass, low-metallicity star refuting that suggestion. Inthe case of GJ 660.1 B, a low-metallicity likely helpedto mimic certain spectral features of youth. In lieu ofthe fact that there may be some older contaminants inthe sample, we present all new relations in Table 19 tobe inclusive of all objects in this work with parallaxes aswell as only objects that are considered bonafide or highlikely members of groups.

7.4. Color Magnitude Trends for Young Brown Dwarfs

Color magnitude diagrams have been discussed atlength in the literature as a diagnostic of temperature,gravity, metallicity, and atmosphere properties of thebrown dwarf population (e.g. Liu et al. 2013, Fahertyet al. 2012, 2013, Filippazzo et al. 2015, G15, Dupuy& Liu 2012, Patten et al. 2006). Figures 21 - 31 showthe full suite of infrared color magnitude diagrams us-ing JHK (2MASS) and W1W2 (WISE) photometry forthe field parallax sample omitting binaries, subdwarfs,spectrally peculiar sources and those with absolute mag-nitude uncertainties > 0.5 in any band. On each plotwe color code objects by spectral ranges of < M9, L0-L4,L5-L9, T0-T4, and >T5 and we highlight the low surfacegravity objects by their gravity classification. The latesttype sources in our sample are labeled on each plot. Onselect plots, we have also labeled the M dwarf membersof β Pictoris and TW Hydrae.

For completeness of the discussion, we have includedthe one confirmed isolated T dwarf member of a mov-ing group in the analysis (SDSS1110, T5.5, Gagne et al.2015a) as well as the L7 wide companion VHS 1256 B(Gauza et al. 2015). While the latest-type L dwarfs pushthe elbow of the L/T transition to an extreme red/faintcolor/magnitude, SDSS 1110 falls near spectral equiva-lents on all color magnitude diagrams. As discussed inGagne et al. 2015c and Filippazzo et al. 2015, this sourceappears ∼150 K cooler than equivalents but does notexhibit the extreme color-magnitude properties as seenwith the L dwarfs.

Looking at a given absolute magnitude across all plotsand comparing field objects to low surface gravity ob-

jects, we find that the latter can be more than a 1 mag-nitude redder. The most extreme behavior can be seenon Figures 24 and 25 which exploits the largest wave-length difference in color (J −W2) and as discussed insection 7.2 is where the low-gravity objects are the mostextreme photometric outliers.

As was discussed in section 7.3, there is a distinct dif-ference in the diversity of absolute magnitudes betweenyoung M dwarfs and L dwarfs. Using the color codingas a visual queue in Figures 21 - 31, the M dwarfs fallredder than the field sequence but they also scatter tobrighter magnitudes. For the W2 color difference plots(e.g. MJHK vs (J-W2), (H-W2), or (K-W2)), we la-bel the position of the M dwarfs in TW Hydrae and βPictoris as they are strikingly red and bright at thesewavelengths and well separated from the field popula-tion.

Comparatively, the L dwarfs flip in their behavior andcan be seen as redder but fainter than field sources.Focusing on Figures 21 - 22, and 26 which use JHKphotometry only, the latest type sources (e.g. PSO318,0047+6803, 2244+2043, 1119-1137, 1147-2040) are notonly redder but they also drive the elbow of the L/Ttransition ∼ 1 magnitude fainter than the field (notablyin MJ). Moving to longer wavelengths, this behaviorreverses. By Figures that evaluate colors against MW1

(∼ 3.4µ m) or MW2 (e.g. Figure 23 or 28) the latesttype sources are consistent with or slightly brighter thanthe elbow. Hence as discussed in section 7.3 and Filip-pazzo et al. (2015), the flux redistribution of young Ldwarfs seems to hinge very close to the K band. Indeedthe color magnitude diagram that appears to smoothlyand monotonically transition objects from late- M to Tdwarfs is the MK vs (K-W2) plot in Figure 30. Thereis a 10 magnitude difference between the warmest to thecoolest objects and the magnitude seems to monotoni-cally decrease with reddening color showing only a hintof an L/T transition elbow at MK=13/MW2=12. Onthis plot, the low-surface gravity sequence lies ∼ 1 mag-nitude brighter than the field with the exception of asmall fraction of the sample appearing normal (includ-ing the AB Doradus T dwarf SDSS1110).

The L/T transition induces a turning elbow on mostcolor magnitude plots. This feature is brought on whenthe clouds dissipate as one moves from warmer L dwarfsto cooler T dwarfs and CH4 begins to dominate as anopacity source all conspiring to drive the source colorsblueward. The demonstration that these young sourcesare redder and fainter than the field sequence in the near-infrared indicates that the clouds must persist throughlower temperatures (fainter) and represent an extremeversion of the conditions present for field age equivalents(redder). The brightening of sources at W1 and W2 atextreme red colors likely holds clues to the compositionand structure of the clouds as it is a reflection of theflux redistribution to longer wavelengths as discussed insection 7.3 above.

For colors and magnitudes evaluated across JH or Kand W1 or W2 (e.g. Figure 27 which shows MH vs H-W1), the latest type objects pull the low-gravity sequenceredder than the field while maintaining a small spread inabsolute magnitude from 0103+1935 through PSO318.Interestingly this indicates similarities in these sourcesnot readily apparent in current spectral data.

Page 12: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

12 Faherty et al.

Lastly, on Figures 21 - 31 we have given γ and β clas-sified sources different symbols to investigate whethertrends between the two could be identified. Throughout,there is a hint that the sequence of γ classified objects isredder than that of the β sources. This is most prominenton Figures 23 - 24 where only four β L dwarfs rival γsources in color and/or magnitude. On other figures suchas 21, there appears to be more mixing between the twogravity classifications. As has been stated throughoutthis work, spectral type and the corresponding gravityclassification are difficult to evaluate and can differ be-tween optical and infrared spectra or from low resolutionto medium resolution data. The data as viewed in thiswork, seems to indicate that the γ classified sources aredistinct on color magnitude diagrams from the β classi-fied sources with some mixing likely due to a non-uniformspectral typing methodology.

7.5. The Bolometric Luminosities and EffectiveTemperatures of Young Objects

One expects that younger brown dwarfs should have in-flated radii compared to equivalent temperature sourcesgiven that they are still contracting. Consequently, onewould expect that γ and β objects would be overlumi-nous when compared to their field age equivalents. Arough estimate using the Burrows et al. (2001) evolution-ary models indicates that 10 Myr (50 Myr) objects withmasses ranging from 10 to 75 MJup have radii that are25% to 75% (13% to 50%) larger than 1 -3 Gyr dwarfswith equivalent temperatures. Since Lbol scales as R2,one might expect that this age difference translates intoyounger objects being 1.5x - 3.0x (1.3x - 2.3x) overlumi-nous compared to the field.

Initially, studies categorized low surface gravity browndwarfs as “underluminous” compared to field sourcesbased on examining near-infrared absolute magnitudetrends alone (e.g. Faherty et al. 2012). However as dis-cussed in section 7.3, flux shifts to longer wavelengths be-yond the H and K bands at lower gravities, so that someabsolute magnitude bands might be fainter but Lbol’sare not underluminous compared to the field (Fahertyet al. 2013, Filippazzo et al. 2015). In fact, Filippazzoet al. (2015) carefully evaluated Lbol values for all browndwarfs with parallaxes (or kinematic distances in the caseof high likelihood moving group members) and presentedup to date relations between observables and calculatedLbols. In that work, β and γ objects were found to splitalong the M/L transition whereby M dwarfs were over-luminous and L dwarfs were within to slightly below thesequence when compared to field objects.

To investigate Lbol trends among the age calibratedsample, we first calculate values for sources reportedhere-in using the technique described in Filippazzo et al.(2015). In that work, the authors integrate underthe combined optical and near-infrared photometry andspectra as well as the WISE photometry and mid infraredspectra where available. As described in previous sec-tions, we use parallaxes where available but supplementwith kinematic distances when a source was regarded asa high likelihood member to a group (see values in paren-theses in Tables 13 and 10). All Lbol, Teff , and Massvalues are listed in Table 14 as well as Table 13 formembers only.

Figure 32 shows Lbol as a function of spectral type for

all objects compared to the field polynomial from Filip-pazzo et al. (2015). Also overplotted is the polynomialfit for objects in groups (labeled as GRP in Table 19).We highlight bona fide and high-likelihood brown dwarfmoving group members as well as the unassociated γ andβ objects with differing symbols and colors.

Focusing on the age calibrated sample, we find thatlate-type M dwarfs assigned to groups are overluminouscompared to the field. The L dwarfs assigned to agroup are mixed, with the majority falling within thefield polynomial relations and a small number fallingslightly above. Comparing group-to-group differences,the 5-15 Myr TW Hydrae M8 and M9 objects are ∼5xmore luminous than the field while the 30-50 Myr TucanaHorologium source is ∼2x more luminous. Interestingly,the TW Hydrae, β Pictoris, and AB Doradus L7’s havenear equal Lbol values, all near the mean value for theirsubtype.

Comparing the γ and β gravity sources without mem-bership to the field and high-likelihood group members,we find that – with the exception of the M7.5 0335+2342which is highly suspect to be a β Pictoris member (seenote in Table 13) – all non-members fall within the poly-nomial relations for the field. This trend indicates thatthe late- M non-member γ and β sources may not beyoung (see discussion in subsection 7.3.3 and section 7.6).Indeed, 1022+0200 is a late-M non-member with fullkinematics. When we compare the UV velocity of thissource to that of the Eggen & Iben (1989) criterion foryoung stars, we find it falls outside of it hinting that itmay be drawn from the older disk population. It remainsunclear how to interpret the non-member L dwarfs as thistrend is in line with group assigned equivalents.

The result of Lbol’s for γ and β gravity L dwarfs lookinglike field sources or in some cases underluminous, impliesthat they are cooler than their field spectral equivalents.In other words, low-gravity or atmospheric conditionspotentially induced at a younger age, mimic spectral fea-tures of a warmer object. As young sources are typed ona scheme anchored by field objects, they are incorrectlygrouped with warmer sources. They certainly stand outin photometric, spectroscopic, and band by band abso-lute magnitude comparisons with field sources (e.g. allof section 7). However the low gravity sequence doesnot logically or easily follow off of the field sequence.Figure 33 shows the Teff values for γ and β sources cal-culated using the method described in Filippazzo et al.(2015) along with the polynomial and residuals for fieldobjects (from Filippazzo et al. 2015) and group members(from Table 19). As noted in Filippazzo et al. (2015) –with the exception of a few – while M dwarfs are sim-ilar if not warmer for their given spectral subtype, theL dwarfs are up to 100-300K cooler. Examining the 5-130 Myr age calibrated objects within this sample, wecan not isolate a trend of younger objects being increas-ingly cooler than older equivalent sources. For exam-ple, PSO318 and 0047+6803 are equivalent temperatureseven though there is a ∼100 Myr difference in age.

7.6. Unmatched objects with Signatures of Youth

Among the 152 objects in this sample with reportedspectral signatures of youth in either the optical or thenear-infrared, we confidently find that 39 (∼25%) arehigh-likelihood or bona fide members of nearby mov-

Page 13: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

Brown Dwarf Analogs to Exoplanets 13

ing groups. There are 92 (∼61%) dubbed ambiguouseither because their kinematics overlap with more thanone group (including the old field) and they need betterastrometric measurements to differentiate, or there is notstrong enough evidence with the current astrometry todefinitively call it high-likelihood or bona fide. There are21 objects (∼ 14%) for which we have enough informationto declare them as non-members to any known group as-sessed in this work. Among the non-members, there are 4optically classified (3 infrared classified) M dwarfs and 15optically classified (17 infrared classified) L dwarfs with12 optically (10 infrared) classified γ objects and 5 op-tically (8 infrared) classified β objects. Several of theseobjects have extreme infrared colors (see Figures 5 - 14).For instance, 1615+4953 is classified in the optical as anL4γ and rivals the most exciting late-type objects in itsdeviant infrared colors. However, current kinematics donot show a high probability of membership in any groupdespite its having a proper motion and radial velocity.Similarly, 0435-1441 is strikingly red in JHK, showsboth optical and infrared signatures of youth, and itsspectrum needs to be de-reddened (E(B-V)=1.8). Whileit is in the direction of the nearby star-forming regionMBM 20, the distance noted for that cluster (112 - 161pc) would drive unrealistic absolute magnitudes and Lbolvalues for this source.

The current census of young, but, unassociated late- Mand L dwarfs is similar to what has emerged in studiesof early M dwarfs with multiple signatures of youth (e.g.X-ray, UV and IR-excess, Lithium). A significant por-tion of objects in the studies of Rodriguez et al. (2013)and Shkolnik et al. (2011, 2012) are strong candidatesfor being 5 -130 Myr objects via their spectral and pho-tometric properties but their kinematics are inconclusiveand their age cannot be determined by a group assign-ment. Likely, there are a number of groups waiting tobe uncovered that may account for this overabundance ofyoung, low mass objects. Alternatively, after 5 - 130 Myrsources have been dynamically moved from their originssuch that tracing back their history to any collection ofobjects is beyond our capability.

8. COMPARISONS WITH DIRECTLY IMAGEDEXOPLANETS

Several of the objects discussed herein are in the samemoving groups as directly imaged exoplanets or plane-tary mass companions. For example, there are two bonafide or high-likelihood brown dwarfs in the β Pictorismoving group, home to the 11-13 Jupiter mass planetβ Pictoris b and the newly discovered 2 - 3 Jupitermass planet 51 Eri b (Bonnefoy et al. 2013, 2014, Maleset al. 2014, Macintosh et al. 2015), 20 in the TucanaHorologium association which houses the 10 - 14 MJup

planetary mass companion AB Pictoris b (Chauvin et al.2005, Bonnefoy et al. 2010) as well as the 12 - 15 MJup

planetary mass companion 2M0219 b (Artigau et al.2015), and seven in the TW Hydrae Association whichis the home of the 3 - 7 MJup planetary mass companion2M1207 b (Chauvin et al. 2004, Patience et al. 2012).As such, the brown dwarfs discussed herein should beconsidered siblings of the directly imaged planets as onecan assume that they are co-eval, and share formationconditions and dynamical histories. The mode of for-mation for the brown dwarfs versus the directly imaged

exoplanets remains a question but will likely drive dis-tinct differences in the observables of each population.In this section, we look to place the young brown dwarfsample in context with related exoplanet members.

8.1. Similarities of Brown Dwarfs and ImagedExoplanets on Color Magnitude Diagrams

Young isolated brown dwarfs are far easier to accumu-late data on than directly imaged exoplanet equivalentsbecause they do not have a bright star to block whenobserving. The collection of currently known giant ex-oplanets, generally have only infrared (J,H,K,L′,M ′)photometric measurements. Near-infrared spectroscopyis possible for some although this requires considerabletelescope time and advanced instrumentation (e.g. Op-penheimer et al. 2013, Macintosh et al. 2015, Hinkleyet al. 2015, Bonnefoy et al. 2013, Patience et al. 2012).

Figures 35 - 41 show a full suite of near-infrared colormagnitude diagrams with the same brown dwarf sampleas in Figures 21 - 31 however we now compliment eachwith directly imaged exoplanets and color code sourcesby their respective moving groups. For L’ band photom-etry of the brown dwarfs, we have used the small sam-ple of MLT sources with measured MKO L’ – primarilyfrom Golimowski et al. (2004) – to convert the WISEW1 band photometry which has comparable wavelengthcoverage. The polynomial relation used for convertingbetween bands is listed in Table 19.

As with the young brown dwarfs discussed herein, anobservable feature of note for the exoplanets is that theyare redder and fainter than the field brown dwarf popu-lation in near-infrared color magnitude diagrams. Thisis exemplified by the positions of HR8799 b and 2M1207b both of which sit ∼ 1 mag below the L dwarf sequencein Figures 35 36, and 37. To explain their position onnear-infrared color magnitude diagrams, several authorshave proposed thick or high-lying photospheric clouds intheir atmospheres (Bowler et al. 2010b, Madhusudhanet al. 2011, Hinz et al. 2010, Marley et al. 2012, Skemeret al. 2012, Currie et al. 2011). An alternative theory pro-posed by Tremblin et al. (2016) has recently emerged thatproposes cloudless atmospheres with thermo-chemical in-stabilities may invoke some of the features seen here-in.Further investigation of those models is required beforewe can appropriately comment on how well they mayreproduce the large sample presented in this work.

The young brown dwarf sequence in many ways mirrorsthat of the directly imaged exoplanets but for warmer(or older) objects. From the warmest (at M7) to thecoolest (at L7) the low-gravity brown dwarfs are redderand fainter than their field counterparts. As can be seenon each Figure, the low-gravity sequence appears to log-ically extend through many of the directly imaged exo-planets. Interestingly, the youngest exoplanets (those inTaurus, Upper Scorpius, and ρ Ophiuchus; Kraus et al.2014, Currie et al. 2014) are redder than either the fieldor the low-gravity sequences indicating that – assumingformation differences do not drastically alter the avail-able compositions – the atmosphere or gravity effects aremost pronounced close to formation.

By color combinations using L’ band, the youngestplanetary mass objects such as ROXs12 b, DH Tau b,and GQ Lup b are nearly 2 magnitudes redder and >2 magnitudes brighter than the field sequence. Con-

Page 14: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

14 Faherty et al.

versely, the lowest temperature planets around HR8799fall within or close to the T dwarf sequence. The excep-tion is HR8799 b which has a singificantly redder (J-L)color than the field sequence as well as the young browndwarf sequence. It is also ∼ 2 magnitudes fainter in ML

than the low-gravity sequence which extends redward inFigure 38 with minimal scatter in ML. Skemer et al.(2012) have noted that the 3.3µm photometry (not plot-ted) for the HR8799 planets is brighter than predictedby evolutionary or atmosphere models. As in Barmanet al. (2011a), Skemer et al. (2012) use thick cloudy non-equilibrium chemistry models and remove CH4 to fit thedata. Similarly, none of the isolated late-type L dwarfslabeled on Figures 35 - 41 have CH4 in their near infraredspectra even though 1119-1137, 1147-2040, PSO318 and0047+6803 have calculated Teff s which should allow fordetectable CH4. Interestingly only the planetary masscompanion 2M1207 b rivals the far reaching red sequenceof the young brown dwarfs, yet that source is lacking anL’ or equivalent band detection. Hence at this point thelate-type young brown dwarf sequence prevails over theexoplanet sequence in their extreme L’ colors even as theearliest type youngest planetary mass sources prevail atslightly bluer magnitudes.

The latest-type low-gravity brown dwarfs, and theknown directly imaged exoplanets push the L/T transi-tion to cooler temperatures and redder colors. Interest-ingly we have two sets of objects in the same group thatspan either side of the famed L/T transition. 0047+6803(Teff=1227± 30 K, Mass= 9 - 15 MJup) and SDSS1110(Teff= 926 ± 18, Mass= 7 - 11 MJup) are both in the∼110 - 130 Myr AB Doradus moving group. PSO318(Teff= 1210 ± 41, Mass= 5 - 9 MJup) and 51 Eri b(Teff= 675 ± 75, Mass= 2 - 12MJup) are both in the ∼25 Myr β Pictoris moving group. The two sets differ by∼100 Myr in age. Comparing 0047+6803 to PSO318 wefind they have similar spectral types, have Teff within1σ but may differ in mass by up to ∼10 MJup . Bothpush the L/T transition redder on multiple color mag-nitude diagrams in Figures 21 - 31 and Figures 35 - 41.Overall PSO318 and 0047+6803 have similar absolutemagnitudes (see Figures 15 - 20) although PSO318 canbe significantly redder in specific colors. 51 Eri b andSDSS1110 are thought to have similar spectral types butdiffer in mass and Teff by as much as 344 K and 5 MJup

respectively. Interestingly, 51 Eri b is ∼ 2 mag fainter inMJHL than SDSS 1110. Comparing its position on Fig-ures 35, 38 and 40, 51 Eri b appears much more like theT8 Ross 458 C thought to be 150 - 800 Myr (Burgasseret al. 2010b). Regardless for both groups we see that bythe time we have reached the mid to late-T dwarf phase,sources are back on or very close to, the field sequence.As cloud clearing is thought to happen at the L/T tran-sition, we surmise this is further evidence that much ofthe diversity seen among the young, warm exoplanet andbrown dwarf population is atmosphere related.

A note of caution when looking for similarities on colormagnitude diagrams between brown dwarfs and giant ex-oplanets comes in the way of comparing the newly discov-ered L7 companion VHS1256 B to HR8799 b. In Gauzaet al. (2015), the authors noted a similarity of this com-panion and the giant exoplanet. On Figure 37, the twohave enticingly similar near-infrared values. However,Figure 42 shows the near-infrared spectrum of each ob-

ject as well as a field L7 to demonstrate strong differencesin H-band. Clearly there is some commonality betweenthe two sources, but color magnitude combinations alonedo not give a full enough picture to draw conclusions.

The directly imaged companion GJ 504 b is anotherexample of how we require multiple color magnitude di-agram plots to begin exploring the potential characteris-tics of a single object (Kuzuhara et al. 2013). GJ 504 bis nearly 1 magnitude redder than late-type T dwarfs inMJHK vs (J-K) or (H-K) diagrams (Figures 37 and 39),but it appears normal inMJH vs (J-H) plots (Figure 35).Recent work by Fuhrmann & Chini (2015) suggest theprimary may not be young therefore this source may notbe planetary mass. Regardless it is a low mass T dwarforbiting at < 50 AU, potentially formed in a disk arounda nearby star hence it may be characteristically differentthan equivalent temperature T dwarfs (see e.g. Skemeret al. 2015).

8.1.1. Bolometric Luminosities

Comparing the bolometric luminosities (Lbol) acrossthe sample of field objects, new bona fide or high-likelihood moving group members, and directly imagedexoplanets allows us to investigate how the flux variesacross the sample. For the directly imaged exoplanets,we use the Lbol values reported in the literature (seeMales et al. 2014, Bonnefoy et al. 2014, Currie et al.2014).

As discussed in both section 7.5 and Filippazzo et al.(2015), the young M dwarfs are overluminous for theirspectral type while the young L’s are normal to slightlyunderluminous. Several authors have noted this pe-culiarity among the directly imaged exoplanets as well(e.g. Bowler et al. 2013, Males et al. 2014). Examin-ing the two populations together allows us to investigatewhether there is an obvious age-associated correlationwithin the scatter. The youngest objects in Figure 43are the directly imaged exoplanets such as ROXs 42B b,and 1RXS1609 b which belong to star forming regionsat just a few Myr of age. These sources appear overlu-minous in comparison to equivalent sources regardless ofhow late their spectral type (e.g. 1RXS1609b which isthought to resemble an L4). The latest type planets thathave direct, comparable data – 2M1207 b, HR8799 b, 51Eri b – are all ∼ 1 σ or more below the field sequenceindicating that they are either far cooler than the latestL dwarfs or there is unaccounted flux in the bolometricluminosity calculations. Interestingly, this appears to bewhere the young brown dwarf and the directly imagedexoplanet comparisons diverge. The latest type exoplan-ets in equivalent age groups to the isolated brown dwarfs,are either far cooler than any currently discovered youngbrown dwarf equivalent, or the physical conditions di-verge (e.g. atmosphere conditions, chemistry, other).

8.1.2. Masses from combining Evolutionary Models withLBol, and Age

In Figure 34, we combine the Lbol values with the agesof the moving group members to estimate masses. InTable 14 we also list masses calculated from the spec-tral energy distribution analysis as described in Filip-pazzo et al. (2015). Over-plotted on Figure 34 with theyoung brown dwarfs are directly imaged planetary andbrown dwarf mass companions with Lbol values collected

Page 15: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

Brown Dwarf Analogs to Exoplanets 15

from the literature. The models from Saumon & Mar-ley (2008)(solid) and Baraffe et al. (2015) (dashed) areshown with lines of equal mass color coded as stars (>75 MJup, blue) brown dwarfs (> 13 MJup, green) andplanets (< 13 MJup, red).

It is unclear how each one of the objects in this sampleformed however, using the 13 MJup boundary as a massdistinguisher between brown-dwarf and planet-type ob-jects, we find that there are close to 9 solitary objectswith masses < 13 MJup. Several of those sources lie in anambiguous area where low mass brown dwarfs and plan-etary mass objects cross (30 - 130 Myr between massesof 10 - 20 MJup).

With the exception of Y type objects whose age isstill undetermined (e.g. W0855, Luhman 2014), 1119-1137, 1147-2040, and PSO318 are the lowest mass iso-lated sources categorized. PSO 318 has a lower lumi-nosity than β Pictoris b, the 11 - 13 MJup planet inthe same association while 1119-1137 and 1147-2040 aresignificantly more luminous than their sibling exoplanet2M1207b. Interestingly, the AB Doradus equivalentlytyped L7 member, 0047+6803, is higher mass than allof these sources even though its bolometric luminosity iscomparable. Similarly, 0355+1133 which is in the samegroup as 0047+6803, shares photometric anomalies withPSO318 (near-infrared and mid infrared color) and spec-tral anomalies with 2M1207b yet it is much higher mass.

The overlap in masses of the directly imaged exoplan-ets and isolated brown dwarfs invites questions of forma-tion given co-evolving groups. Whether the latter wasformed via star formation processes or ejected after plan-etary formation processes is yet to be seen and requiresfurther investigation.

9. CONCLUSIONS

In this work we investigate the kinematics and fun-damental properties of a sample of 152 suspected youngbrown dwarfs. We present near-infrared spectra and con-firm low-surface gravity features for 43 of the objectsdesignating them either intermediate (β) or very low (γ)gravity sources. We report 18 new parallaxes (10 fieldobjects for comparison and 8 low surface gravity), 19new proper motions, and 38 new radial velocities and in-vestigate the likelihood of membership in a nearby mov-ing group. We use four kinematic membership codes (1)BANYAN I, (2) BANYAN II, (3) LACEwING, and (4)Convergent method, as well as a visual check of the avail-able space motion for each target against known membersof well known nearby kinematic groups to determine thelikelihood of co-membership for our sources. We cate-gorize objects as (1) bona fide –BM, (2) high-likelihood–HLM, (2) ambiguous –AM, or (3) non-member –NM ofnearby moving groups. We find 39 sources are bona fideor high-likelihood members of known associations (8 inAB Doradus, 1 in Argus, 2 in β Pictoris, 1 in Columba,7 in TW Hydrae, and 20 in Tucana Horologium). A fur-ther 92 objects have an ambiguous status and 21 objectsare not members of any known group evaluated in thiswork.

Examining the distribution of gravity classificationsbetween different groups we find that the youngest as-sociation (TW Hydrae) has only very low-gravity (γ)sources associated with it but slightly older groups suchas Tucana Horologium (9 optically classified, 10 infrared

classified γ objects and 3 optically classified, 5 infraredclassified β objects) and AB Doradus (4 optically classi-fied, 6 infrared classified γ objects and 1 optically classi-fied, 2 infrared classified β objects) show a mix of bothintermediate (β) and very low-gravity sources. This di-versity is evidence that classically delegated gravity fea-tures in the spectra of brown dwarfs are influenced byother parameters such as metallicity or (more likely) at-mospheric conditions.

We investigate colors for the full sample acrossthe suite of MKO, 2MASS and WISE photometry(J,H,Ks,W1,W2,W3). In color versus spectral typediagrams, we find that the γ and β classified objects aredistinct from the field (> 3 Gyr sources). They are mostdeviant from the field sequence in the (J-W2) color wherethey are an average of 2σ redder than the subtype mean.They are least deviant in the (J-H) color where they arean average of 0.7σ redder than the subtype mean. Basedon the 5 -130 Myr age calibrated sample, we concludethat the extent of deviation in infrared color is not in-dicative of the age of the source (meaning redder doesnot translate to younger). In any given color a γ or aβ object – whether confirmed in a group or not – maymark the extreme outlier for a given subtype. We findthat the L0 dwarfs in Tucana Horologium (expected tohave the same, Teff , age and metallicity) deviate fromthe field sequence of infrared colors by between 1 and 4 σ(depending on the particular color examined). Assumingclouds are the source of the diversity, we conclude thatthere is a variation in cloud properties between otherwisesimilar objects.

Examination of the absolute magnitudes for the par-allax sample indicates a clear flux redistribution for low-and intermediate-gravity brown dwarfs (compared tofield brown dwarfs) from near-infrared to wavelengthsat (and longer than) the WISE W3 band. There is alsoa clear correlation of this trend with spectral subtype.The M dwarfs are 1-2σ brighter than field equivalents atJ band but 4-5σ brighter at W3. The L dwarfs are 1-2σfainter at J band but 1-2σ brighter atW3. Clouds, whichare a far more dominant opacity source for L dwarfs, arelikely the cause.

Sources that are not confirmed in groups do not alltrace the same behavior in absolute magnitude or colorindicating that some sources may not be young. Varia-tions in atmospheric conditions or metallicity likely drivethe diversity.

On color-magnitude diagrams, the low-surface gravitybrown dwarfs pull the elbow of the field L/T transitionsignificantly redder and fainter with the most extremecase being the MJ vs (J-W2) plot where young objectsare up to 1 mag redder than the field sequence. Con-versely, the MK versus (K-W2) plot shows a 10 magni-tude difference between the warmest and coolest browndwarfs yet seems to monotonically decrease in magnitudewith reddening color. On this figure there is little evi-dence for an L/T transition elbow and the young objectsform a secondary sequence that is ∼1 mag redder thanthe field sequence. Interestingly as we move to longerwavelengths the effect reverses and the latest type ob-jects pull the elbow of the L/T transition back up asthey are equivalent or slightly brighter than field equiv-alents at MW1,W2. Comparing the sequence of γ and βclassified sources on CMD’s compared to the field, we

Page 16: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

16 Faherty et al.

find a hint that the two are distinct with the former red-der than the latter. This trend is clearest on the MJ

versus (J-W2) figure although there is still a small mixof γ and β sources at extreme colors for a given absolutemagnitude.

Comparing the low-gravity sample with directly im-aged exoplanets on color magnitude diagrams we findthat the former sequence logically extends through thelatest type planets on multiple color magnitude dia-grams. The small collection of hot, planetary mass ob-jects in star forming regions such as ρ Ophiuchus andTaurus are strikingly red, bright, and luminous comparedto either the field sequence or the low-gravity objects in-dicating that the atmosphere and/or gravity effects thatdrive the population diversity may be pronounced closeto formation. Comparing β Pictoris members 51 Eri b(mid T dwarf) and PSO318 (late L dwarf) with AB Do-radus members SDSS1110 (mid T dwarf) and 0047+6803(late L dwarf) we find that even though the members dif-fer by ∼ 100 Myr, the late-type L’s similarly push the el-bow of the L/T transition redder and fainter whereas theT dwarfs appear on or very close to the field sequence.We surmise that this behavior, seen in two sets of ob-jects at different ages across the L/T transition wherecloud clearing is thought to be significant, is evidencethat much of the diversity seen among young warm exo-planet and brown dwarfs is atmosphere related.

Page 17: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

Brown Dwarf Analogs to Exoplanets 17

γGravity

β# γ/β

3/7

4/8

12/9

17/9

14/6

5/5

9/5

6/3

2/3

1/1

5/1

M7 M9 L1 L3 L5 L7SpT (NIR)

05

1015202530

Num

ber

M7 M9 L1 L3 L5 L7SpT (NIR)

05

1015202530

Num

ber

M7 M9 L1 L3 L5 L7SpT (Opt)

0

5

10

15

20

Num

ber

M7 M9 L1 L3 L5 L7SpT (Opt)

0

5

10

15

20

Num

ber

γGravity

β

1/1

5/3

8/7

15/4

2/3 4/1 3/2

7/2

2/3

0/12/0

# γ/β

Figure 1. The distribution of objects analyzed in this work organized by spectral subtype and gravity classification in either the near-infrared (left) or optical (right). For ease of labels in this work, we have chosen to label VL-G and INT-G objects classified using the Allers& Liu (2013) spectral indices as γ and β respectively. On this plot we also show the number of γ and β at each subtype as a ratio of # γ/ # β.

Page 18: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

18 Faherty et al.

−25 −20 −15 −10 −5 0U (km s−1)

−30

−25

−20

−15

−10

V (

km

s−

1)

AB Doradus

Tuc Hor

β Pictoris

Columba

Argus

TW Hya

−25 −20 −15 −10 −5 0U (km s−1)

−20

−15

−10

−5

0

5

W (

km

s−

1)

−35 −30 −25 −20 −15 −10V (km s−1)

−20

−15

−10

−5

0

5

W (

km

s−

1)

Figure 2. The UVW properties of 0045+1634 (black filled triangle) compared to those of the members of the nearby young groups. Solidrectangles surround the furthest extent of highly probable members from Torres et al. (2008) but their distribution does not necessarily fillthe entire rectangle.

Page 19: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

Brown Dwarf Analogs to Exoplanets 19

Figure 3. The SpeX prism spectrum of 0055+0134 over-plotted with a sample of field and very low-gravity subtype equivalents.

Page 20: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

20 Faherty et al.

Figure 4. The FIRE spectrum of 0421-6306 binned to prism resolution and over-plotted with a sample of field and very low-gravitysubtype equivalents.

Page 21: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

Brown Dwarf Analogs to Exoplanets 21

M8 L0 L2 L4 L6 L8 Spectral Type

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

J−

H

AB DoradusTucana Horologiumβ PictorisColumba and CarinaArgusTW HydraeYoung Field?

γ

β

Figure 5. The distribution of J-H color as a function of spectral type. The black filled circle at each subtype is the mean value and thegrey filled area marks the standard deviation spread. The isolated sources that compose this “normal” sample have no spectral peculiarities(e.g. subdwarfs, low-gravity, unresolved binarity), and were only included if they had a photometric uncertainty in each band < 0.2 mag.The full list was gathered from the dwarfarchives compendium and supplemented with the large ultra cool dwarf surveys from Schmidtet al. (2010), Mace et al. (2013), Kirkpatrick et al. (2011), and West et al. (2008) (for M dwarfs). Individual filled squares or five-pointstars are γ or β (respectively) classified objects. Spectral types, as well as gravity classifications, are from optical data unless only infraredwas available. We note that most sources plotted have spectral type uncertainties of 0.5. Objects are color coded by group assignments(or lack-thereof) discussed in this work. 2MASS photometry is used for JHKs bands.

Page 22: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

22 Faherty et al.

M8 L0 L2 L4 L6 L8 Spectral Type

1.0

1.5

2.0

2.5

3.0

J−

Ks

AB DoradusTucana Horologiumβ PictorisColumba and CarinaArgusTW HydraeYoung Field?

γ

β

Figure 6. The distribution of J-Ks color as a function of spectral type. Symbols are as described in Figure 5.

Page 23: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

Brown Dwarf Analogs to Exoplanets 23

M8 L0 L2 L4 L6 L8 Spectral Type

1.0

1.5

2.0

2.5

3.0

3.5

4.0

J−

W1

AB DoradusTucana Horologiumβ PictorisColumbaArgusTW HydraeYoung Field?

γ

β

Figure 7. The distribution of J-W1 color as a function of spectral type. Symbols are as described in Figure 5.

Page 24: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

24 Faherty et al.

M8 L0 L2 L4 L6 L8 Spectral Type

2

3

4

5

J−

W2

AB DoradusTucana Horologiumβ PictorisColumbaArgusTW Hydrae

Young Field?

γβ

Figure 8. The distribution of J-W2 color as a function of spectral type. Symbols are as described in Figure 5.

Page 25: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

Brown Dwarf Analogs to Exoplanets 25

M8 L0 L2 L4 L6 L8 Spectral Type

0.2

0.4

0.6

0.8

1.0

1.2

H−

Ks

AB DoradusTucana Horologiumβ PictorisColumbaArgusTW HydraeYoung Field?

γ

β

Figure 9. The distribution of H-Ks color as a function of spectral type. Symbols are as described in Figure 5.

Page 26: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

26 Faherty et al.

M8 L0 L2 L4 L6 L8 Spectral Type

0.5

1.0

1.5

2.0

2.5

H−

W1

AB DoradusTucana Horologiumβ PictorisColumbaArgusTW HydraeYoung Field?

γ

β

Figure 10. The distribution of H-W1 color as a function of spectral type. Symbols are as described in Figure 5.

Page 27: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

Brown Dwarf Analogs to Exoplanets 27

M8 L0 L2 L4 L6 L8 Spectral Type

1.0

1.5

2.0

2.5

3.0

H−

W2

AB DoradusTucana Horologiumβ PictorisColumbaArgusTW HydraeYoung Field?

γ

β

Figure 11. The distribution of H-W2 color as a function of spectral type. Symbols are as described in Figure 5.

Page 28: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

28 Faherty et al.

M8 L0 L2 L4 L6 L8 Spectral Type

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ks−

W1

AB DoradusTucana Horologiumβ PictorisColumbaArgusTW HydraeYoung Field?

γ

β

Figure 12. The distribution of Ks-W1 color as a function of spectral type. Symbols are as described in Figure 5.

Page 29: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

Brown Dwarf Analogs to Exoplanets 29

M8 L0 L2 L4 L6 L8 Spectral Type

0.5

1.0

1.5

2.0

Ks−

W2

AB DoradusTucana Horologiumβ PictorisColumbaArgusTW HydraeYoung Field?

γβ

Figure 13. The distribution of Ks-W2 color as a function of spectral type. Symbols are as described in Figure 5.

Page 30: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

30 Faherty et al.

M8 L0 L2 L4 L6 L8 Spectral Type

0.2

0.4

0.6

0.8

W1

−W

2

AB DoradusTucana Horologiumβ PictorisColumbaArgusTW HydraeYoung Field?

γβ

Figure 14. The distribution of W1-W2 color as a function of spectral type. Symbols are as described in Figure 5.

Page 31: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

Brown Dwarf Analogs to Exoplanets 31

M7 M8 M9 L0 L1 L2 L3 L4 L5 L6 L7 L8Spectral Type

−2−1

012

Res

idua

ls

M7 M8 M9 L0 L1 L2 L3 L4 L5 L6 L7 L8Spectral Type

−2−1

012

Res

idua

ls

M7 M8 M9 L0 L1 L2 L3 L4 L5 L6 L7 L8Spectral Type

16

15

14

13

12

11

10

9

MJ (2

MAS

S)

AB DoradusTucana Horologium` PictorisColumba and CarinaArgusTW HydraeYoung Field?

a `

Figure 15. The spectral type versus MJ plot. The field polynomial listed in Table 19 is represented by the grey area. All JHK photometryis from 2MASS. Over-plotted are objects in this work with measured parallaxes or estimated kinematic distances from high confidencegroup membership. Symbols distinguish very low (γ) from intermediate (β) gravity sources. Objects are color coded by group membership.For demonstration on the MJ plot only, we also overplot individual field objects (with MJer < 0.5) as black filled circles. Residuals ofindividual γ and β objects against the field polynomial are shown in the lower panel.

Page 32: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

32 Faherty et al.

M7 M8 M9 L0 L1 L2 L3 L4 L5 L6 L7 L8Spectral Type

15

14

13

12

11

10

9

8

MH

(2M

ASS)

AB DoradusTucana Horologium` PictorisColumba and CarinaArgusTW HydraeYoung Field?

a `

M7 M8 M9 L0 L1 L2 L3 L4 L5 L6 L7 L8Spectral Type

−2−1

012

Res

idua

ls

M7 M8 M9 L0 L1 L2 L3 L4 L5 L6 L7 L8Spectral Type

−2−1

012

Res

idua

ls

Figure 16. The spectral type versus MH plot with residuals against polynomial relations (lower panel). Symbols are as described inFigure 15.

Page 33: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

Brown Dwarf Analogs to Exoplanets 33

M7 M8 M9 L0 L1 L2 L3 L4 L5 L6 L7 L8Spectral Type

14

13

12

11

10

9

8

MKs

(2M

ASS)

AB DoradusTucana Horologium` PictorisColumba and CarinaArgusTW HydraeYoung Field?

a `

M7 M8 M9 L0 L1 L2 L3 L4 L5 L6 L7 L8Spectral Type

−2−1

012

Res

idua

ls

M7 M8 M9 L0 L1 L2 L3 L4 L5 L6 L7 L8Spectral Type

−2−1

012

Res

idua

ls

Figure 17. The spectral type versus MKs plot with residuals against polynomial relations (lower panel). Symbols are as described inFigure 15.

Page 34: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

34 Faherty et al.

M7 M8 M9 L0 L1 L2 L3 L4 L5 L6 L7 L8Spectral Type

12

11

10

9

8

MW

1 (W

ISE)

AB DoradusTucana Horologium` PictorisColumba and CarinaArgusTW HydraeYoung Field?

a `

M7 M8 M9 L0 L1 L2 L3 L4 L5 L6 L7 L8Spectral Type

−2−1

012

Res

idua

ls

M7 M8 M9 L0 L1 L2 L3 L4 L5 L6 L7 L8Spectral Type

−2−1

012

Res

idua

ls

Figure 18. The spectral type versus MW1 plot with residuals against polynomial relations (lower panel). Symbols are as described inFigure 15.

Page 35: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

Brown Dwarf Analogs to Exoplanets 35

Page 36: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

36 Faherty et al.

M7 M8 M9 L0 L1 L2 L3 L4 L5 L6 L7 L8Spectral Type

12

11

10

9

8

7

MW

2 (W

ISE)

AB DoradusTucana Horologium` PictorisColumba and CarinaArgusTW HydraeYoung Field?

a `

M7 M8 M9 L0 L1 L2 L3 L4 L5 L6 L7 L8Spectral Type

−2−1

0123

Res

idua

ls

M7 M8 M9 L0 L1 L2 L3 L4 L5 L6 L7 L8Spectral Type

−2−1

0123

Res

idua

ls

Figure 19. The spectral type versus MW2 plot with residuals against polynomial relations (lower panel). Symbols are as described inFigure 15.

Page 37: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

Brown Dwarf Analogs to Exoplanets 37

M7 M8 M9 L0 L1 L2 L3 L4 L5 L6 L7 L8Spectral Type

10

9

8

7

6

5

MW

3 (W

ISE)

AB DoradusTucana Horologium` PictorisColumba and CarinaArgusTW HydraeYoung Field?

a `

M7 M8 M9 L0 L1 L2 L3 L4 L5 L6 L7 L8Spectral Type

−2−1

01234

Res

idua

ls

M7 M8 M9 L0 L1 L2 L3 L4 L5 L6 L7 L8Spectral Type

−2−1

01234

Res

idua

ls

Figure 20. The spectral type versus MW3 plot with residuals against polynomial relations (lower panel). Symbols are as described inFigure 15.

PSO318

0047

0355

2244

0326

SDSS1110

VHS 1256 b

< M9L0 - L4L5 - L9T0 - T4

>T5 !"

1147

1119

−0.5 0.0 0.5 1.0 1.5 2.0(J − H) (2MASS)

18

16

14

12

10

MJ (

2MAS

S)

−0.5 0.0 0.5 1.0 1.5 2.0(J − H) (2MASS)

18

16

14

12

10

MJ (

2MAS

S)

PSO318

0047

0355

2244

0326

SDSS1110

VHS 1256 b

< M9L0 - L4L5 - L9T0 - T4

>T5 !"

1147

1119

−0.5 0.0 0.5 1.0 1.5 2.0(J − H) (2MASS)

20

18

16

14

12

10

8

MH (2

MAS

S)

−0.5 0.0 0.5 1.0 1.5 2.0(J − H) (2MASS)

20

18

16

14

12

10

8

MH (2

MAS

S)

Figure 21. The (J-H) versus MJ (left) and MH (right) color magnitude diagram for late-type M through T dwarfs (Y dwarfs wherephotometry is available). All JHK photometry is on the MKO system. Objects have been color coded by spectral subtype. Binaries,subdwarfs, spectrally peculiar sources and those with absolute magnitude uncertainties > 0.5 have been omitted. Low-gravity objects arehighlighted as bold filled circles throughout. Objects of interest discussed in detail within the text have been labeled.

Page 38: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

38 Faherty et al.

1119

0047

0355

2244

0326

SDSS1110

VHS 1256 b

< M9L0 - L4L5 - L9T0 - T4

>T5 !"

1147

PSO318

−1 0 1 2 3(J − K) (2MASS)

18

16

14

12

10

MJ (

2MAS

S)

−1 0 1 2 3(J − K) (2MASS)

18

16

14

12

10

MJ (

2MAS

S)

−1 0 1 2 3(J − K) (2MASS)

18

16

14

12

10

8

MK

(2M

ASS)

−1 0 1 2 3(J − K) (2MASS)

18

16

14

12

10

8

MK

(2M

ASS)

1119

0355

2244

0326

SDSS1110

VHS 1256 b

1147

PSO318

< M9L0 - L4L5 - L9T0 - T4

>T5 !"

Figure 22. The (J-K) versus MJ (left) and MK (right) color magnitude diagram. Symbols are as described in Figure 21.

SDSS1110

PSO318

0047

0355

2244

0326

0103

< M9L0 - L4L5 - L9T0 - T4

>T5 !"

1119

1147

0 1 2 3 4(J − W1)

18

16

14

12

10

MJ (

2MAS

S)

0 1 2 3 4(J − W1)

18

16

14

12

10

MJ (

2MAS

S)

0 1 2 3 4(J − W1)

18

16

14

12

10

8

MW

1

0 1 2 3 4(J − W1)

18

16

14

12

10

8

MW

1

SDSS1110 PSO318

0047

0355

2244

0326

0103

< M9L0 - L4L5 - L9T0 - T4

>T5 !"

1119

1147

Figure 23. The (J-W1) versus MJ (left) and MW1 (right) color magnitude diagram. Symbols are as described in Figure 21.

Page 39: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

Brown Dwarf Analogs to Exoplanets 39

SDSS1110 PSO318

22440355

0047

0326

0103

TWA 28TWA 27ATWA 26

TWA 292M2000

< M9L0 - L4L5 - L9T0 - T4

>T5 !"

1147

1119

1 2 3 4 5(J − W2)

18

16

14

12

10

MJ (

2MAS

S)

1 2 3 4 5(J − W2)

18

16

14

12

10

MJ (

2MAS

S)

Figure 24. The (J-W2) versus MJ color magnitude diagram. Symbols are as described in Figure 21.

Page 40: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

40 Faherty et al.

1 2 3 4 5(J − W2)

14

12

10

8

MW

2 (W

ISE)

1 2 3 4 5(J − W2)

14

12

10

8

MW

2 (W

ISE)

SDSS1110

PSO3180047

0355

2244

0326

0103

TWA 28TWA 27ATWA 26

TWA 292M2000

< M9L0 - L4L5 - L9T0 - T4

>T5 !"

1147 1119

Figure 25. The (J-W2) versus MW2 (right) color magnitude diagram. Symbols are as described in Figure 21.

PSO318

11190355

2244

0326

SDSS1110 VHS 1256 b

< M9L0 - L4L5 - L9T0 - T4

>T5 !"

−0.5 0.0 0.5 1.0 1.5(H − K) (2MASS)

20

18

16

14

12

10

8

MH (2

MAS

S)

−0.5 0.0 0.5 1.0 1.5(H − K) (2MASS)

20

18

16

14

12

10

8

MH (2

MAS

S)

11470047

−0.5 0.0 0.5 1.0 1.5(H − K) (2MASS)

18

16

14

12

10

8

MK

(2M

ASS)

−0.5 0.0 0.5 1.0 1.5(H − K) (2MASS)

18

16

14

12

10

8

MK

(2M

ASS)

PSO318

11190355

2244

0326

SDSS1110VHS 1256 b

< M9L0 - L4L5 - L9T0 - T4

>T5 !"

11470047

Figure 26. The (H-K) versus MH (left) and MK (right) color magnitude diagram. Symbols are as described in Figure 21.

Page 41: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

Brown Dwarf Analogs to Exoplanets 41

0.0 0.5 1.0 1.5 2.0 2.5(H − W1)

20

18

16

14

12

10

8M

H (2

MAS

S)

0.0 0.5 1.0 1.5 2.0 2.5(H − W1)

20

18

16

14

12

10

8M

H (2

MAS

S)

SDSS1110 PSO3180047

0355

2244

0326

0103

< M9L0 - L4L5 - L9T0 - T4

>T5 !"

1147 1119

0.0 0.5 1.0 1.5 2.0 2.5(H − W1)

18

16

14

12

10

8

MW

1

0.0 0.5 1.0 1.5 2.0 2.5(H − W1)

18

16

14

12

10

8

MW

1

SDSS1110

PSO318

11190355

2244

0326

0103

< M9L0 - L4L5 - L9T0 - T4

>T5 !" 1147

0047

Figure 27. The (H-W1) versus MH (left) and MW1 (right) color magnitude diagram. Symbols are as described in Figure 21.

1 2 3 4 5(H − W2)

20

18

16

14

12

10

8

MH (2

MAS

S)

1 2 3 4 5(H − W2)

20

18

16

14

12

10

8

MH (2

MAS

S)

SDSS1110

PSO3181119

0355

2244

0326

TWA 28TWA 27ATWA 26TWA 292M2000

< M9L0 - L4L5 - L9T0 - T4

>T5 !"

1147

0047

1 2 3 4 5(H − W2)

14

12

10

8M

W2 (

WIS

E)

1 2 3 4 5(H − W2)

14

12

10

8M

W2 (

WIS

E)

SDSS1110

PSO318

11190355

2244

0326

TWA 28TWA 27ATWA 26

TWA 292M2000

< M9L0 - L4L5 - L9T0 - T4

>T5 !"

11470047

Figure 28. The (H-W2) versus MH (left) and MW2 (right) color magnitude diagram. Symbols are as described in Figure 21.

0.0 0.5 1.0 1.5 2.0(K − W1)

18

16

14

12

10

8

MK

(2M

ASS)

0.0 0.5 1.0 1.5 2.0(K − W1)

18

16

14

12

10

8

MK

(2M

ASS)

SDSS1110

PSO31811470355

2244

0326

0103

< M9L0 - L4L5 - L9T0 - T4

>T5 !"

0.0 0.5 1.0 1.5 2.0(K − W1)

18

16

14

12

10

8

MW

1 (W

ISE)

0.0 0.5 1.0 1.5 2.0(K − W1)

18

16

14

12

10

8

MW

1 (W

ISE)

SDSS1110

PSO3181147

0355

22440103

< M9L0 - L4L5 - L9T0 - T4

>T5 !"

0047

Figure 29. The (K-W1) versus MK (left) and MW1 (right) color magnitude diagram. Symbols are as described in Figure 21.

Page 42: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

42 Faherty et al.

Page 43: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

Brown Dwarf Analogs to Exoplanets 43

1 2 3 4 5(K − W2)

18

16

14

12

10

8

MK

(2M

ASS)

1 2 3 4 5(K − W2)

18

16

14

12

10

8

MK

(2M

ASS)

SDSS1110

PSO318

0355

2244

0326

TWA 28TWA 27ATWA 26TWA 292M2000

< M9L0 - L4L5 - L9T0 - T4

>T5 !"

1 2 3 4 5(K − W2)

14

12

10

8

MW

2 (W

ISE)

1 2 3 4 5(K − W2)

14

12

10

8

MW

2 (W

ISE)

SDSS1110

PSO318

0047

0355

2244

0326

0103

TWA 28TWA 27A

TWA 26

TWA 292M2000

< M9L0 - L4L5 - L9T0 - T4

>T5 !"

Figure 30. The (K-W2) versus MK (left) and MW2 (right) color magnitude diagram. Symbols are as described in Figure 21.

0.5 1.0 1.5 2.0(W1 − W2)

18

16

14

12

10

8

MW

1 (W

ISE)

0.5 1.0 1.5 2.0(W1 − W2)

18

16

14

12

10

8

MW

1 (W

ISE)

SDSS1110

PSO318

0047

0355

2244

0326

0103

TWA 28TWA 27A

TWA 2922000

< M9L0 - L4L5 - L9T0 - T4

>T5 !"

0.5 1.0 1.5 2.0(W1 − W2)

14

12

10

8

MW

2 (W

ISE)

0.5 1.0 1.5 2.0(W1 − W2)

14

12

10

8

MW

2 (W

ISE)

< M9L0 - L4L5 - L9T0 - T4

>T5 !"

SDSS1110

PSO318

0047

0355

2244

0326

0103

TWA 28TWA 27A

TWA 292M2000

TWA 26

Figure 31. The (W1-W2) versus MW1 (left) and MW2 (right) color magnitude diagram. Symbols are as described in Figure 21.

Page 44: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

44 Faherty et al.

M6 M8 L0 L2 L4 L6 L8 SpT

−5.0

−4.5

−4.0

−3.5

−3.0

−2.5

log

(Lbo

l/LSu

n)

M6 M8 L0 L2 L4 L6 L8 SpT

−5.0

−4.5

−4.0

−3.5

−3.0

−2.5

log

(Lbo

l/LSu

n)

AB DoradusTuc Hor` PictorisColumbaArgusTW HyaYoung Field? a `

TWA29

TWA26TWA28

PSO318

0045

2M2244

0047

0355

0326

VHS1256 B

2206

14250153

2235

FieldLow-G

1207

0714

1119, 1147

Figure 32. The spectral type versus bolometric luminosity plot. The field polynomial and residuals from Filippazzo et al. (2015) isrepresented by the grey area. Over-plotted are objects in this work with measured parallaxes or estimated kinematic distances from highconfidence group membership. Lbol values were calculated as described in Filippazzo et al. (2015). Symbols distinguish very low (γ) fromintermediate (β) gravity sources. Objects are color coded by group membership.

Page 45: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

Brown Dwarf Analogs to Exoplanets 45

M6 M8 L0 L2 L4 L6 L8 SpT

1000

1500

2000

2500

3000

T eff (

K)

M6 M8 L0 L2 L4 L6 L8 SpT

1000

1500

2000

2500

3000

T eff (

K)

AB DoradusTuc Hor` PictorisColumbaArgusTW HyaYoung Field? a `

TWA29TWA26

TWA28

PSO318

0045

2244

0047

0326

0355

VHS1256 B

220614250153

2235

FieldLow-G

1119, 1147

Figure 33. The spectral type versus Teff plot. Symbols are as described in Figure 32.

Page 46: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

46 Faherty et al.

6.5 7.0 7.5 8.0 8.5log Age[yr]

−5.5

−5.0

−4.5

−4.0

−3.5

−3.0

−2.5

L bol

(Lsu

n)

51 Eri B

2M0219 b

β Pic b

AB Pic B

LP261-75 B

HD203030 B

HN Peg BGU Psc bHR8799 b

HR8799 d2M1207 b

1RXS 1609 b𝜅 And B

SDSS1110 VHS 1256 B

PSO 318

VHS 1256 A

CD 35-2722 b

TWA 27"TWA 28

1207-39

TWA 29

0032

004710 MJup

2 MJup

1147, 1119

0123

03552M0122 B

Figure 34. The age versus bolometric luminosity plot with model isochrone tracks at constant mass from Saumon & Marley (2008) (solidlines) and Baraffe et al. (2015) (dashed lines). We have color coded <13 MJup tracks in red, 13 MJup < M < 75 MJup tracks in greenand > 75 MJup blue. Over-plotted are both the young brown dwarfs discussed in this work and directly imaged exoplanets with measuredquantities.

Page 47: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

Brown Dwarf Analogs to Exoplanets 47

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0(J − H) (MKO)

18

16

14

12

10

8

MJ (

MKO

)

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0(J − H) (MKO)

18

16

14

12

10

8

MJ (

MKO

)

GJ 504 b

VHS 1256 B 2M1207 b

PSO318

2M0355

SDSS1110GU Psc b

HN Peg b

HR8799 cdb

2M0122 B

ROXs12 b

HD1160 B

USco1610-1913 b2M0219A

β Pic b

2M0219 B

DH Tau b

51 Eri b

GQ Lup b

AB Pic B

!AB Doradus"β Pictoris"Tucana Horologium"Columba"TW Hydrae"< 8 Myr"!!PMC"

!"

Ross 458 C

Figure 35. The (J-H) versus MJ color magnitude diagram for brown dwarfs and directly imaged planetary mass companions. Allphotometry is on the MKO system. For the brown dwarfs lacking MKO L’ photometry, WISE W1 mags were converted using a polynomiallisted in Table 19. Objects have been color coded by nearby moving group membership and those of interest discussed in detail within thetext have been labeled.

Page 48: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

48 Faherty et al.

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0(J − H) (MKO)

20

18

16

14

12

10

8

MH (M

KO)

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0(J − H) (MKO)

20

18

16

14

12

10

8

MH (M

KO)

GJ 504 b

VHS 1256 B2M1207 b

PSO318

2M0355

SDSS1110

GU Psc b

HN Peg b

HR8799 cdb

2M0122 B

ROXs12 bHD1160 B

USco1610-1913 b

2M0219A

β Pic b

2M0219 B

DH Tau b

51 Eri b

GQ Lup b

AB Pic B

!AB Doradus"β Pictoris"Tucana Horologium"Columba"TW Hydrae"< 8 Myr"!!PMC"

!"

Ross 458 C

Figure 36. The (J-H) versus MH (right) color magnitude diagram for brown dwarfs and directly imaged planetary mass companions.Symbols are as described in Figure 35.

−1 0 1 2 3(J − K) (MKO)

18

16

14

12

10

8

MJ (

MKO

)

−1 0 1 2 3(J − K) (MKO)

18

16

14

12

10

8

MJ (

MKO

)

GJ 504 bVHS 1256 B

2M1207 b

PSO318

2M0355

SDSS1110GU Psc b

HN Peg b

HR8799 cdb

2M0122 B

ROXs12 b

HD1160 B

USco1610-1913 b2M0219A

β Pic b

DH Tau b

GQ Lup b

AB Pic B

2M0103 B

!AB Doradus"β Pictoris"Tucana Horologium"Columba"TW Hydrae"< 8 Myr"!!PMC"

!"

Ross 458 C

−1 0 1 2 3(J − K) (MKO)

18

16

14

12

10

8

MK

(MKO

)

−1 0 1 2 3(J − K) (MKO)

18

16

14

12

10

8

MK

(MKO

)

Ross 458 C

GJ 504 b

VHS 1256 B

2M1207 b

PSO318

2M0355

SDSS1110

GU Psc b

HN Peg b

HR8799 cdb

2M0122 B

ROXs12 bHD1160 B

USco1610-1913 bDH Tau bGQ Lup b

AB Pic B

2M0103 B

!AB Doradus"β Pictoris"Tucana Horologium"Columba"TW Hydrae"< 8 Myr"!!PMC"

!"

Figure 37. The (J-K) versus MJ (left) and MK (right) color magnitude diagram for brown dwarfs and directly imaged planetary masscompanions. Symbols are as described in Figure 35.

Page 49: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

Brown Dwarf Analogs to Exoplanets 49

1 2 3 4(J − L) (MKO)

18

16

14

12

10

8M

J (M

KO)

1 2 3 4(J − L) (MKO)

18

16

14

12

10

8M

J (M

KO)

GJ 504 b

PSO318

2M0355

SDSS1110

ROXs12 b

USco1610-1913 b

DH Tau b

51 Eri b

GQ Lup b

RXS1609 b

W0047

2M2244HR8799 cdb

GSC6214-210 bFU Tau b

ROXs42B b

!AB Doradus"β Pictoris"Tucana Horologium"Columba"TW Hydrae"< 8 Myr"!!PMC"

!"

2M0122 B

1 2 3 4(J − L) (MKO)

16

14

12

10

8

6

ML (

MKO

)

1 2 3 4(J − L) (MKO)

16

14

12

10

8

6

ML (

MKO

)

GJ 504 b

PSO318

2M0355

SDSS1110

ROXs12 b

USco1610-1913 b

DH Tau b

51 Eri b

GQ Lup b

W0047

2M2244

HR8799 cdb

GSC6214-210 bFU Tau b

ROXs42B b

RXS1609 b

2M0122 B

!AB Doradus"β Pictoris"Tucana Horologium"Columba"TW Hydrae"< 8 Myr"!!PMC"

!"

Figure 38. The (J-L) versus MJ (left) and ML (right) color magnitude diagram for brown dwarfs and directly imaged planetary masscompanions. Symbols are as described in Figure 35.

−1.0 −0.5 0.0 0.5 1.0 1.5(H − K) (MKO)

20

18

16

14

12

10

8

MH (M

KO)

−1.0 −0.5 0.0 0.5 1.0 1.5(H − K) (MKO)

20

18

16

14

12

10

8

MH (M

KO)

GJ 504 b

VHS 1256 B

2M1207 b

PSO318

2M0355

SDSS1110GU Psc b

HN Peg b

HR8799 ecdb

2M0122 B

ROXs12 bFU Tau b

USco1610-1913 b2M0219A

β Pic b2M0219 B

DH Tau b

!AB Doradus"β Pictoris"Tucana Horologium"Columba"TW Hydrae"< 8 Myr"!!PMC"

!"

Ross 458 C

−0.5 0.0 0.5 1.0 1.5(H − K) (MKO)

18

16

14

12

10

8M

K (M

KO)

−0.5 0.0 0.5 1.0 1.5(H − K) (MKO)

18

16

14

12

10

8M

K (M

KO)

GJ 504 b

VHS 1256 B

2M1207 b

PSO3182M0355

SDSS1110

GU Psc b

HN Peg b

2M0122 B

ROXs12 bFU Tau b

USco1610-1913 b2M0219A

β Pic b2M0219 B

DH Tau b

!AB Doradus"β Pictoris"Tucana Horologium"Columba"TW Hydrae"< 8 Myr"!!PMC"

!"

HR8799 ecdb

Ross 458 C

Figure 39. The (H-K) versus MH (left) and MK (right) color magnitude diagram for brown dwarfs and directly imaged planetary masscompanions. Symbols are as described in Figure 35.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0(H − L) (MKO)

20

18

16

14

12

10

8

MH (M

KO)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0(H − L) (MKO)

20

18

16

14

12

10

8

MH (M

KO)

GJ 504 b

PSO318

2M0355

SDSS1110HR8799 ecdb

ROXs12 b

USco1610-1913 b

DH Tau b

51 Eri b

GQ Lup b

RXS1609 b

W0047

2M2244

2M0122 B

!AB Doradus"β Pictoris"Tucana Horologium"Columba"TW Hydrae"< 8 Myr"!!PMC"

!"

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0(H − L) (MKO)

16

14

12

10

8

6

ML (

MKO

)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0(H − L) (MKO)

16

14

12

10

8

6

ML (

MKO

)

GJ 504 b

PSO318

2M0355

SDSS1110

HR8799 ecd

ROXs12 b

USco1610-1913 b

DH Tau b

51 Eri b

GQ Lup b

W0047

2M2244

2M0122 BRXS1609 b

!AB Doradus"β Pictoris"Tucana Horologium"Columba"TW Hydrae"< 8 Myr"!!PMC"

!"

HR8799 b

Figure 40. The (H-L) versus MH (left) and ML (right) color magnitude diagram for brown dwarfs and directly imaged planetary masscompanions. Symbols are as described in Figure 35.

Page 50: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

50 Faherty et al.

0 1 2 3(K − L) (MKO)

18

16

14

12

10

8

MK

(MKO

)

0 1 2 3(K − L) (MKO)

18

16

14

12

10

8

MK

(MKO

)

GJ 504 b

PSO318

SDSS1110

ROXs12 b

USco1610-1913 bDH Tau b

GQ Lup b

RXS1609 b

W0047

2M2244

GSC6214-210 b

2M0355

!AB Doradus"β Pictoris"Tucana Horologium"Columba"TW Hydrae"< 8 Myr"!!PMC"

!"

HR8799 ecdb

0.5 1.0 1.5 2.0 2.5 3.0 3.5(K − L) (MKO)

16

14

12

10

8

6

ML (

MKO

)

0.5 1.0 1.5 2.0 2.5 3.0 3.5(K − L) (MKO)

16

14

12

10

8

6

ML (

MKO

)

GJ 504 b

PSO318

SDSS1110

ROXs12 b

USco1610-1913 bGQ Lup b

2M2244

GSC6214-210 b

RXS1609 b2M0355

W0047

!AB Doradus"β Pictoris"Tucana Horologium"Columba"TW Hydrae"< 8 Myr"!!PMC"

!"

HR8799 ecdb

Figure 41. The (K-L) versus MK (left) and ML (right) color magnitude diagram for brown dwarfs and directly imaged planetary masscompanions. Symbols are as described in Figure 35.

HR8799 b VHS1256 B

Field L7

1.4 1.6 1.8 2.0 2.2 2.4 2.6Wavelength (µm)

0.2

0.4

0.6

0.8

1.0

Nor

mal

ized

Fh

1.4 1.6 1.8 2.0 2.2 2.4 2.6Wavelength (µm)

0.2

0.4

0.6

0.8

1.0

Nor

mal

ized

Fh

Figure 42. The near-infrared spectrum comparison of HR8799 b (black, from Oppenheimer et al. 2013, Barman et al. 2011a), VHS 1256B (red, from Gauza et al. 2015), and a field L7 (Gagne et al. (2015b)).

Page 51: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

Brown Dwarf Analogs to Exoplanets 51

M6 M8 L0 L2 L4 L6 L8 T0 T2 T4 T6 T8 SpT

−6

−5

−4

−3

log

(Lbo

l/LSu

n)

M6 M8 L0 L2 L4 L6 L8 T0 T2 T4 T6 T8 SpT

−6

−5

−4

−3

log

(Lbo

l/LSu

n)

AB DoradusTuc Hor` PictorisColumbaArgusTW Hya< 10 Myr?Young Field? a `

FieldLow-G

SDSS1110

1RXS1609 b

Roxs 42 Bb

CD 35-2722 B

β Pic b

2M0219 bAB Pic b

2M0122 B

LP261-75 B

51 Eri b

Ross 458 C

HN Peg b2M1207 b

HD203030 B Gu Psc b

HR8799 db

Figure 43. The spectral type versus bolometric luminosity plot for brown dwarfs and directly imaged planets. Lbol values and spectraltypes for planets have been taken from the literature with the exception of HR8799bd and 2M1207b which we delegate as L8 objects torepresent their nature as late-type objects. Symbols are as in Figure 32.

Page 52: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

52 Faherty et al.Table

1P

hoto

metr

icP

rop

ert

ies

of

Low

Surf

ace

Gra

vit

yD

warf

s

2M

ASS

Desi

gnati

on

SpT

SpT

JH

KW

1W

2W

3W

4O

pT

IR2M

ASS

2M

ASS

2M

ASS

WIS

EW

ISE

WIS

EW

ISE

Refe

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

00011217+

1535355

––

L4β

15.5

22±

0.0

61

14.5

05±

0.0

52

13.7

0.0

43

12.9

38±

0.0

23

12.5

17±

0.0

26

11.4

98±

0.1

77

8.9

53±

–5

00040288-6

410358

L1γ

L1γa

15.7

86±

0.0

71

14.8

31±

0.0

73

14.0

10±

0.0

45

13.3

70±

0.0

25

12.9

37±

0.0

27

12.1

78±

0.2

44

9.1

61±

–15

,27

00182834-6

703130

––

L0γ

15.4

57±

0.0

57

14.4

0.0

61

13.7

11±

0.0

39

13.1

71±

0.0

25

12.7

68±

0.0

26

12.7

63±

0.4

45

9.0

46±

–5

00191296-6

226005

––

L1γ

15.6

0.0

614.6

18±

0.0

54

13.9

57±

0.0

51

13.3

51±

0.0

25

12.8

83±

0.0

26

12.3

78±

0.2

62

9.1

14±

–5

00192626+

4614078

M8

–M

12.6

03±

0.0

17

11.9

40±

0.0

21

11.5

02±

0.0

11

11.2

60±

0.0

23

11.0

01±

0.0

20

10.8

57±

0.0

70

9.4

01±

–7,

500274197+

0503417

M9.5β

L0βa

16.1

89±

0.0

92

15.2

88±

0.0

99

14.9

60±

0.1

15

14.6

19±

0.0

36

14.1

35±

0.0

54

12.2

39±

–8.8

90±

–6,

27,

36

00303013-1

450333

L7

–L

4-L

16.2

78±

0.1

11

15.2

73±

0.1

14.4

81±

0.1

13.6

57±

0.0

28

13.2

63±

0.0

34

12.2

75±

–9.1

49±

–18,

500325584-4

405058

L0γ

L0β

14.7

76±

0.0

32

13.8

57±

0.0

32

13.2

70±

0.0

35

12.8

20±

0.0

25

12.4

90±

0.0

25

11.7

26±

0.1

87

9.2

89±

–2,

6,

27

003323.8

6-1

52130

L4β

L1

15.2

86±

0.0

56

14.2

08±

0.0

51

13.4

10±

0.0

39

12.8

01±

0.0

25

12.4

79±

0.0

27

11.8

88±

0.2

47

8.8

79±

–2,

6,

27

00344300-4

102266

––

L1β

15.7

07±

0.0

66

14.8

07±

0.0

64

14.0

84±

0.0

56

13.4

98±

0.0

26

13.0

98±

0.0

312.5

96±

0.3

94

9.2

85±

–5

00374306-5

846229

L0γ

––

15.3

74±

0.0

50

14.2

59±

0.0

51

13.5

90±

0.0

44

13.1

25±

0.0

26

12.7

38±

0.0

27

12.5

57±

0.3

80

9.3

24±

–2

00381489-6

403529

––

M9.5β

14.5

23±

0.0

313.8

67±

0.0

45

13.3

95±

0.0

33

12.9

04±

0.0

24

12.5

39±

0.0

24

11.7

46±

0.1

75

9.3

74±

–5

00425923+

1142104

––

M9β

14.7

54±

0.0

36

14.0

74±

0.0

42

13.5

14±

0.0

27

13.2

37±

0.0

26

12.9

18±

0.0

312.1

75±

–9.1

51±

–5

00452143+

1634446

L2β

L2γa

13.0

59±

0.0

18

12.0

59±

0.0

34

11.3

70±

0.0

19

10.7

68±

0.0

23

10.3

93±

0.0

19

9.7

35±

0.0

40

8.4

24±

0.2

61

2,

6,

27

00464841+

0715177

M9β

L0δ

13.8

85±

0.0

26

13.1

78±

0.0

34

12.5

50±

0.0

25

12.0

70±

0.0

26

11.6

38±

0.0

22

11.1

39±

0.1

81

9.0

24±

–1,

5,

27

00470038+

6803543

L7

(γ?)

L6-L

15.6

04±

0.0

68

13.9

68±

0.0

41

13.0

53±

0.0

29

11.8

76±

0.0

23

11.2

68±

0.0

20

10.3

27±

0.0

72

9.0

95±

0.4

53

34,

35

00550564+

0134365

L2γ

L2γa

16.4

36±

0.1

14

15.2

70±

0.0

74

14.4

40±

0.0

68

13.6

82±

0.0

27

13.2

04±

0.0

33

11.9

88±

–8.4

77±

–27,

36

00584253-0

651239

L0

–L

14.3

11±

0.0

23

13.4

44±

0.0

28

12.9

04±

0.0

32

12.5

62±

0.0

25

12.2

48±

0.0

27

11.6

92±

0.4

11

8.7

39±

–18,

501033203+

1935361

L6β

L6β

16.2

88±

0.0

79

14.8

97±

0.0

55

14.1

49±

0.0

58

13.1

78±

0.0

24

12.6

96±

0.0

27

12.2

34±

0.3

25

8.2

90±

–8,

501174748-3

403258

L1β

L1βa

15.1

78±

0.0

34

14.2

09±

0.0

38

13.4

90±

0.0

36

13.0

28±

0.0

25

12.6

23±

0.0

26

11.8

02±

0.1

86

9.2

15±

–7,

6,

27

01205114-5

200349

––

L1γ

15.6

42±

0.0

71

14.6

0.0

72

13.7

52±

0.0

53

13.2

0.0

26

12.7

78±

0.0

26

11.8

47±

0.1

68

8.9

49±

–5

01231125-6

921379

M7.5γ

––

12.3

20±

0.0

19

11.7

11±

0.0

24

11.3

23±

0.0

24

11.0

60±

0.0

23

10.8

18±

0.0

21

10.5

95±

0.0

62

9.4

26±

–4

01244599-5

745379

L0γ

L0γa

16.3

08±

0.1

04

15.0

59±

0.0

88

14.3

20±

0.0

88

13.7

73±

0.0

26

13.3

42±

0.0

32

12.4

49±

0.3

13

8.9

08±

–2,

27

01262109+

1428057

L4γ

L2γ

17.1

08±

0.2

14

16.1

72±

0.2

18

15.2

80±

0.1

45

14.2

37±

0.0

29

13.7

02±

0.0

37

12.3

79±

–9.1

27±

–21,

601294256-0

823580

M5

–M

10.6

55±

0.0

21

10.0

85±

0.0

23

9.7

71±

0.0

23

9.5

45±

0.0

22

9.3

27±

0.0

29.2

06±

0.0

32

8.8

91±

0.4

58

17,

501415823-4

633574

L0γ

L0γ

14.8

32±

0.0

41

13.8

75±

0.0

24

13.1

00±

0.0

30

12.5

51±

0.0

24

12.1

70±

0.0

22

11.9

21±

0.2

12

9.2

43±

–2,

6,

28

01531463-6

744181

L2

–L

16.4

12±

0.1

34

15.1

09±

0.0

86

14.4

24±

0.1

03

13.7

13±

0.0

26

13.2

16±

0.0

28

12.5

14±

0.2

89.3

35±

–1,

502103857-3

015313

L0γ

L0γa

15.0

66±

0.0

47

14.1

61±

0.0

44

13.5

00±

0.0

42

13.0

03±

0.0

26

12.6

52±

0.0

26

11.9

34±

0.1

95

9.3

55±

–5,

27

02212859-6

831400

M8β

––

13.9

65±

0.0

33

13.2

75±

0.0

32

12.8

06±

0.0

37

12.4

71±

0.0

24

12.1

92±

0.0

23

11.6

04±

0.1

07

9.6

14±

–27

02215494-5

412054

M9β

––

13.9

02±

0.0

31

13.2

21±

0.0

31

12.6

70±

0.0

30

12.3

25±

0.0

24

11.9

63±

0.0

22

11.4

40±

0.1

22

9.4

81±

–1,

13,

27

02235464-5

815067

L0γ

––

15.0

70±

0.0

48

14.0

03±

0.0

36

13.4

20±

0.0

42

12.8

19±

0.0

24

12.4

31±

0.0

24

11.6

44±

0.1

54

9.4

66±

–2

02251947-5

837295

M9β

M9γa

13.7

38±

0.0

25

13.0

58±

0.0

25

12.5

60±

0.0

26

12.2

34±

0.0

24

11.9

26±

0.0

23

11.9

94±

0.1

90

9.2

18±

–27,

36

02265658-5

327032

––

L0δ

15.4

03±

0.0

44

14.3

46±

0.0

513.7

52±

0.0

45

13.2

19±

0.0

25

12.7

83±

0.0

26

11.5

0.1

48.6

0.2

56

502292794-0

053282

––

L0γ

16.4

90±

0.0

99

15.7

46±

0.0

99

15.1

82±

0.1

38

14.7

20±

0.0

32

14.3

28±

0.0

45

12.6

79±

–8.7

24±

–6

02340093-6

442068

L0γ

L0βγa

15.3

25±

0.0

62

14.4

42±

0.0

55

13.8

50±

0.0

69

13.2

47±

0.0

25

12.9

05±

0.0

26

12.6

19±

0.2

79

9.4

94±

–15,

27

02410564-5

511466

––

L1γ

15.3

87±

0.0

57

14.3

26±

0.0

52

13.7

39±

0.0

38

13.1

85±

0.0

23

12.8

09±

0.0

26

12.2

49±

0.2

42

9.3

49±

–5

02411151-0

326587

L0γ

L1γ

15.7

99±

0.0

64

14.8

11±

0.0

53

14.0

40±

0.0

49

13.6

38±

0.0

25

13.2

56±

0.0

29

12.7

66±

0.4

15

9.0

00±

–14,

6

02501167-0

151295f

––

M7β

12.8

86±

0.0

26

12.2

78±

0.0

21

11.9

09±

0.0

17

11.6

91±

0.0

23

11.4

51±

0.0

22

11.0

35±

0.1

58

8.8

27±

–5

02530084+

1652532d

M6.5

–M

7βd

8.3

94±

0.0

21

7.8

83±

0.0

37

7.5

85±

0.0

43

7.3

22±

0.0

27

7.0

57±

0.0

26.8

97±

0.0

17

6.7

18±

0.0

76

20,

25,

502535980+

3206373

M7β

M6β

13.6

16±

0.0

21

12.9

31±

0.0

20

12.5

50±

0.0

23

12.3

24±

0.0

25

12.1

27±

0.0

24

11.8

08±

0.2

50

8.5

09±

–27,

36

02583123-1

520536

––

L3β

15.9

08±

0.0

72

14.8

66±

0.0

614.1

92±

0.0

55

13.6

23±

0.0

25

13.1

94±

0.0

28

12.5

78±

0.3

05

9.5

42±

–5

03032042-7

312300

L2γ

––

16.1

37±

0.1

07

15.0

96±

0.0

85

14.3

20±

0.0

84

13.7

77±

0.0

25

13.3

50±

0.0

26

12.2

88±

0.1

67

9.3

44±

0.3

41

15

03164512-2

848521

L0

–L

14.5

78±

0.0

39

13.7

72±

0.0

35

13.1

14±

0.0

35

12.6

49±

0.0

23

12.3

12±

0.0

23

11.7

43±

0.1

25

9.3

64±

–7,

503231002-4

631237

L0γ

L0γa

15.3

89±

0.0

69

14.3

21±

0.0

61

13.7

00±

0.0

50

13.0

75±

0.0

24

12.6

65±

0.0

24

11.9

39±

0.1

60

9.1

80±

–2,

27

03264225-2

102057

L5β

L5βγa

16.1

34±

0.0

93

14.7

93±

0.0

75

13.9

20±

0.0

65

12.9

50±

0.0

24

12.4

35±

0.0

23

12.1

73±

0.2

03

9.6

63±

–5,

27

03350208+

2342356

M8.5

–M

7.5β

12.2

50±

0.0

17

11.6

55±

0.0

20

11.2

61±

0.0

14

11.0

44±

0.0

23

10.7

67±

0.0

20

10.7

62±

0.1

30

8.9

32±

–12,

603393521-3

525440

M9β

L0β

10.7

25±

0.0

18

10.0

17±

0.0

20

9.5

50±

0.0

21

9.1

33±

0.0

22

8.8

08±

0.0

19

8.2

72±

0.0

17

7.9

97±

0.1

10

12,

6,

27

03420931-2

904317

––

L0β

15.9

18±

0.0

85

15.3

53±

0.1

06

14.3

78±

0.0

85

13.9

69±

0.0

27

13.5

0.0

32

12.6

73±

–9.2

37±

–5

03421621-6

817321

L4γ

––

16.8

54±

0.1

38

15.3

86±

0.0

86

14.5

41±

0.0

89

13.9

55±

0.0

25

13.4

82±

0.0

25

12.9

94±

0.4

05

9.7

23±

–5

03550477-1

032415

M8.5

–M

8.5β

13.0

0.0

25

12.4

62±

0.0

24

11.9

75±

0.0

23

11.7

12±

0.0

24

11.4

25±

0.0

22

10.8

65±

0.0

95

8.6

27±

0.3

09

5,

36

03552337+

1133437

L5γ

L3-L

14.0

50±

0.0

20

12.5

30±

0.0

29

11.5

30±

0.0

19

10.5

28±

0.0

23

9.9

43±

0.0

21

9.2

94±

0.0

38

8.3

17±

–2,

5,

21

03572695-4

417305

L0β

L0β

14.3

67±

0.0

29

13.5

31±

0.0

25

12.9

10±

0.0

26

12.4

75±

0.0

23

12.0

86±

0.0

21

11.6

00±

0.0

84

9.3

18±

–14,

27

04062677-3

812102

L0γ

L1γ

16.7

68±

0.1

26

15.7

11±

0.1

01

15.1

10±

0.1

16

14.4

49±

0.0

30

14.1

00±

0.0

41

12.5

20±

–9.0

97±

–15,

604185879-4

507413

––

L3γ

16.1

63±

0.0

84

15.0

46±

0.0

74

14.5

95±

0.0

88

13.8

64±

0.0

27

13.4

55±

0.0

312.7

83±

–9.6

42±

–5

04210718-6

306022

L5β

L5γa

15.5

65±

0.0

48

14.2

84±

0.0

40

13.4

50±

0.0

42

12.5

58±

0.0

22

12.1

35±

0.0

21

11.5

98±

0.0

95

9.2

45±

–2,

27

04351455-1

414468

M8γ

M7γa

11.8

79±

0.0

29

10.6

22±

0.0

27

9.9

51±

0.0

21

9.7

11±

0.0

24

9.2

68±

0.0

21

9.1

36±

0.0

34

8.5

14±

0.3

10

27,

36

Page 53: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

Brown Dwarf Analogs to Exoplanets 53Table

1—

Continued

2M

ASS

Desi

gnati

on

SpT

SpT

JH

KW

1W

2W

3W

4O

pT

IR2M

ASS

2M

ASS

2M

ASS

WIS

EW

ISE

WIS

EW

ISE

Refe

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

04362788-4

114465

M8β

M9γ

13.0

97±

0.0

23

12.4

30±

0.0

20

12.0

50±

0.0

24

11.7

40±

0.0

23

11.4

60±

0.0

21

11.1

11±

0.0

82

9.1

84±

–13,

6,

27

04400972-5

126544

––

L0γ

15.6

85±

0.0

69

14.7

79±

0.0

56

14.1

71±

0.0

613.5

85±

0.0

24

13.1

93±

0.0

26

12.3

71±

0.2

11

8.9

29±

–5

04433761+

0002051

M9γ

M9γ

12.5

07±

0.0

23

11.8

04±

0.0

22

11.2

20±

0.0

19

10.8

26±

0.0

24

10.4

76±

0.0

21

10.0

31±

0.0

54

8.4

23±

–3,

604493288+

1607226

––

M9γ

14.2

72±

0.0

26

13.4

0.0

313.0

77±

0.0

29

12.7

0.0

25

12.4

23±

0.0

27

11.5

07±

0.2

16

8.8

71±

–5

05012406-0

010452

L4γ

L3γa

14.9

82±

0.0

36

13.7

13±

0.0

33

12.9

60±

0.0

34

12.0

50±

0.0

24

11.5

18±

0.0

22

10.9

52±

0.1

07

9.1

65±

–2,

6,

27

05104958-1

843548

––

L2β

15.3

52±

0.0

56

14.3

41±

0.0

53

13.8

13±

0.0

55

13.2

56±

0.0

25

12.9

0.0

29

12.6

–9.1

88±

–5

05120636-2

949540

L5γ

L5βa

15.4

63±

0.0

55

14.1

56±

0.0

47

13.2

90±

0.0

41

12.3

78±

0.0

23

11.9

21±

0.0

23

11.3

29±

0.1

05

9.1

03±

–14,

5,

27

05181131-3

101529

M6.5

–M

11.8

78±

0.0

26

11.2

34±

0.0

22

10.9±

0.0

19

10.6

41±

0.0

23

10.4

03±

0.0

19

10.1

11±

0.0

43

9.1

27±

0.4

57

26,

505184616-2

756457

L1γ

L1γ

15.2

62±

0.0

41

14.2

95±

0.0

45

13.6

20±

0.0

39

13.0

45±

0.0

24

12.6

61±

0.0

26

12.5

81±

0.3

49

9.2

19±

–3,

605264316-1

824315

––

M7β

12.3

58±

0.0

19

11.8

36±

0.0

22

11.4

48±

0.0

21

11.2

01±

0.0

23

10.9

44±

0.0

21

10.7

0.0

81

8.9

84±

–5

05341594-0

631397

M8γ

M8γ

16.0

54±

0.0

76

15.3

69±

0.0

96

14.9

40±

0.0

97

14.7

85±

0.0

36

14.2

56±

0.0

56

11.5

90±

–8.2

65±

0.2

95

27,

36

05361998-1

920396

L2γ

L2γa

15.7

68±

0.0

73

14.6

93±

0.0

70

13.8

50±

0.0

61

13.2

62±

0.0

26

12.7

89±

0.0

27

12.5

51±

0.3

95

9.2

42±

–3,

6,

27

05402325-0

906326

––

M9β

14.5

86±

0.0

37

13.8

49±

0.0

35

13.3

0.0

47

13.0

0.0

25

12.7

44±

0.0

28

11.9

67±

0.2

67

8.9

38±

–5

05575096-1

359503

M7

–M

12.8

71±

0.0

19

12.1

45±

0.0

26

11.7

32±

0.0

21

11.3

36±

0.0

23

10.8

03±

0.0

20

7.8

89±

0.0

17

5.0

20±

0.0

25

27,

36

06023045+

3910592

L1

–L

12.3

00±

0.0

18

11.4

51±

0.0

19

10.8

65±

0.0

18

10.4

35±

0.0

22

10.1

24±

0.0

22

9.5

91±

0.0

40

8.4

28±

–24,

606085283-2

753583

M8.5γ

L0γ

13.5

95±

0.0

26

12.8

97±

0.0

24

12.3

70±

0.0

24

11.9

76±

0.0

24

11.6

23±

0.0

21

11.3

14±

0.1

13

9.0

93±

–14,

606272161-5

308428

––

L0βγ

16.3

85±

0.1

13

15.2

34±

0.0

91

14.6

0.0

87

13.8

83±

0.0

26

13.5

02±

0.0

29

13.3

92±

0.5

04

9.7

–5

06322402-5

010349

L3β

L4γ

15.0

24±

0.0

41

14.0

31±

0.0

38

13.3

37±

0.0

29

12.6

10±

0.0

23

12.1

69±

0.0

22

11.7

29±

0.1

46

8.9

19±

–5

06524851-5

741376

M8β

––

13.6

32±

0.0

25

12.9

65±

0.0

22

12.4

50±

0.0

21

12.1

53±

0.0

23

11.8

57±

0.0

21

11.0

41±

0.0

53

9.6

00±

0.3

73

1,

13

07123786-6

155528

L1β

L1γa

15.2

96±

0.0

62

14.3

92±

0.0

42

13.6

70±

0.0

48

12.9

91±

0.0

24

12.6

26±

0.0

22

11.4

78±

0.0

95

9.5

12±

–2,

27

07140394+

3702459

M8

–M

7.5β

11.9

76±

0.0

19

11.2

52±

0.0

28

10.8

38±

0.0

17

10.5

66±

0.0

24

10.3

46±

0.0

210.2

02±

0.0

57

8.7

98±

–4,1

,13,

27

08095903+

4434216

––

L6p

16.4

37±

0.1

14

15.1

84±

0.0

97

14.4

17±

0.0

58

13.3

44±

0.0

26

12.8

0.0

28

11.7

85±

0.2

06

9.0

55±

–5

08561384-1

342242

––

M8γ

13.6

02±

0.0

23

12.9

76±

0.0

28

12.4

89±

0.0

23

12.1

54±

0.0

23

11.6

0.0

22

9.8

82±

0.0

46

8.3

76±

0.2

71

508575849+

5708514

L8

–L

8–

15.0

38±

0.0

38

13.7

0.0

41

12.9

62±

0.0

28

12.0

19±

0.0

24

11.4

15±

0.0

21

10.3

76±

0.0

58

8.5

69±

0.2

714,

509451445-7

753150

––

M9β

13.8

93±

0.0

28

13.2

32±

0.0

29

12.7

87±

0.0

29

12.5

12±

0.0

22

12.2

79±

0.0

22

12.2

16±

–9.3

43±

–5

09532126-1

014205

M9γ

M9βa

13.4

69±

0.0

26

12.6

44±

0.0

26

12.1

40±

0.0

21

11.7

57±

0.0

23

11.4

04±

0.0

21

10.7

61±

0.1

00

8.7

19±

–3,

5,

27

09593276+

4523309

––

L3γ

15.8

80±

0.0

70

14.7

59±

0.0

68

13.6

73±

0.0

44

12.8

60±

0.0

25

12.3

63±

0.0

25

11.6

54±

0.1

70

9.0

44±

–27

G196-3

BL

L3γ

14.8

31±

0.0

45

13.6

48±

0.0

42

12.7

78±

0.0

33

–±

––±

––±

––±

–14,

510212570-2

830427

––

L4βγ

16.9

14±

0.1

54

15.8

51±

0.1

12

14.9

81±

0.1

24

14.1

58±

0.0

313.6

77±

0.0

38

12.4

31±

–9.2

47±

–5

10220489+

0200477

M9β

M9β

14.1

00±

0.0

29

13.3

98±

0.0

30

12.9

00±

0.0

30

12.6

12±

0.0

25

12.3

40±

0.0

29

11.9

65±

0.4

11

8.5

31±

–1,8

,610224821+

5825453

L1β

L1β

13.4

99±

0.0

23

12.6

42±

0.0

31

12.1

60±

0.0

23

11.7

62±

0.0

23

11.4

96±

0.0

21

11.2

00±

0.1

09

9.1

33±

–14,

6T

WA

28

M8.5γ

M9γa

13.0

34±

0.0

21

12.3

56±

0.0

20

11.8

90±

0.0

23

11.4

35±

0.0

24

10.7

93±

0.0

21

9.3

85±

0.0

33

8.0

21±

0.1

86

23,

6,

27

11064461-3

715115

––

M9γ

14.4

87±

0.0

28

13.8

45±

0.0

26

13.3

39±

0.0

38

13.0

72±

0.0

25

12.7

53±

0.0

27

12.1

–9.0

49±

–5

11083081+

6830169

L1γ

L1γ

13.1

23±

0.0

212.2

35±

0.0

19

11.5

83±

0.0

17

11.1

03±

0.0

24

10.7

54±

0.0

21

10.2

05±

0.0

43

9.4

94±

–5

11193254-1

137466c

––

L7γ

17.4

74±

0.0

58

15.7

88±

0.0

34

14.7

51±

0.0

12

13.5

48±

0.0

26

12.8

83±

0.0

27

12.2

44±

0.4

11

8.9

40±

–32,

33

11271382-3

735076

––

L0δ

16.4

69±

0.0

97

15.5

68±

0.1

07

15.2

29±

0.1

55

14.4

62±

0.0

32

14.1

03±

0.0

47

11.8

04±

0.1

85

9.2

29±

–5

TW

A26

M9γ

M9γ

12.6

86±

0.0

26

11.9

96±

0.0

22

11.5

03±

0.0

23

11.1

55±

0.0

23

10.7

93±

0.0

20

10.6

26±

0.0

75

8.4

79±

–1,

6,

5114724.1

0-2

04021.3

c–

–L

17.6

37±

0.0

58

15.7

64±

0.1

12

14.8

72±

0.0

11

13.7

18±

0.0

26

13.0

90±

0.0

30

12.1

55±

–8.9

13±

–31

11480096-2

836488

––

L1β

16.1

13±

0.0

79

15.1

86±

0.0

81

14.5

63±

0.0

84

14.1

39±

0.0

29

13.7

74±

0.0

39

12.2

29±

–9.2

–5

11544223-3

400390

L0β

L1βa

14.1

95±

0.0

31

13.3

31±

0.0

27

12.8

50±

0.0

32

12.3

50±

0.0

23

12.0

37±

0.0

23

11.3

69±

0.1

06

9.5

48±

–14,

5,

27

TW

A27A

M8γ

M8γ

13.0

00±

0.0

30

12.3

90±

0.0

30

11.9

50±

0.0

30

11.5

56±

0.0

23

11.0

09±

0.0

20

9.4

56±

0.0

27

8.0

29±

0.1

33

10,

6,

27

12074836-3

900043

L0γ

L1γ

15.4

94±

0.0

58

14.6

08±

0.0

49

14.0

40±

0.0

60

13.6

34±

0.0

25

13.2

15±

0.0

28

13.2

02±

0.5

30

9.1

96±

–19

12271545-0

636458

M9

–M

8.5β

14.1

95±

0.0

25

13.3

89±

0.0

32

12.8

84±

0.0

34

12.5

16±

0.0

312.2

59±

0.0

27

11.8

51±

0.2

79

9.0

36±

–7,

5T

WA

29

M9.5γ

L0γ

14.5

18±

0.0

32

13.8

00±

0.0

33

13.3

69±

0.0

36

12.9

94±

0.0

23

12.6

23±

0.0

23

12.5

62±

–9.0

93±

–11,

6,

27

12474428-3

816464

––

M9γ

14.7

85±

0.0

33

14.0

96±

0.0

36

13.5

73±

0.0

39

13.1

08±

0.0

24

12.5

23±

0.0

25

10.9

53±

0.0

77

8.8

41±

0.2

93

19

12535039-4

211215

––

M9.5γ

16.0

02±

0.1

04

15.3±

0.1

04

14.7

39±

0.1

06

14.2

79±

0.0

27

13.9

0.0

36

12.5

91±

–9.6

–5

12563961-2

718455

––

L4βa

16.4

16±

0.1

28

15.3

74±

0.1

22

14.7

09±

0.0

93

14.0

88±

0.0

27

13.6

95±

0.0

34

12.4

74±

0.3

13

9.4

52±

–5,

27

14112131-2

119503

M9β

M8βa

12.4

37±

0.0

18

11.8

26±

0.0

26

11.3

30±

0.0

19

11.0

77±

0.0

23

10.8

15±

0.0

22

10.6

48±

0.0

65

8.8

12±

–7,

5,

27

14252798-3

650229

L3

–L

13.7

47±

0.0

28

12.5

75±

0.0

22

11.8

05±

0.0

27

10.9

98±

0.0

22

10.5

76±

0.0

20

10.0

10±

0.0

42

9.5

66±

–1,

515104786-2

818174

M9

–M

12.8

38±

0.0

28

12.1

0.0

32

11.6

87±

0.0

311.3

15±

0.0

25

11.0

12±

0.0

24

11.0

78±

0.1

96

8.2

–1,

515291017+

6312539

––

M8β

11.6

43±

0.0

21

10.9

37±

0.0

28

10.5

54±

0.0

23

10.2

0.0

23

10.0

58±

0.0

21

9.7

19±

0.0

27

9.2

41±

0.3

31

515382417-1

953116

L4γ

L4γa

15.9

34±

0.0

63

14.8

52±

0.0

60

14.0

00±

0.0

48

13.1

72±

0.0

27

12.7

21±

0.0

29

11.3

69±

0.1

77

8.8

08±

–27,

36

15470557-1

626303A

––

M9β

13.8

64±

0.0

29

13.2

43±

0.0

29

12.7

35±

0.0

27

12.4

37±

0.0

24

12.1

44±

0.0

26

11.7

15±

–8.5

49±

–5

15474719-2

423493

M9γ

L0β

13.9

70±

0.0

26

13.2

71±

0.0

32

12.7

40±

0.0

23

12.4

07±

0.0

25

12.1

05±

0.0

32

12.1

11±

–8.7

39±

–1

15515237+

0941148

L4γ

>L

5γa

16.3

19±

0.1

10

15.1

14±

0.0

71

14.3

10±

0.0

57

13.6

00±

0.0

25

13.1

21±

0.0

30

12.6

77±

0.4

78

9.1

56±

–1,

27

15525906+

2948485

L0β

L0β

13.4

78±

0.0

23

12.6

06±

0.0

24

12.0

20±

0.0

26

11.5

44±

0.0

23

11.2

07±

0.0

20

10.6

64±

0.0

49

9.0

03±

–2,

615575011-2

952431

M9δ

L1γa

16.3

16±

0.1

19

15.4

50±

0.1

04

14.8

50±

0.1

11

14.4

35±

0.0

37

14.0

66±

0.0

58

12.1

54±

0.3

44

8.6

68±

–15,

6,

27

16154255+

4953211

L4γ

L3-L

16.7

89±

0.1

37

15.3

32±

0.0

98

14.3

10±

0.0

69

13.2

02±

0.0

24

12.6

21±

0.0

22

12.1

31±

0.1

30

9.3

05±

–3,

6

Page 54: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

54 Faherty et al.Table

1—

Continued

2M

ASS

Desi

gnati

on

SpT

SpT

JH

KW

1W

2W

3W

4O

pT

IR2M

ASS

2M

ASS

2M

ASS

WIS

EW

ISE

WIS

EW

ISE

Refe

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

17111353+

2326333

L0γ

L1βa

14.4

99±

0.0

24

13.6

68±

0.0

30

13.0

60±

0.0

26

12.5

81±

0.0

24

12.2

26±

0.0

24

11.6

62±

0.1

52

9.3

34±

–3,

6,

27

17260007+

1538190

L3.5γ

L3γa

15.6

69±

0.0

63

14.4

65±

0.0

45

13.6

60±

0.0

49

13.0

71±

0.0

25

12.6

94±

0.0

26

11.5

56±

0.1

57

9.3

09±

–5,

27

17410280-4

642218

––

L6-L

8γa

15.7

86±

0.0

75

14.5

34±

0.0

54

13.4

38±

0.0

35

12.3

01±

0.0

25

11.6

75±

0.0

23

11.4

32±

0.1

90

8.5

41±

–5,

27

18212815+

1414010

L4.5

—L

4p

eca

13.4

31±

0.0

21

12.3

96±

0.0

17

11.6

50±

0.0

19

10.8

53±

0.0

23

10.4

75±

0.0

20

9.9

28±

0.0

52

9.0

67±

0.5

34

27,

29,

30

19350976-6

200473

––

L1γ

16.2

54±

0.1

05

15.2

93±

0.0

94

14.7

24±

0.0

98

14.0

59±

0.0

29

13.6

0.0

39

12.8

81±

–8.5

59±

–5

19355595-2

846343

M9γ

M9γa

13.9

53±

0.0

24

13.1

80±

0.0

20

12.7

10±

0.0

28

12.3

47±

0.0

26

11.9

10±

0.0

25

10.5

19±

0.0

76

8.6

36±

–27,

36

19564700-7

542270

L0γ

L2γa

16.1

54±

0.1

02

15.0

36±

0.0

96

14.2

30±

0.0

66

13.6

93±

0.0

27

13.2

49±

0.0

31

12.6

78±

–9.1

71±

–2,

27

20004841-7

523070

M9γ

M9γa

12.7

34±

0.0

23

11.9

67±

0.0

26

11.5

10±

0.0

24

11.1

08±

0.0

23

10.7

97±

0.0

20

10.5

50±

0.0

69

8.5

48±

–4,

5,

27

20025073-0

521524

L5β

L5-L

7γa

15.3

16±

0.0

49

14.2

78±

0.0

50

13.4

20±

0.0

35

12.5

32±

0.0

23

12.0

90±

0.0

26

11.4

41±

0.2

09

8.8

18±

–3,

5,

27

20113196-5

048112

––

L3γ

16.4

23±

0.1

09

15.2

57±

0.0

81

14.5

77±

0.0

82

14.0

09±

0.0

31

13.6

68±

0.0

38

12.4

31±

–9.0

84±

–5

20135152-2

806020

M9γ

L0γa

14.2

42±

0.0

28

13.4

61±

0.0

27

12.9

40±

0.0

26

12.5

25±

0.0

28

12.1

63±

0.0

27

11.8

77±

0.2

76

8.6

63±

–1,

6,

27

20282203-5

637024

––

M8.5γ

13.8

37±

0.0

21

13.2

43±

0.0

27

12.7

0.0

27

12.4

72±

0.0

22

12.1

73±

0.0

24

12.2

98±

0.3

15

8.6

69±

–5

20334473-5

635338

––

L0γ

15.7

18±

0.0

88

15.1

37±

0.1

09

14.2

44±

0.0

81

13.8

17±

0.0

27

13.4

15±

0.0

34

12.3

76±

–9.2

–5

20391314-1

126531

M8

–M

13.7

92±

0.0

24

13.1

29±

0.0

38

12.6

0.0

28

12.4

65±

0.0

23

12.1

66±

0.0

24

12.5

96±

0.5

38

9.0

–7,

520575409-0

252302

L1.5

–L

13.1

21±

0.0

21

12.2

68±

0.0

22

11.7

24±

0.0

23

11.2

61±

0.0

22

10.9

81±

0.0

20

10.4

31±

0.0

79

8.9

06±

–7,

25,

27

21140802-2

251358bc

––

L6-L

8γa

17.2

94±

0.0

815.6

24±

0.0

414.4

35±

0.0

413.2

16±

0.0

26

12.4

61±

0.0

31

11.8

38±

0.3

58

8.5

81±

–9,

27

21265040-8

140293

L3γ

L3γa

15.5

42±

0.0

55

14.4

05±

0.0

53

13.5

50±

0.0

41

12.9

10±

0.0

24

12.4

72±

0.0

23

11.8

85±

0.1

61

9.3

57±

–2,

27

21324036+

1029494

––

L4β

16.5

94±

0.1

38

15.3

66±

0.1

13

14.6

34±

0.1

14.0

0.0

33

13.5

78±

0.0

42

12.3

83±

0.3

79

8.5

12±

–5

21543454-1

055308

L4β

L5γa

16.4

40±

0.1

21

15.0

69±

0.0

82

14.2

00±

0.0

68

13.3

67±

0.0

26

12.9

17±

0.0

29

12.0

54±

0.3

16

8.4

26±

–22,

27

21544859-7

459134

––

M9.5β

14.2

88±

0.0

29

13.5

68±

0.0

42

13.0

84±

0.0

32

12.7

08±

0.0

25

12.3

76±

0.0

25

11.9

91±

0.2

11

8.9

13±

–5

21572060+

8340575

L0

–M

13.9

72±

0.0

26

13.0

66±

0.0

33

12.5

84±

0.0

25

12.0

88±

0.0

23

11.6

81±

0.0

21

11.0

07±

0.0

79

8.7

62±

–5

22025794-5

605087

––

M9γ

14.3

56±

0.0

34

13.6

16±

0.0

35

13.1

0.0

36

12.8

09±

0.0

25

12.5

55±

0.0

25

11.7

28±

0.1

89.3

22±

–5

22064498-4

217208

L4γ

L4γa

15.5

55±

0.0

65

14.4

47±

0.0

61

13.6

10±

0.0

55

12.8

23±

0.0

24

12.3

76±

0.0

25

11.8

87±

0.2

22

9.2

59±

–5,

27

22081363+

2921215

L3γ

L3γ

15.7

97±

0.0

84

14.7

93±

0.0

70

14.1

50±

0.0

73

13.3

54±

0.0

27

12.8

88±

0.0

27

12.5

84±

0.3

91

9.2

98±

–14,

522134491-2

136079

L0γ

L0γ

15.3

76±

0.0

32

14.4

04±

0.0

55

13.7

60±

0.0

38

13.2

29±

0.0

27

12.8

32±

0.0

29

11.5

52±

0.2

03

9.0

70±

–14,

622351658-3

844154

––

L1.5γ

15.1

83±

0.0

51

14.2

72±

0.0

46

13.6

31±

0.0

44

13.0

07±

0.0

24

12.6

47±

0.0

27

12.5

35±

0.4

36

8.7

73±

–5

22353560-5

906306

––

M8.5β

14.2

81±

0.0

29

13.5

92±

0.0

37

13.1

68±

0.0

32

12.6

91±

0.0

24

12.3

63±

0.0

26

12.0

0.3

09

9.0

94±

–5

22443167+

2043433

L6.5

p–

L6-L

8γa

16.4

76±

0.1

40

14.9

99±

0.0

65

14.0

22±

0.0

73

12.7

77±

0.0

24

12.1

08±

0.0

24

11.1

36±

0.1

15

9.3

01±

–14,

6,

27

22495345+

0044046

L4γ

L3βa

16.5

87±

0.1

24

15.4

21±

0.1

09

14.3

60±

0.0

70

13.5

76±

0.0

27

13.1

44±

0.0

50

11.2

84±

–7.6

87±

–14,

6,

27

23153135+

0617146

L0γ

L0γa

15.8

61±

0.0

82

14.7

57±

0.0

69

14.0

70±

0.0

63

13.5

52±

0.0

26

13.0

95±

0.0

31

11.6

71±

0.2

30

8.5

92±

–27,

36

23224684-3

133231

L0β

L2β

13.5

77±

0.0

27

12.7

89±

0.0

23

12.3

24±

0.0

24

11.9

74±

0.0

23

11.7

07±

0.0

23

11.2

53±

0.1

28

9.1

53±

–1,

623225299-6

151275

L2γ

L3γa

15.5

45±

0.0

61

14.5

35±

0.0

62

13.8

60±

0.0

42

13.2

43±

0.0

26

12.8

41±

0.0

29

12.6

79±

0.3

91

9.3

78±

–2,

5,

27

23231347-0

244360

M8.5

–M

13.5

0.0

23

12.9

25±

0.0

312.4

81±

0.0

26

12.2

37±

0.0

25

11.9

54±

0.0

24

12.2

28±

0.3

91

8.5

12±

–3,

523255604-0

259508

L3

–L

15.9

61±

0.0

77

14.9

35±

0.0

69

14.1

15±

0.0

56

13.6

95±

0.0

27

13.3

48±

0.0

34

11.8

83±

–8.6

77±

–16,

523360735-3

541489

––

M9β

14.6

51±

0.0

25

13.8

09±

0.0

25

13.3

85±

0.0

41

13.0

02±

0.0

24

12.6

47±

0.0

26

12.5

18±

0.4

18

9.1

77±

–5

23433470-3

646021

––

L3-L

16.5

68±

0.1

315.0

11±

0.0

63

14.1

94±

0.0

64

13.1

21±

0.0

24

12.6

12±

0.0

27

11.6

98±

0.1

88

9.1

38±

–5

23453903+

0055137

M9

–M

13.7

71±

0.0

27

13.1

17±

0.0

26

12.5

81±

0.0

28

12.2

12±

0.0

25

11.8

79±

0.0

23

11.4

65±

0.2

03

8.9

41±

–1,

523520507-1

100435

M7

–M

12.8

0.0

18

12.1

66±

0.0

211.7

42±

0.0

18

11.4

0.0

25

11.1

46±

0.0

22

10.8

49±

0.1

09

8.8

77±

–3,

5

Note.

—R

efe

rences:

1=

Reid

et

al.

(2008),

2=

Cru

zet

al.

(2009),

3=

Cru

zet

al.

(2007),

4=

Sch

mid

tet

al.

(2007),

5=

Gagne

et

al.

(2015b),

6=

Allers

&L

iu(2

013),

7=

Cru

zet

al.

(2003),

8=

Fahert

yet

al.

(2012),

9=

Liu

et

al.

(2013),

10=

Giz

is(2

002),

11=

Loop

er

et

al.

(2007)

12=

Reid

et

al.

(2002),

13=

Fahert

yet

al.

(2009),

14=

Kir

kpatr

ick

et

al.

(2008),

15=

Kir

kpatr

ick

et

al.

(2010),

16=

Burg

ass

er

et

al.

(2010a),

17=

Reid

et

al.

(2007),

18=

Kir

kpatr

ick

et

al.

(2000),

19=

Gagne

et

al.

(2014a),

20=

Teegard

en

et

al.

(2003),

21=

Fahert

yet

al.

(2013),

22=

Gagne

et

al.

(2014b),

23=

Sch

olz

et

al.

(2005)

24=

Salim

&G

ould

(2003),

25=

Burg

ass

er

et

al.

(2008),

26=

Cri

foet

al.

(2005),

27=

This

pap

er,

28=

Kir

kpatr

ick

et

al.

(2006),

29=

Loop

er

et

al.

(2008),

30=

Sahlm

ann

et

al.

(2016),

31=

Sch

neid

er

et

al.

(2016),

32=

Kellogg

et

al.

(2016),

33=

Kellogg

et

al.

(2015),

34=

Giz

iset

al.

(2012),

35=

Giz

iset

al.

(2015),

36=

Cru

zet

al.

inpre

pa

These

sourc

es

have

new

infr

are

dsp

ectr

apre

sente

din

this

pap

er.

Inth

em

ajo

rity

of

case

sw

euse

the

infr

are

dsp

ectr

al

typ

eand

gra

vit

ycla

ssifi

cati

on

dia

gnose

din

this

work

.If

an

ob

ject

had

Sp

eX

data

we

defa

ult

toth

ere

sult

ant

typ

eand

cla

ssifi

cati

on

wit

hth

at

data

.b

This

sourc

eis

refe

rred

toas

PSO

318

for

the

rem

ain

der

of

the

text

cT

he

sourc

es

PSO

318,

2M

1119,

and

2M

1147

have

photo

metr

yre

port

ed

on

the

MK

Osy

stem

that

we

have

convert

ed

to2M

ASS

usi

ng

the

rela

tions

inSte

phens

et

al.

(2009).

Inth

ecase

of

PSO

318,

JH

Kw

as

convert

ed

toM

KO

where

as

for

2M

119,

Jand

Hw

ere

convert

ed

and

for

2M

1147

only

Jw

as

convert

ed.

dT

eegard

ens

Sta

r.e

Refe

rences

are

for

the

spectr

al

data

and

gra

vit

yanaly

sis

(if

diff

ere

nt

then

the

ori

gin

al

spectr

al

data

refe

rence).

fR

efe

rred

toas

TV

LM

831-1

54910

inT

inney

et

al.

(1995).

Page 55: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

Brown Dwarf Analogs to Exoplanets 55

Table 2Details on Parallax Targets and Observations

2MASS Designation SpT SpT Nights Framesa Ref Starsa ∆t Telescope Noteb RefOpT IR (yr)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

00452143+1634446 L2β L2γ 4 26 24 3.0 MDM LG 1,201410321+1804502 L1 L4.5 4 23 26 3.3 MDM N 3,4,02132880+4444453 L1.5 — 5 34 81 3.0 MDM N 502235464-5815067 L0γ — 5 48 26 4.9 DuPont LG 102411151-0326587 L0γ L1γ 6 55 20 4.9 DuPont LG 2,1302535980+3206373 M7β M6 5 28 53 3.9 MDM LG 1403140344+1603056 L0 — 5 31 37 3.0 MDM N 605002100+0330501 L4 — 5 30 61 2.8 MDM N 606023045+3910592 L1 L1β 7 77 71 9.9 MDM LG 2,1506154934-0100415 L2 — 5 34 62 2.2 MDM N 706523073+4710348 L4.5 — 5 27 49 3.0 MDM N 509111297+7401081 L0 — 4 24 35 2.9 MDM N 610224821+5825453 L1β L1β 6 30 15 4.9 MDM LG 2,1310484281+0111580 L1 L4 3 17 14 3.0 MDM N 8,913004255+1912354 L1 L3 5 47 10 2.4 MDM N 10,1114162408+1348263 L6 L6 5 29 11 3.3 MDM N 1215525906+2948485 L0β L0β 6 27 33 5.3 MDM LG 1,221265040-8140293 L3γ L3γ 6 90 38 5.4 DuPont LG 1

Note. — References: 1=Cruz et al. (2009), 2=Allers & Liu (2013), 3=Wilson et al. (2003), 4=Cruz et al. (2007), 5=Cruz et al. (2003), 6=Reidet al. (2008), 7=Phan-Bao et al. (2008), 8=Hawley et al. (2002), 9=Kendall et al. (2004), 10=Gizis et al. (2000), 11=Burgasser et al. (2008),12=Bowler et al. (2010a), 13=Kirkpatrick et al. (2008), 14=This paper, 15=Salim & Gould (2003)a

The number of reference stars and individual image frames used in the parallax solutionb

LG is a low surface gravity object and N is a field object

Table 3Results of Parallax Program

Name SpT SpT µαa µδ

a πabsOpT IR ′′yr−1 ′′yr−1 mas

(1) (2) (3) (4) (5) (6)

00452143+1634446 L2β L2γ 0.355 ± 0.01 -0.04 ± 0.01 62.5 ± 3.701410321+1804502 L1 L4.5 0.41 ± 0.01 -0.047 ± 0.01 41.0 ± 2.802132880+4444453 L1.5 — -0.054 ± 0.01 -0.147 ± 0.01 50.0 ± 2.102235464-5815067 L0γ — 0.0986 ± 0.0008 -0.0182 ± 0.0009 27.4 ± 2.602411151-0326587 L0γ L1γ 0.0737 ± 0.001 -0.0242 ± 0.0019 26.7 ± 3.302535980+3206373 M7β M6 0.087 ± 0.01 -0.096 ± 0.01 17.7 ± 2.503140344+1603056 L0 — -0.247 ± 0.01 -0.05 ± 0.01 69.0 ± 2.405002100+0330501 L4 — 0.008 ± 0.01 -0.353 ± 0.01 75.2 ± 3.706023045+3910592 L1 L2β 0.157 ± 0.01 -0.504 ± 0.01 88.5 ± 1.606154934-0100415 L2 — 0.197 ± 0.01 -0.055 ± 0.01 49.8 ± 2.806523073+4710348 L4.5 — -0.118 ± 0.01 0.136 ± 0.01 114.9 ± 4.009111297+7401081 L0 — -0.2 ± 0.01 -0.145 ± 0.01 45.2 ± 3.110224821+5825453 L1β L1β -0.807 ± 0.01 -0.73 ± 0.01 54.3 ± 2.510484281+0111580 L1 L4 -0.436 ± 0.01 -0.218 ± 0.01 71.9 ± 7.413004255+1912354 L1 L3 -0.793 ± 0.01 -1.231 ± 0.01 70.4 ± 2.514162408+1348263 L6 L6 0.088 ± 0.01 0.136 ± 0.01 107.5 ± 3.515525906+2948485 L0β L0β -0.162 ± 0.01 -0.06 ± 0.01 48.8 ± 2.721265040-8140293 L3γ L3γ 0.0556 ± 0.0014 -0.1018 ± 0.003 31.3 ± 2.6

aThe proper motions from MDM are not corrected to absolute and have zero-point uncertainties of ∼ 10 mas yr−1; see Weinberger et al. (2013)

for a discussion of the du Pont proper motions.

Page 56: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

56 Faherty et al.

Table 4Literature Parallax Comparisons

2MASS Designation SpT SpT µα µδ π Ref′′yr−1 ′′yr−1 mas

(1) (2) (3) (4) (5) (6) (7)

00452143+1634446 L2β L2γ 0.355 ± 0.01 -0.04 ± 0.01 62.5 ± 3.7 10.3562 ± 0.00137 -0.035 ± 0.0109 57.3 ± 2.0 2

02411151-0326587 L0γ L1γ 0.0737 ± 0.001 -0.0242 ± 0.0019 26.7 ± 3.3 10.084 ± 0.0117 -0.0224 ± 0.0086 21.4 ± 2.6 2

10224821+5825453 L1β L1β -0.807 ± 0.01 -0.73 ± 0.01 54.3 ± 2.5 1-0.799 ± 0.0064 -0.7438 ± 0.0132 46.3 ± 1.3 2

14162408+1348263 L6 L6 0.088 ± 0.01 0.136 ± 0.01 107.5 ± 3.5 10.0951 ± 0.003 0.1303 ± 0.003 109.9 ± 1.8 2

15525906+2948485 L0β L0β -0.162 ± 0.01 -0.06 ± 0.01 48.8 ± 2.7 1-0.1541 ± 0.0053 -0.0622 ± 0.0106 47.7 ± 0.9 3

Note. — References: (1) This work (2) Osorio et al. 2014 (3) Dupuy & Liu 2012

Page 57: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

Brown Dwarf Analogs to Exoplanets 57

Table 5New Proper Motion Measurements

2MASS SpT SpT µRA µDEC Ref ∆t

OpT NIR ′′ yr−1 ′′ yr−1 yr(1) (2) (3) (4) (5) (6) (7)

00040288-6410358 L1γ L1γ 0.064 ± 0.012 -0.047 ± 0.012 WISE-2MASS 10.0200374306-5846229 L0γ — 0.057 ± 0.01 0.017 ± 0.005 FourStar 14.1501174748-3403258 L1β L1β 0.084 ± 0.015 -0.045 ± 0.008 FourStar 15.0801262109+1428057 L4γ L2γ 0.07 ± 0.012 -0.008 ± 0.012 WISE-2MASS 9.6801415823-4633574 L0γ L0γ 0.105 ± 0.01 -0.049 ± 0.01 FourStar 14.2902103857-3015313 L0γ L0γ 0.145 ± 0.036 -0.04 ± 0.007 FourStar 14.3902340093-6442068 L0γ L0βγ 0.088 ± 0.012 -0.015 ± 0.012 WISE-2MASS 10.5303032042-7312300 L2γ — 0.043 ± 0.012 0.003 ± 0.012 WISE-2MASS 10.4803231002-4631237 L0γ L0γ 0.066 ± 0.008 0.001 ± 0.016 FourStar 14.3004062677-3812102 L0γ L1γ 0.009 ± 0.012 0.029 ± 0.012 WISE-2MASS 9.7905120636-2949540 L5γ L5β -0.01 ± 0.013 0.08 ± 0.015 CAPSCam 15.1405341594-0631397 M8γ M8γ 0.002 ± 0.012 -0.007 ± 0.012 WISE-2MASS 9.5209532126-1014205 M9γ M9β -0.07 ± 0.007 -0.06 ± 0.009 CAPSCam 15.0609593276+4523309 – L3γ -0.087 ± 0.009 -0.126 ± 0.012 WISE-2MASS 11.33TWA 28 M8.5γ M9γ -0.06 ± 0.008 -0.014 ± 0.009 CAPSCam 14.9011544223-3400390 L0β L1β -0.161 ± 0.008 0.012 ± 0.007 CAPSCam 14.8914112131-2119503 M9β M8β -0.078 ± 0.009 -0.073 ± 0.011 CAPSCam 15.7714482563+1031590 L4 L4pec 0.223 ± 0.017 -0.118 ± 0.013 CAPSCam 13.8215382417-1953116 L4γ L4γ 0.026 ± 0.007 -0.045 ± 0.007 CAPSCam 15.6915474719-2423493 M9γ L0β -0.135 ± 0.009 -0.127 ± 0.008 CAPSCam 14.7915575011-2952431 M9δ L1γ -0.01 ± 0.012 -0.028 ± 0.012 WISE-2MASS 11.0416154255+4953211 L4γ L3-L6γ -0.08 ± 0.012 0.018 ± 0.012 WISE-2MASS 12.1117111353+2326333 L0γ L1β -0.063 ± 0.015 -0.035 ± 0.012 CAPSCam 16.8518212815+1414010 L4.5 L4pec 0.226 ± 0.008 -0.24 ± 0.007 CAPSCam 15.0719355595-2846343 M9γ M9γ 0.034 ± 0.012 -0.058 ± 0.012 CAPSCam 14.7919564700-7542270 L0γ L2γ 0.009 ± 0.012 -0.059 ± 0.012 WISE-2MASS 9.7220004841-7523070 M9γ M9γ 0.069 ± 0.012 -0.11 ± 0.004 CAPSCam 13.7920025073-0521524 L5β L5-L7γ -0.098 ± 0.005 -0.11 ± 0.008 CAPSCam 15.5420135152-2806020 M9γ L0γ 0.043 ± 0.012 -0.068 ± 0.012 WISE-2MASS 11.0321543454-1055308 L4β L5γ 0.175 ± 0.012 0.009 ± 0.012 WISE-2MASS 11.7722064498-4217208 L4γ L4γ 0.128 ± 0.013 -0.181 ± 0.008 CAPSCam 15.5223153135+0617146 L0γ L0γ 0.056 ± 0.012 -0.039 ± 0.012 WISE-2MASS 9.9623225299-6151275 L2γ L3γ 0.062 ± 0.01 -0.085 ± 0.009 FourStar 14.07

Page 58: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

58 Faherty et al.

Table 6near-infrared Spectral Data

2MASS Date-Observed Instrument Mode Slit Int time Images(1) (2) (3) (4) (5) (6) (7)

00040288-6410358 11-Sept-2014 FIRE Echelle 0.6 900 200274197+0503417 08-Aug-2014 FIRE Echelle 0.6 900 200452143+1634446 08-Aug-2014 FIRE Echelle 0.6 900 200550564+0134365 04-Sept-2003 SpeX Prism 0.8 180 201174748-3403258 12-Sept-2014 FIRE Echelle 0.6 900 201174748-3403258(2) 11-Sept-2014 FIRE Echelle 0.6 600 201244599-5745379 11-Sept-2014 FIRE Echelle 0.6 900 202103857-3015313 11-Sept-2014 FIRE Echelle 0.6 750 202103857-3015313(2) 29-Dec-2009 TripleSpec — 1.1x43” 300 602251947-5837295 28-July-2013 FIRE Echelle 0.6 600 202340093-6442068 28-July-2013 FIRE Echelle 0.6 750 203231002-4631237 13-Nov-2007 SpeX Prism 0.5 180 503264225-2102057 13-Nov-2007 SpeX Prism 0.5 180 604210718-6306022 11-Sept-2014 FIRE Echelle 0.6 900 204351455-1414468 13-Nov-2007 SpeX SXD 0.5 200 405012406-0010452 12-Oct-2007 SpeX Prism 0.5 90 605120636-2949540 15-Nov-2013 FIRE Echelle 0.6 500 205120636-2949540(2) 08-Dec-2011 SpeX Prism 0.5 180 805361998-1920396 13-Dec-2013 FIRE Echelle 0.6 650 207123786-6155528 15-Nov-2013 FIRE Echelle 0.6 650 209532126-1014205 02-March-2009 TripleSpec — 1.1x43” 300 609593276+4523309 30-Dec-2009 SpeX Prism 0.5 180 311020983-3430355 12-May-2014 FIRE Echelle 0.6 600 211544223-3400390 12-May-2014 FIRE Echelle 0.6 750 212563961-2718455 12-May-2014 FIRE Echelle 0.6 900 214112131-2119503 12-May-2014 FIRE Echelle 0.6 500 214482563+1031590 13-May-2014 FIRE Echelle 0.6 900 215382417-1953116 28-July-2013 FIRE Echelle 0.6 900 215382417-1953116(2) 04-Sept-2003 SpeX Prism 0.8 180 615515237+0941148 15-Aug-2013 FIRE Echelle 0.6 900 215575011-2952431 28-July-2013 FIRE Echelle 0.6 900 217111353+2326333 12-May-2014 FIRE Echelle 0.6 800 217260007+1538190 12-May-2014 FIRE Echelle 0.6 800 217410280-4642218 11-Sept-2014 FIRE Echelle 0.6 1500 218212815+1414010 12-May-2014 FIRE Echelle 0.6 650 219355595-2846343 08-Aug-2014 FIRE Echelle 0.6 600 219564700-7542270 28-July-2013 FIRE Echelle 0.6 900 420004841-7523070 28-July-2013 FIRE Echelle 0.6 300 320025073-0521524 28-July-2013 FIRE Echelle 0.6 600 220135152-2806020 12-May-2014 FIRE Echelle 0.6 600 220135152-2806020(2) 08-Aug-2014 FIRE Echelle 0.6 600 2PSO318 13-Dec-2013 FIRE Echelle 0.6 900 421265040-8140293 15-Aug-2013 FIRE Echelle 0.6 900 221265040-8140293(2) 12-May-2014 FIRE Echelle 0.6 800 221543454-1055308 08-Aug-2014 FIRE Echelle 0.6 1200 222064498-4217208 12-May-2014 FIRE Echelle 0.6 700 222064498-4217208(2) 08-Aug-2014 FIRE Echelle 0.6 750 222064498-4217208(3) 21-Aug-2006 SpeX Prism 0.5 180 522443167+2043433 11-Sept-2014 FIRE Echelle 0.6 900 222495345+0044046 08-Aug-2014 FIRE Echelle 0.6 1200 223153135+0617146 08-Aug-2014 FIRE Echelle 0.6 750 223153135+0617146(2) 14-Nov-2007 SpeX Prism 0.5 180 6

Note. —

Page 59: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

Brown Dwarf Analogs to Exoplanets 59Table

7R

adia

lV

elo

cit

ies

Nam

eT

ele

scop

eR

eso

lvin

gP

ow

er

Date

-obs

Sta

ndard

sU

sed

R.V

.R

.V.

final

(1)

(2)

(3)

(4)

(5)

(6)

(7)

00325584-4

405058

Magellan

Cla

yM

IKE

25000

01-N

ov-2

006

4,5

12.9

1.9

212.9

1.9

200332386-1

521309

Gem

ini

South

Phoenix

50000

28-O

ct-

2009

6,7

-6.3

0.4

0-6

.37±

0.4

000374306-5

846229

Gem

ini

South

Phoenix

50000

20-N

ov-2

007

6,7

6.6

0.0

86.6

0.0

700374306-5

846229

Gem

ini

South

Phoenix

50000

23-D

ec-2

007

6,7

6.0

0.7

400452143+

1634446

Keck

IIN

IRSP

EC

20000

15-S

ep-2

008

1,3

3.1

0.8

33.1

0.8

300464841+

0715177

Keck

IIN

IRSP

EC

20000

14-S

ep-2

008

1,2

,3-2

.75±

0.2

7-2

.75±

0.2

700550564+

0134365

Keck

IIN

IRSP

EC

20000

14-S

ep-2

008

1,2

,3-1

.21±

0.3

8-1

.21±

0.3

801415823-4

633574

Magellan

Cla

yM

IKE

25000

02-N

ov-2

006

4,5

6.4

1.5

66.4

1.5

602103857-3

015313

Gem

ini

South

Phoenix

50000

22-D

ec-2

007

6,7

7.6

0.3

57.8

0.2

702103857-3

015313

Gem

ini

South

Phoenix

50000

24-D

ec-2

007

6,7

7.0

0.4

502103857-3

015313

Gem

ini

South

Phoenix

50000

26-D

ec-2

007

6,7

7.9

0.1

602215494-5

412054

Gem

ini

South

Phoenix

50000

27-O

ct-

2009

6,7

10.1

0.1

010.1

0.1

002235464-5

815067

Gem

ini

South

Phoenix

50000

05-D

ec-2

007

6,7

9.5

0.6

210.3

0.2

302235464-5

815067

Gem

ini

South

Phoenix

50000

25-D

ec-2

007

6,7

10.4

0.1

802340093-6

442068

Gem

ini

South

Phoenix

50000

27-O

ct-

2009

6,7

12.5

0.1

411.7

0.7

202340093-6

442068

Gem

ini

South

Phoenix

50000

29-O

ct-

2009

6,7

11.1

0.1

302411151-0

326587

aK

eck

IIN

IRSP

EC

20000

13-S

ep-2

008

1,2

,36.3

7.9

86.3

7.9

803231002-4

631237

Gem

ini

South

Phoenix

50000

21-D

ec-2

007

6,7

13.0

0.1

313.0

0.0

503231002-4

631237

Gem

ini

South

Phoenix

50000

23-D

ec-2

007

6,7

12.9

0.2

903393521-3

525440

Magellan

Cla

yM

IKE

25000

04-J

ul-

2006

4,5

7.4

0.7

27.4

0.7

203572695-4

417305

Magellan

Cla

yM

IKE

25000

01-N

ov-2

006

4,5

10.7

4.6

010.7

4.6

004210718-6

306022

Gem

ini

South

Phoenix

50000

14-D

ec-2

007

6,7

15.8

0.5

314.7

0.3

304210718-6

306022

Gem

ini

South

Phoenix

50000

15-D

ec-2

007

6,7

14.6

0.1

604351455-1

414468

Magellan

Cla

yM

IKE

25000

01-N

ov-2

006

4,5

16.1

1.7

616.1

1.7

604362788-4

114465

Magellan

Cla

yM

IKE

25000

02-N

ov-2

006

4,5

14.9

1.4

514.9

1.4

504433761+

0002051

Magellan

Cla

yM

IKE

25000

01-N

ov-2

006

4,5

16.9

0.7

616.9

0.7

605012406-0

010452

Magellan

Cla

yM

IKE

25000

02-N

ov-2

006

4,5

21.2

0.8

521.7

0.6

605012406-0

010452

Gem

ini

South

Phoenix

50000

28-O

ct-

2009

6,7

22.6

1.1

605184616-2

756457

Keck

IIN

IRSP

EC

20000

13-S

ep-2

008

1,2

24.5

0.4

124.3

0.1

905184616-2

756457

Keck

IIN

IRSP

EC

20000

15-S

ep-2

008

1,2

24.1

0.4

506085283-2

753583

Magellan

Cla

yM

IKE

25000

02-N

ov-2

006

4,5

28.0

1.9

326.3

0.0

706085283-2

753583

Gem

ini

South

Phoenix

50000

28-O

ct-

2009

6,7

26.3

0.0

815474719-2

423493

Magellan

Cla

yM

IKE

25000

04-J

ul-

2006

4,5

-6.5

0.3

5-6

.52±

0.3

515525906+

2948485

Magellan

Cla

yM

IKE

25000

04-J

ul-

2006

4,5

-19.9

1.3

8-1

9.9

1.3

816154255+

4953211a

Keck

IIN

IRSP

EC

20000

13-S

ep-2

008

1,2

,3-2

5.5

3.1

8-2

5.5

3.1

817111353+

2326333

Keck

IIN

IRSP

EC

20000

14-S

ep-2

008

1,2

,3-2

0.6

0.7

5-2

0.6

0.7

517260007+

1538190

Keck

IIN

IRSP

EC

20000

15-S

ep-2

008

1,2

,3-2

0.5

0.8

4-2

0.5

0.8

418212815+

1414010

Keck

IIN

IRSP

EC

20000

15-S

ep-2

008

2,3

9.0

0.1

79.0

0.1

7

19350976-6

200473b

Magellan

Cla

yM

IKE

25000

04-J

ul-

2006

20004841-7

523070

Magellan

Cla

yM

IKE

25000

04-J

ul-

2006

4,5

4.4

2.8

44.4

2.8

420135152-2

806020

Magellan

Cla

yM

IKE

25000

04-J

ul-

2006

4,5

-6.5

0.2

4-6

.53±

0.2

421265040-8

140293

Gem

ini

South

Phoenix

50000

29-O

ct-

2009

6,7

10.0

0.4

910.0

0.4

922081363+

2921215

Keck

IIN

IRSP

EC

20000

13-S

ep-2

008

1,2

,3-1

5.5

1.9

3-1

5.5

1.9

322134491-2

136079

Magellan

Cla

yM

IKE

25000

04-J

ul-

2006

4,5

-4.9

4.1

8-4

.92±

4.1

822495345+

0044046

Keck

IIN

IRSP

EC

20000

13-S

ep-2

008

1,2

,3-3

.26±

0.9

0-3

.26±

0.9

023153135+

0617146

Keck

IIN

IRSP

EC

20000

15-S

ep-2

008

1,2

,3-1

4.6

0.5

2-1

4.6

0.5

223224684-3

133231

Gem

ini

South

Phoenix

50000

27-O

ct-

2009

6,7

33.8

1.1

133.8

1.1

123225299-6

151275

Gem

ini

South

Phoenix

50000

28-O

ct-

2009

6,7

7.2

0.4

66.7

0.7

523225299-6

151275

Gem

ini

South

Phoenix

50000

29-O

ct-

2009

6,7

5.5

0.7

6

00242463-0

158201c

Gem

ini

South

Phoenix

50000

24-D

ec-2

007

6,7

11.6

1.6

011.6

1.6

01224522-1

23835c

Magellan

Cla

yM

IKE

25000

04-J

ul-

2006

4-2

.87±

0.5

9-2

.87±

0.5

901062285-5

933185c

Gem

ini

South

Phoenix

50000

27-J

ul-

2007

6,7

1.1

0.4

41.1

0.4

405233822-1

403022c

Gem

ini

South

Phoenix

50000

27-O

ct-

2009

612.4

0.4

112.4

0.4

105361998-1

920396c

Keck

IIN

IRSP

EC

20000

14-S

ep-2

008

1,2

22.0

0.7

022.0

0.7

014284323+

3310391c

Magellan

Cla

yM

IKE

25000

04-J

ul-

2006

5-3

9.1

0.3

8-3

9.1

0.3

818284076+

1229207ac

Keck

IIN

IRSP

EC

20000

14-S

ep-2

008

151.9

15.0

451.9

15.0

4

Page 60: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

60 Faherty et al.Table

7—

Continued

Nam

eT

ele

scop

eR

eso

lvin

gP

ow

er

Date

-obs

Sta

ndard

sU

sed

R.V

.R

.V.

final

(1)

(2)

(3)

(4)

(5)

(6)

(7)

21041491-1

037369c

Gem

ini

South

Phoenix

50000

28-O

ct-

2009

6,7

-30.9

1.5

8-3

0.9

1.5

821481633+

4003594c

Keck

IIN

IRSP

EC

20000

15-S

ep-2

008

1,2

,3-1

4.5

0.7

1-1

4.5

0.7

122244381-0

158521c

Keck

IIN

IRSP

EC

20000

15-S

ep-2

008

1,2

-36.4

0.0

1-3

6.4

0.0

122344161+

4041387c

Keck

IIN

IRSP

EC

20000

15-S

ep-2

008

1,2

,3-1

2.4

0.4

2-1

2.4

0.4

2

23515044-2

537367acd

Gem

ini

South

Phoenix

50000

28-O

ct-

2009

6,7

-5.6

1.8

2-5

.68±

1.8

2

Note.

—D

ata

from

2M

ASS

Cutr

iet

al.

(2003)

and

AL

LW

ISE

Cutr

i&

et

al.

(2013).

Sta

ndard

stars

are

as

follow

s:1.)

2M

ASS

J18212815+

1414010

(+9.7

8B

lake

et

al.

2010),

2.)

2M

ASS

J00452143+

1634446

(+3.2

9B

lake

et

al.

2010),

3.)

2M

ASS

J22244381-0

158521

(-37.5

5B

lake

et

al.

2010),

4.)

LH

S2924

(-37.4

Mohanty

et

al.

2003),

5.)

BR

I1222-1

221

(-4.8

Mohanty

et

al.

2003),

6.)

2M

ASS

J11553952-3

727350

(+45.0

Seif

ahrt

et

al.

2010),

7.)

2M

ASS

J05233822-1

403022

(+11.8

2B

lake

et

al.

2007)

aL

ow

Quality

Sp

ectr

um

bN

oU

seable

Sp

ectr

um

cN

oSp

ectr

osc

opic

Sig

ns

of

Youth

dT

his

ob

ject

islist

ed

inF

ilip

pazzo

et

al.

(2015)

wit

ha

dis

tance

and

refe

rence

toFahert

y+

inpre

p.

The

valu

ein

that

pap

er

was

spectr

ophoto

metr

icand

should

not

be

regard

ed

as

apara

llax.

Page 61: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

Brown Dwarf Analogs to Exoplanets 61

Table 8Comparison of new and previously published RVs.

Name Telescope RVours RVothers RV RVothers RV RVothers RV RVothers RV

kms−1 kms−1 ref. kms−1 ref. kms−1 ref. kms−1 ref.(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

00242463-0158201 Gemini South Phoenix +11.65±1.60 +10.4±3 3 +16±2 700452143+1634446 Keck II NIRSPEC +3.16±0.83 +3.29±0.43 101415823-4633574 Magellan Clay MIKE +6.41±1.56 +12±15 203393521-3525440 Magellan Clay MIKE +7.43±0.72 +7.6±3 3 +6±2 8 +5.8±2.4 5 +10±2 9

04433761+0002051 Magellan Clay MIKE +16.97±0.76 +17.1±3 305233822-1403022 Gemini South Phoenix +12.48±0.41 +12.21±0.21 106085283-2753583 Magellan Clay MIKE +26.35±0.07 +24±1 4

1224522-123835 Magellan Clay MIKE −2.87±0.59 −5.8±3 3 −4.8±2 714284323+3310391 Magellan Clay MIKE −39.14±0.38 −37.4±2 715525906+2948485 Magellan Clay MIKE −19.90±1.38 −18.43±0.11 118212815+1414010 Keck II NIRSPEC +9.08±0.17 +9.78±0.21 120004841-7523070 Magellan Clay MIKE +4.40±2.84 +8±2.4 5 +11.77±0.97 621041491-1037369 Gemini South Phoenix −30.90±1.58 −21.09±0.41 1 −21.2±2.2 522244381-0158521 Keck II NIRSPEC −36.48±0.01 −37.55±0.21 123515044-2537367 Gemini South Phoenix −5.68±1.82 −10±3 3 −12.3±2.6 5

Note. — References: 1. Blake et al. (2010), 2. Kirkpatrick et al. (2006), 3. Reiners (2009), 4. Rice et al. (2010), 5. Burgasser et al. (2015), 6.Galvez-Ortiz et al. (2010), 7. Mohanty et al. (2003), 8. Basri (2000), 9. Reid et al. (2002)

Table 9Adopted near-infrared Spectral Types

Name SpT SpT Gravity Score Gravity Type Gravity Score Gravity TypeAdopted Allers13 MedRes MedRes LowRes LowRes

(1) (2) (3) (4) (5) (6) (7)

00040288-6410358 L1 γ L2.3 ± 0.3 2221 VL-G 2211 VL-G00274197+0503417 M8 β M9.0 ± 0.8 2n11 INT-G 2n01 INT-G00452143+1634446 L0 β L1.5 ± 0.4 1211 INT-G 1211 INT-G00550564+0134365 L2γ L1.0 ± 0.9 — — 2122 VL-G01174748-3403258 L1 γ L2.2 ± 0.5 1211 INT-G 1211 INT-G

01174748-3403258(2) L1 γ L1.9 ± 0.5 2212 VL-G 2222 VL-G01244599-5745379 L0 γ L0.7 ± 0.5 2222 VL-G 2222 VL-G02103857-3015313 L0 γ L1.0 ± 0.3 2211 VL-G 2211 VL-G

02103857-3015313(2) L0 γ L2.2 ± 0.1 2112 VL-G 1122 VL-G02251947-5837295 M9 γ M9.4 ± 0.1 1n11 INT-G 1n11 INT-G02340093-6442068 L0 β/γ L0.8 ± 0.3 2211 VL-G 2211 VL-G03231002-4631237 L0γ M9.0±0.4 — — 2222 VL-G03264225-2102057 L5β γ L4.1±0.1 — — 0n01 FLD-G04210718-6306022 L5 γ L4.2 ± 0.1 0n11 INT-G 0n01 FLD-G04351455-1414468 M7γa M6.8±0.4 2n22 VL-G 2n22 VL-G05012406-0010452 L4γ L2.4±0.1 — — 2212 VL-G05120636-2949540 L4 pec L4.1 ± 0.8 2010 FLD-G 2010 FLD-G

05120636-2949540(2) L5βγ L4.3 ± 0.4 — — 0n01 FLD-G05361998-1920396 L1 γ L2.1 ± 0.3 1222 VL-G 1212 VL-G07123786-6155528 L1 γ L1.5 ± 0.5 2211 VL-G 2221 VL-G09532126-1014205 M9β M9.7±0.3 2n12 VL-G 2n02 VL-G09593276+452330911020983-3430355 M9 γ M8.3 ± 1.0 2n22 VL-G 2n22 VL-G11544223-3400390 L1 β L0.8 ± 0.5 1111 INT-G 1101 INT-G12563961-2718455 L4 β L3.4 ± 0.4 1211 INT-G 1201 INT-G14112131-2119503 M8 β M8.3 ± 0.1 1n11 INT-G 1n01 INT-G14482563+1031590 L4 pec L4.7 ± 0.8 2010 FLD-G 1010 FLD-G15382417-1953116 L4 γ L3.5 ± 0.9 2211 VL-G 2211 VL-G

15382417-1953116(2) L4γ L2.1±0.6 — — 1021 INT-G15515237+0941148 > L5 γ L3.3 ± 0.2 — — — —15575011-2952431 L1 γ L2.3 ± 0.6 2222 VL-G 2212 VL-G17111353+2326333 L0 pec L0.4 ± 0.6 2211 VL-G 2211 VL-G17260007+1538190 L3 β/γ L2.6 ± 0.3 1121 INT-G 1121 INT-G17410280-4642218 > L5 γ L5.3 ± 0.8 — — — —18212815+1414010 L4 pec L3.5 ± 1.3 1111 INT-G 0101 FLD-G19355595-2846343 M9 γ M9.3 ± 0.4 2n21 VL-G 2n11 INT-G19564700-7542270 L2 γ L0.9 ± 0.2 2222 VL-G 2222 VL-G20004841-7523070 M9 γ L0.2 ± 1.1 2n21 VL-G 2n21 VL-G20025073-0521524 > L5 β/γ L5.5 ± 0.2 — — — —20135152-2806020 L0 γ L0.0 ± 0.4 2122 VL-G 2122 VL-G

20135152-2806020(2) L0 γ L0.0 ± 0.3 2122 VL-G 2122 VL-GPSO318 L6-L8 γ L6.8 ± 0.8 — — — —

21265040-8140293 L3 γ L2.4 ± 0.1 1221 VL-G 1221 VL-G21265040-8140293(2) L3 γ L2.4 ± 0.2 1221 VL-G 1221 VL-G

21543454-1055308 L5 γ L5.5 ± 0.8 2n11 INT-G 2n01 INT-G22064498-4217208 L4 β/γ L3.3 ± 0.2 1111 INT-G 1111 INT-G

22064498-4217208(2) L3-4 β/γ L2.7 ± 0.2 — — — —

Page 62: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

62 Faherty et al.

Table 9 — Continued

Name SpT SpT Gravity Score Gravity Type Gravity Score Gravity TypeAdopted Allers13 MedRes MedRes LowRes LowRes

(1) (2) (3) (4) (5) (6) (7)

22064498-4217208(3) L3γ L1.7 ± 0.8 — — 1?12 INT-G22443167+2043433 L6-L8 γ L6.7 ± 0.8 — — — —22495345+0044046 L1 γ L3.1 ± 0.3 2011 INT-G 2011 INT-G23153135+0617146 L0 γ L1.0 ± 0.5 2222 VL-G 2212 VL-G

23153135+0617146(2) L0γ M9.9±0.5 — — 2222 VL-G

aReddening E(B-V)=1.8 and SPT = M7 are a good solution, but spt/reddening is almost degenerate.

Page 63: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

Brown Dwarf Analogs to Exoplanets 63Table

10

Kin

em

ati

cdata

on

Low

Surf

ace

Gra

vit

yD

warf

s

2M

ASS

Desi

gnati

on

SpT

SpT

µRA

cosDEC

µDEC

πR

V(R

ef)

(OpT

)(I

R)

(′′

yr−

1)

(′′

yr−

1)

(mas)

(km

s−1)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

00011217+

1535355

—-

L4β

0.1

352±

0.0

107

-0.1

696±

0.0

137

––

10

00040288-6

410358

L1γ

L1γa

0.0

64±

0.0

12

-0.0

47±

0.0

12

(17±

1)

(6.0

2.8

9)

100182834-6

703130

—-

L0γ

0.0

66±

0.0

04

-0.0

523±

0.0

126

––

1,1

000191296-6

226005

—-

L1γ

0.0

541±

0.0

047

-0.0

345±

0.0

121

(21±

6)

(6.7±

2.5

)1,1

000192626+

4614078

M8–

M8β

0.1

4000±

0.0

6-0

.1±

0.0

5(3

3)

-19.5±

22,4

00274197+

0503417

M9.5β

L0β

0.0

105±

0.0

004

-0.0

008±

0.0

003

13.8±

1.6

–3

00303013-1

450333

L7–

L4-L

0.2

497±

0.0

141

-0.0

053±

0.0

15

37.4

4.5

0–

10,1

100325584-4

405058

L0γ

L0β

0.1

2830±

0.0

034

-0.0

934±

0.0

03

21.6±

7.2

12.9

1.9

21,5

003323.8

6-1

521309

L4β

L1

0.3

0950±

0.0

104

0.0

289±

0.0

183

24.8±

2.5

-6.3

0.4

01,6

00344300-4

102266

—-

L1β

0.0

939±

0.0

079

-0.0

412±

0.0

108

––

10

00374306-5

846229

L0γ

—-

0.0

5700±

0.0

10.0

17±

0.0

05

–6.6

0.0

71

00381489-6

403529

—-

M9.5β

0.0

871±

0.0

038

-0.0

353±

0.0

105

(23±

5)

(7.2

2.8

1)

1,1

000425923+

1142104

—-

M9β

0.0

929±

0.0

17

-0.0

758±

0.0

152

––

10

00452143+

1634446

L2β

L2γ

0.3

5500±

0.0

1-0

.04±

0.0

162.5±

3.7

3.1

0.8

31

00464841+

0715177

M9β

L0δ

0.0

9800±

0.0

22

-0.0

51±

0.0

1–

-2.7

0.2

71,2

00470038+

6803543

L7(γ

?)

L6-L

0.3

8700±

0.0

04

-0.1

97±

0.0

04

82±

3-2

1.4

700550564+

0134365

L2γ

L2γ

0.0

4400±

0.0

24

-0.0

82±

0.0

24

–-1

.21±

0.3

81,2

00584253-0

651239

L0–

L1β

0.1

367±

0.0

02

-0.1

226±

0.0

018

33.8±

4.0

–5

01033203+

1935361

L6β

L6β

0.2

9300±

0.0

046

0.0

277±

0.0

047

46.9±

7.6

–8

01174748-3

403258

L1β

L1βa

0.0

84±

0.0

15

-0.0

45±

0.0

08

(20±

3)

(3.9

2.0

9)

101205114-5

200349

—-

L1γ

0.0

921±

0.0

058

-0.0

404±

0.0

102

(24±

4)

(7.2

2.5

)1,1

001231125-6

921379

M7.5γ

—-

0.0

8278±

0.0

0174

-0.0

2646±

0.0

0139

21.6±

3.3

10.9±

34,9

01244599-5

745379

L0γ

L0γ

-0.0

0300±

0.0

10.0

18±

0.0

19

––

201262109+

1428057

L4γ

L2γ

0.0

7000±

0.0

12

-0.0

08±

0.0

12

––

101294256-0

823580

M5–

M7β

0.1

007±

0.0

084

-0.0

564±

0.0

09

––

10

01415823-4

633574

L0γ

L0γ

0.1

05±

0.0

1-0

.049±

0.0

1(2

3)

6.4

09±

1.5

61

01531463-6

744181

L2–

L3β

0.0

71±

0.0

037

-0.0

166±

0.0

127

(21±

7)

(10.4

2.7

1)

1,1

002103857-3

015313

L0γ

L0γa

0.1

45±

0.0

36

-0.0

0.0

07

(32±

8)

7.8

0.2

74

102212859-6

831400

M8β

—-

0.0

5390±

0.0

044

0.0

137±

0.0

045

25.4±

3.6

–8

02215494-5

412054

M9β

—-

0.1

36±

0.0

1-0

.01±

0.0

17

(31±

5)

10.1

0.0

97

1,2

02235464-5

815067

L0γ

—-

0.0

9860±

0.0

008

-0.0

182±

0.0

009

27.4±

2.6

10.3

0.2

31

02251947-5

837295

M9β

M9γ

0.0

8500±

0.0

1-0

.03±

0.0

18

––

202265658-5

327032

—-

L0δ

0.0

936±

0.0

053

-0.0

028±

0.0

107

––

1,1

002292794-0

053282

—-

L0γ

-0.0

0900±

0.0

98

-0.0

54±

0.2

02

––

102340093-6

442068

L0γ

L0βγ

0.0

88±

0.0

12

-0.0

15±

0.0

12

(21±

5)

11.7

62±

0.7

21

102410564-5

511466

—-

L1γ

0.0

965±

0.0

052

-0.0

123±

0.0

106

(24±

4)

(11.7

2.4

4)

1,1

002411151-0

326587

L0γ

L1γ

0.0

7370±

0.0

01

-0.0

242±

0.0

019

21.4±

2.6

6.3

7.9

81

02501167-0

151295

—-

M7β

0.0

627±

0.0

087

-0.0

306±

0.0

09

30.2±

4.5

–25,

10

02530084+

1652532

—-

M7β

1.5

124±

0.0

406

0.4

305±

0.0

447

260.6

2.6

9–

24

02535980+

3206373

M7β

M6β

0.0

8700±

0.0

1-0

.096±

0.0

117.7±

2.5

–1

02583123-1

520536

—-

L3β

0.0

625±

0.0

098

-0.0

581±

0.0

097

––

1,1

003032042-7

312300

L2γ

—-

0.0

4300±

0.0

12

0.0

03±

0.0

12

––

103164512-2

848521

L0–

L1β

0.0

952±

0.0

082

-0.0

81±

0.0

094

––

10

03231002-4

631237

L0γ

L0γa

0.0

66±

0.0

08

0.0

01±

0.0

16

(17±

3)

13.0

01±

0.0

45

103264225-2

102057

L5β

L5βγa

0.1

08±

0.0

14

-0.1

46±

0.0

15

(41±

1)

(22.9

2.0

7)

1,2

03350208+

2342356

M8.5

–M

7.5β

0.0

5400±

0.0

1-0

.056±

0.0

123.6±

1.3

15.5±

1.7

12

03393521-3

525440

M9β

L0β

0.3

0580±

0.0

004

0.2

70548±

0.0

004

155.8

1.0

36.9

1.0

51,1

303420931-2

904317

—-

L0β

0.0

671±

0.0

1-0

.0207±

0.0

122

––

1,1

003421621-6

817321

L4γ

—-

0.0

653±

0.0

028

0.0

185±

0.0

091

(21±

9)

(13.8

2.6

2)

103550477-1

032415

M8.5

–M

8.5β

0.0

464±

0.0

072

-0.0

265±

0.0

065

––

10

03552337+

1133437

L5γ

L3-L

0.2

2500±

0.0

132

-0.6

0.0

15

110.8±

4.3

11.9

0.2

26,1

4

03572695-4

417305b

L0β

L0β

0.0

6400±

0.0

13

-0.0

0.0

19

–10.7

4.6

01,2

04062677-3

812102

L0γ

L1γ

0.0

0900±

0.0

12

0.0

29±

0.0

12

––

104185879-4

507413

—-

L3γ

0.0

533±

0.0

084

-0.0

082±

0.0

126

––

10

04210718-6

306022

L5β

L5γ

0.1

4600±

0.0

08

0.1

91±

0.0

18

–14.7

0.3

31,2

04351455-1

414468

M8γ

M7γ

0.0

0900±

0.0

14

0.0

16±

0.0

14

–16.1

1.7

61,2

Page 64: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

64 Faherty et al.Table

10

—Continued

2M

ASS

Desi

gnati

on

SpT

SpT

µRA

cosDEC

µDEC

πR

V(R

ef)

(OpT

)(I

R)

(′′

yr−

1)

(′′

yr−

1)

(mas)

(km

s−1)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

04362788-4

114465

M8β

M9γ

0.0

73±

0.0

12

0.0

13±

0.0

16

(23±

6)

14.9

72±

1.4

46

1,2

04400972-5

126544

—-

L0γ

0.0

458±

0.0

062

0.0

078±

0.0

105

––

10

04433761+

0002051b

M9γ

M9γ

0.0

2800±

0.0

14

-0.0

99±

0.0

14

–16.9

0.7

61,2

04493288+

1607226

—-

M9γ

0.0

196±

0.0

094

-0.0

38±

0.0

092

––

10

05012406-0

010452

L4γ

L3γ

0.1

9030±

0.0

095

-0.1

428±

0.0

125

51±

3.7

21.7

0.6

61,6

05104958-1

843548

—-

L2β

0.0

882±

0.0

095

-0.0

399±

0.0

106

––

10

05120636-2

949540

L5γ

L5β

-0.0

1000±

0.0

13

0.0

0.0

15

––

105181131-3

101529

M6.5

–M

0.0

416±

0.0

068

0.0

008±

0.0

081

––

10

05184616-2

756457

L1γ

L1γ

0.0

2860±

0.0

042

-0.0

16±

0.0

04

21.4±

6.9

24.3

0.1

91,8

05264316-1

824315

—-

M7β

0.0

247±

0.0

093

-0.0

227±

0.0

095

––

10

05341594-0

631397

M8γ

M8γ

0.0

0200±

0.0

12

-0.0

07±

0.0

12

––

105361998-1

920396

L2γ

L2γ

0.0

2460±

0.0

053

-0.0

306±

0.0

05

25.6±

9.4

22.0

65±

0.6

95

1,8

05402325-0

906326

—-

M9β

0.0

376±

0.0

098

-0.0

292±

0.0

097

––

10

05575096-1

359503

M7–

M7γ

0.0

0000±

0.0

05

0.0

05

1.9±

130.3±

2.8

12

06023045+

3910592

L1–

L1β

0.1

5700±

0.0

1-0

.504±

0.0

188.5±

1.6

–1

06085283-2

753583

M8.5γ

L0γ

0.0

0890±

0.0

035

0.0

107±

0.0

035

32±

3.6

26.3

0.0

71,8

06272161-5

308428

—-

L0βγ

0.0

104±

0.0

066

0.0

651±

0.0

123

––

10

06322402-5

010349

L3β

L4γ

-0.1

0020±

0.0

052

-0.0

046±

0.0

088–

––

1,1

006524851-5

741376

M8β

—-

0.0

0100±

0.0

034

0.0

292±

0.0

033

31.3±

3.2

–8

07123786-6

155528

L1β

L1γ

-0.0

3570±

0.0

049

0.0

791±

0.0

048

22.9±

9.1

–8

07140394+

3702459

M8–

M7.5β

-0.0

984±

0.0

069

-0.1

71±

0.0

089

80.1

4.8

–26

08095903+

4434216

—-

L6p

-0.1

833±

0.0

081

-0.2

019±

0.0

13

––

10

08561384-1

342242

—-

M8γ

-0.0

576±

0.0

078

-0.0

194±

0.0

081

––

10

08575849+

5708514

L8–

L8—

-0.4

181±

0.0

044

-0.3

706±

0.0

113

––

10

09451445-7

753150

—-

M9β

-0.0

345±

0.0

016

0.0

436±

0.0

119

––

10

09532126-1

014205

M9γ

M9β

-0.0

7000±

0.0

07

-0.0

0.0

09

––

109593276+

4523309

—-

L3γ

-0.0

8700±

0.0

09

-0.1

26±

0.0

12

–2.7±

0.7

1G

196-3

BL

L3γ

-0.1

3230±

0.0

107

-0.2

021±

0.0

137

41±

4.1

–6

10212570-2

830427

—-

L4βγ

-0.0

526±

0.0

131

-0.0

375±

0.0

163

––

10

10220489+

0200477

M9β

M9β

-0.1

5620±

0.0

066

-0.4

29±

0.0

068

26.4±

11.5

-7.9±

4.8

810224821+

5825453

L1β

L1β

-0.8

0700±

0.0

1-0

.73±

0.0

154.3±

2.5

19.2

0.1

11

TW

A28

M8.5γ

M9γ

-0.0

6720±

0.0

006

-0.0

14±

0.0

006

18.1±

0.5

(13.3±

1.8

)18

11064461-3

715115

—-

M9γ

-0.0

408±

0.0

076

-0.0

066±

0.0

102

––

10

11083081+

6830169

L1γ

L1γ

-0.2

389±

0.0

026

-0.1

922±

0.0

092

––

10

11193254-1

137466

—-

L7γ

-.1451±

0.0

149

-0.0

724±

0.0

16

(35±

5)

8.5±

3.3

27

11271382-3

735076

—-

L0δ

-0.0

613±

0.0

138

0.0

132±

0.0

208

––

10

TW

A26

M9γ

M9γ

-0.0

8120±

0.0

039

-0.0

277±

0.0

021

23.8

2.5

811.6±

215,1

6114724.1

0-2

04021.3

—-

L7γ

-0.1

221±

0.0

12

-0.0

745±

0.0

113

(32±

4)

(9.6

)28

11480096-2

836488

—-

L1β

-0.0

743±

0.0

135

-0.0

194±

0.0

161

––

10

11544223-3

400390

L0β

L1β

-0.1

6100±

0.0

08

0.0

12±

0.0

07

––

1T

WA

27A

M8γ

M8γ

-0.0

6300±

0.0

02

-0.0

23±

0.0

03

19.1±

0.4

11.2±

216,1

912074836-3

900043

L0γ

L1γ

-0.0

572±

0.0

079

-0.0

248±

0.0

105

(15±

3)

(9.4

1.9

1)

17

12271545-0

636458

M9–

M8.5β

-0.1

141±

0.0

111

-0.0

646±

0.0

109

––

10

TW

A29

M9.5γ

L0γ

-0.0

4030±

0.0

117

-0.0

203±

0.0

17

12.6

2.0

7(7

.74±

2.0

4)

15

12474428-3

816464

—-

M9γ

-0.0

3320±

0.0

071

-0.0

166±

0.0

095

––

17

12535039-4

211215

—-

M9.5γ

-0.0

388±

0.0

09

-0.0

121±

0.0

132

––

10

12563961-2

718455

—-

L4β

-0.0

674±

0.0

102

-0.0

565±

0.0

127

––

10

14112131-2

119503

M9β

M8β

-0.0

7800±

0.0

09

-0.0

73±

0.0

11

–-0

.9±

2.5

114252798-3

650229

L3–

L4γ

-0.2

8489±

0.0

014

-0.4

6308±

0.0

01

86.4

0.8

35.3

0.2

513,1

415104786-2

818174

M9–

M9β

-0.1

092±

0.0

081

-0.0

399±

0.0

098

––

10

15291017+

6312539

—-

M8β

-0.1

132±

0.0

033

0.0

447±

0.0

091

––

10

15382417-1

953116

L4γ

L4γ

0.0

2600±

0.0

07

-0.0

45±

0.0

07

––

115470557-1

626303A

—-

M9β

-0.0

539±

0.0

087

-0.1

253±

0.0

09

––

10

15474719-2

423493

M9γ

L0β

-0.1

3500±

0.0

09

-0.1

27±

0.0

08

–-6

.52±

0.3

51

15515237+

0941148

L4γ

>L

-0.0

7000±

0.0

22

-0.0

0.0

22

––

215525906+

2948485

L0β

L0β

-0.1

6200±

0.0

1-0

.06±

0.0

148.8±

2.7

-18.4

0.1

11,1

415575011-2

952431

M9δ

L1γ

-0.0

1000±

0.0

12

-0.0

28±

0.0

12

––

116154255+

4953211

L4γ

L3-L

-0.0

8000±

0.0

12

0.0

18±

0.0

12

–-2

5.5

3.1

81

Page 65: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

Brown Dwarf Analogs to Exoplanets 65Table

10

—Continued

2M

ASS

Desi

gnati

on

SpT

SpT

µRA

cosDEC

µDEC

πR

V(R

ef)

(OpT

)(I

R)

(′′

yr−

1)

(′′

yr−

1)

(mas)

(km

s−1)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

17111353+

2326333

L0γ

L1β

-0.0

6300±

0.0

15

-0.0

35±

0.0

12

–-2

0.6

0.7

51

17260007+

1538190

L3.5γ

L3γ

-0.0

4310±

0.0

071

-0.0

557±

0.0

052

28.6±

2.9

-20.5

0.8

41,6

17410280-4

642218

—-

L6-L

-0.0

2040±

0.0

092

-0.3

43±

0.0

137

–-5

.7±

5.1

20

18212815+

1414010

L4.5

—L

4p

ec

0.2

3027±

0.0

0016

-0.2

4149±

0.0

0012

106.6

0.2

39.0

0.1

71,2

219350976-6

200473

—-

L1γ

-0.0

043±

0.0

063

-0.0

533±

0.0

162

––

10

19355595-2

846343

M9γ

M9γ

0.0

3400±

0.0

12

-0.0

58±

0.0

12

––

119564700-7

542270

L0γ

L2γ

0.0

0900±

0.0

12

-0.0

59±

0.0

12

––

120004841-7

523070

M9γ

M9γa

0.0

69±

0.0

12

-0.1

0.0

04

(31±

1)

4.3

97±

2.8

42

120025073-0

521524

L5β

L5-L

-0.0

9800±

0.0

05

-0.1

0.0

08

––

120113196-5

048112

—-

L3γ

0.0

213±

0.0

081

-0.0

713±

0.0

145

––

10

20135152-2

806020

M9γ

L0γ

0.0

4300±

0.0

12

-0.0

68±

0.0

12

–-6

.53±

0.2

41

20282203-5

637024

—-

M8.5γ

0.0

233±

0.0

053

-0.0

604±

0.0

106

––

10

20334473-5

635338

—-

L0γ

0.0

16±

0.0

061

-0.0

731±

0.0

125

––

10

20391314-1

126531

M8–

M7β

0.0

485±

0.0

09

-0.0

898±

0.0

09

––

10

20575409-0

252302

L1.5

–L

0.0

0160±

0.0

038

-0.0

863±

0.0

039

70.1±

3.7

-24.6

0.6

18

PSO

318

—-

L6-L

0.1

3730±

0.0

013

-0.1

387±

0.0

014

40.7±

2.4

−6.0

+0.8

−1.1

21,2

321265040-8

140293

L3γ

L3γ

0.0

5560±

0.0

014

-0.1

018±

0.0

03

31.3±

2.6

10.0

0.4

91

21324036+

1029494

—-

L4β

0.1

078±

0.0

164

0.0

297±

0.0

181

––

10

21543454-1

055308

L4β

L5γ

0.1

7500±

0.0

12

0.0

09±

0.0

12

––

121544859-7

459134

—-

M9.5β

0.0

407±

0.0

022

-0.0

796±

0.0

122

(21±

7)

(6.2

3.1

)1,1

021572060+

8340575

L0–

M9γ

0.1

248±

0.0

008

0.0

441±

0.0

154

––

10

22025794-5

605087

—-

M9γ

0.0

496±

0.0

052

-0.0

696±

0.0

103

––

10

22064498-4

217208

L4γ

L4γa

0.1

28±

0.0

13

-0.1

81±

0.0

08

(35±

2)

(7.6±

2.0

)1

22081363+

2921215

L3γ

L3γ

0.0

9070±

0.0

03

-0.0

162±

0.0

037

21.2±

0.7

-15.5

1.9

31,6

22134491-2

136079

L0γ

L0γ

0.0

6000±

0.0

11

-0.0

63±

0.0

17

–-4

.92±

4.1

81,2

22351658-3

844154

—-

L1.5γ

0.0

505±

0.0

078

-0.0

757±

0.0

109

(22±

2)

(-4.9±

3.1

)10

22353560-5

906306

—-

M8.5β

0.0

556±

0.0

051

-0.0

81±

0.0

108

(23±

5)

(1.7

3.1

4)

1,1

022443167+

2043433

L6.5

p–

L6-L

8γa

0.2

52±

0.0

14

-0.2

14±

0.0

11

(54±

4)

(-15.5±

1.7

)1,2

22495345+

0044046

L4γ

L3β

0.0

7500±

0.0

18

0.0

26±

0.0

18

–-3

.26±

0.9

01,2

23153135+

0617146

L0γ

L0γ

0.0

5600±

0.0

12

-0.0

39±

0.0

12

–-1

4.6

0.5

21

23224684-3

133231

L0β

L2β

-0.1

9480±

0.0

074

-0.5

273±

0.0

075

58.6±

5.6

33.8

1.1

11,8

23225299-6

151275

L2γ

L3γa

0.0

62±

0.0

1-0

.085±

0.0

09

(22±

1)

6.7

47±

0.7

51

23231347-0

244360

M8.5

–M

0.0

859±

0.0

097

-0.0

435±

0.0

106

––

10

23255604-0

259508

L3–

L1γ

0.0

783±

0.0

127

-0.0

958±

0.0

11

––

10

23360735-3

541489

—-

M9β

0.0

696±

0.0

082

-0.0

807±

0.0

099

––

10

23433470-3

646021

—-

L3-L

0.0

87±

0.0

083

-0.0

987±

0.0

125

––

10

23453903+

0055137

M9–

M9β

0.0

841±

0.0

134

-0.0

461±

0.0

117

––

10

23520507-1

100435

M7–

M8β

0.0

881±

0.0

09

-0.1

145±

0.0

085

––

10

Note.

—R

efe

rences:

1=

This

Pap

er,

2=

Fahert

yet

al.

(2009),

3=

Dahn

et

al.

(2002),

4=

Rein

ers

&B

asr

i(2

009),

5=

Maro

cco

et

al.

(2013),

6=

Zapate

roO

sori

oet

al.

(2014),

7=

Giz

iset

al.

(2015),

8=

Fahert

yet

al.

(2012),

9=

Rie

del

(2015),

10=

Gagne

et

al.

(2015b),

11=

Vrb

aet

al.

(2004),

12=

Shkoln

iket

al.

(2012),

13=

Die

teri

chet

al.

(2014),

14=

Bla

ke

et

al.

(2010),

15=

Wein

berg

er

et

al.

(2013),

16=

Mohanty

et

al.

(2003),

17=

Gagne

et

al.

(2014a),

18=

Teix

eir

aet

al.

(2008),

19=

Ducoura

nt

et

al.

(2014),

20=

Sch

neid

er

et

al.

(2014),

21=

Liu

et

al.

(2013),

22=

Sahlm

ann

et

al.

(2016),

23=

Allers

et

al.

(2016),

24=

Henry

et

al.

(2006),

25=

Tin

ney

et

al.

(1995),

26=

Dit

tmann

et

al.

(2014),

27=

Kellogg

et

al.

(2016),

28=

Sch

neid

er

et

al.

(2016)

aT

hese

sourc

es

have

new

infr

are

dsp

ectr

apre

sente

din

this

pap

er.

Inth

em

ajo

rity

of

case

sw

euse

the

infr

are

dsp

ectr

al

typ

eand

gra

vit

ycla

ssifi

cati

on

dia

gnose

din

this

work

.If

an

ob

ject

had

Sp

eX

data

we

defa

ult

toth

ere

sult

ant

typ

eand

cla

ssifi

cati

on

wit

hth

at

data

.b

These

sourc

es

were

list

ed

inF

ilip

pazzo

et

al.

(2015)

as

mem

bers

of

ass

ocia

tions

but

as

has

been

note

din

Table

12,

we

have

dow

ngra

ded

them

toam

big

uos

young

ob

jects

Page 66: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

66 Faherty et al.

Table 11Kinematics for target dwarfs

Name U V W X Y Z(1) (2) (3) (4) (5) (6) (7)

00325584-4405058 -10.77 ± 3.85 -32.08 ± 8.55 -8.34 ± 2.26 8.96 ± 2.59 -9.24 ± 2.67 -41.15 ± 11.89003323.86-1521309 -52.85 ± 5.68 -26.91 ± 3.93 3.23 ± 0.86 -1.86 ± 0.18 8.46 ± 0.82 -39.09 ± 3.800452143+1634446 -22.62 ± 1.47 -14.31 ± 1.21 -5.02 ± 0.84 -5.66 ± 0.33 9.48 ± 0.55 -11.54 ± 0.6700470038+6803543 -8.58 ± 1.06 -27.83 ± 1.22 -13.53 ± 0.49 -6.52 ± 0.24 10.23 ± 0.37 1.1 ± 0.0401231125-6921379 -7.92 ± 1.96 -20.39 ± 2.71 -1.82 ± 2.42 14.9 ± 2.11 -27.1 ± 3.84 -33.76 ± 4.7802235464-5815067 -7.94 ± 0.86 -18.46 ± 1.19 -1.11 ± 0.7 4.29 ± 0.4 -20.41 ± 1.88 -29.71 ± 2.7402411151-0326587 -9.68 ± 4.71 -11.49 ± 1.49 -1.39 ± 6.56 -21.39 ± 2.55 1.63 ± 0.19 -30.27 ± 3.603350208+2342356 -16.91 ± 1.77 -11.46 ± 2.11 -8.08 ± 1.95 -36.8 ± 2.02 10.13 ± 0.55 -18.31 ± 103393521-3525440 -13.32 ± 0.35 -4.95 ± 0.52 -0.1 ± 0.85 -2.1 ± 0.01 -3.19 ± 0.02 -5.15 ± 0.0303552337+1133437 -5.53 ± 0.4 -26.32 ± 1.18 -15.34 ± 0.62 -7.72 ± 0.3 0.25 ± 0.01 -4.64 ± 0.1805012406-0010452 -15.15 ± 0.83 -27 ± 1.74 -1.08 ± 1.07 -16.76 ± 1.16 -6.02 ± 0.42 -8.06 ± 0.5605184616-2756457 -10.99 ± 0.93 -21.09 ± 1.55 -8.64 ± 1.37 -23.81 ± 6.57 -28.98 ± 8 -23.02 ± 6.3505361998-1920396 -10.85 ± 1.41 -18.95 ± 1.83 -7.49 ± 1.06 -24 ± 7.34 -22.27 ± 6.81 -15.21 ± 4.6505575096-1359503 -22.15 ± 7.41 -18.46 ± 8.29 -9.3 ± 9.91 -309.69 ± 83.51 -257.52 ± 69.45 -131.51 ± 35.4606085283-2753583 -15.51 ± 0.45 -19.93 ± 0.34 -7.79 ± 0.51 -16.84 ± 1.82 -23.54 ± 2.54 -11.12 ± 1.210220489+0200477 14.87 ± 4.49 -53.28 ± 19.96 -49.14 ± 14.81 -11.07 ± 3.8 -20.45 ± 7.02 24.35 ± 8.3610224821+5825453 -69.35 ± 2.74 -67.62 ± 3.48 0.1 ± 0.87 -10.57 ± 0.48 5.61 ± 0.26 13.98 ± 0.64TWA26 -9.02 ± 1.5 -18.29 ± 1.94 -3.52 ± 1.42 9.92 ± 1.02 -35.32 ± 3.63 19.9 ± 2.04TWA27A -7.62 ± 0.94 -18.24 ± 1.77 -3.52 ± 1.03 19.49 ± 0.41 -44.22 ± 0.94 20.06 ± 0.4214252798-3650229 -5.23 ± 0.21 -26.29 ± 0.27 -14.11 ± 0.19 8.56 ± 0.08 -6.42 ± 0.06 4.39 ± 0.0415525906+2948485 -9.73 ± 0.88 -22.44 ± 1.11 -4.71 ± 0.78 8.78 ± 0.47 9.7 ± 0.52 15.74 ± 0.8517260007+1538190 -8.66 ± 1.05 -21.01 ± 1.34 -6.26 ± 1.11 24.62 ± 2.4 19.25 ± 1.88 15.1 ± 1.4818212815+1414010 12.91 ± 0.12 4.62 ± 0.11 -11.30 ± 0.06 6.74 ± 0.01 6.17 ± 0.01 2.11 ± 0.0120575409-0252302 -12.44 ± 0.45 -19.97 ± 0.5 9.47 ± 0.39 8.66 ± 0.45 8.9 ± 0.47 -6.96 ± 0.36PSO318 -10.4 ± 0.7 -16.4 ± 0.6 -9.8 ± 0.8 15.2 ± 0.6 7.2 ± 0.3 -14.6 ± 0.621265040-8140293 -7.02 ± 1.07 -18.57 ± 1.09 -3.67 ± 0.39 17.55 ± 1.41 -20.48 ± 1.64 -16.95 ± 1.3622081363+2921215 -15.2 ± 0.87 -18.97 ± 1.83 -8.76 ± 1.13 3.64 ± 0.12 43.76 ± 1.4 -17.14 ± 0.55232246843133231 40.26 ± 2.74 -30.87 ± 3.18 -24.72 ± 1.27 5.55 ± 0.51 1.46 ± 0.13 -15.97 ± 1.47

Note. — Data is only presented for targets with measured parallax, or measured parallax and radial velocity. While the actual uncertaintiesare best described by a radially-oriented ellipsoid, they are given here for comparison to other values.

Page 67: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

Brown Dwarf Analogs to Exoplanets 67Table

12

Movin

gG

roup

mem

bers

hip

pro

babilit

ies

BA

NY

AN

IIL

AC

Ew

ING

Converg

ence

BA

NY

AN

IN

am

eSpT

SpT

Pro

b.

Conta

m.

Gro

up

Pro

b.

Gro

up

Pro

b.

Gro

up

Pro

b.

Gro

up

Decis

ion

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

00011217+

1535355

––

L4β

97.4

1.1

AB

DO

R35.1

2A

BD

OR

43.1

AB

DO

R99.0

4A

BD

OR

AM

00040288-6

410358

L1γ

L1γa

99.6

0T

UC

-HO

R38.7

6T

UC

-HO

R100

TU

C-H

OR

100

TU

C-H

OR

HL

M00182834-6

703130

––

L0γ

99.9

<0.1

TU

C-H

OR

48.7

1T

UC

-HO

R76.7

TU

C-H

OR

99.8

3T

UC

-HO

RA

M00191296-6

226005

––

L1γ

99.7

<0.1

TU

C-H

OR

0N

ON

E99.7

TU

C-H

OR

89.4

4T

UC

-HO

RH

LM

00192626+

4614078

M8

–M

72

13.3

AB

DO

R66.4

2A

BD

OR

99

AB

DO

R99

AB

DO

RH

LM

00274197+

0503417

M9.5β

L0βa

0100

AR

GU

S0

NO

NE

100

CH

A-N

EA

R100

OL

DA

M00303013-1

450333

L7

–L

4-L

26.5

2.6

AR

GU

S29.6

5A

BD

OR

98.1

CH

A-N

EA

R97.8

7A

RG

US

AM

00325584-4

405058

L0γ

L0β

67.3

1T

UC

-HO

R91.3

AB

DO

R96

AB

DO

R100

AB

DO

RH

LM

003323.8

6-1

52130.9

L4β

L1

099.8

CO

LU

MB

A0

NO

NE

60

CH

A-N

EA

R100

OL

DN

M00344300-4

102266

––

L1β

98.7

<0.1

TU

C-H

OR

41.9

1T

UC

-HO

R70.1

TW

HY

A70.4

8T

UC

-HO

RA

M00374306-5

846229

L0γ

––

099.3

BE

TA

PIC

0N

ON

E71

CH

A-N

EA

R100

OL

DN

M00381489-6

403529

––

M9.5β

99.9

<0.1

TU

C-H

OR

62.8

3T

UC

-HO

R58

TU

C-H

OR

95.9

1T

UC

-HO

RH

LM

00425923+

1142104

––

M9β

19.6

53.1

AB

DO

R0

NO

NE

64.9

AB

DO

R83.0

2B

ET

AP

ICA

M00452143+

1634446

L2β

L2γa

99.9

0.1

AR

GU

S99.4

2A

RG

US

37

CH

A-N

EA

R100

AR

GU

SB

M00464841+

0715177

M9β

L0δ

31.3

48.8

CO

LU

MB

A24.4

4A

BD

OR

99

TW

HY

A99

CO

LU

MB

AA

M00470038+

6803543

L7

(γ?)

L6-L

100

0.1

AB

DO

R99.9

5A

BD

OR

56

AB

DO

R100

AB

DO

RB

M00550564+

0134365

L2γ

L2γa

9.2

48.3

BE

TA

PIC

0N

ON

E68

AB

DO

R100

OL

DN

M00584253-0

651239

L0

–L

96.5

0.3

AB

DO

R52.5

AB

DO

R14.3

CO

LU

MB

A91.6

5B

ET

AP

ICA

M01033203+

1935361

L6β

L6β

51.2

15.7

AR

GU

S36.9

5H

yades

16

CH

A-N

EA

R96

OL

DA

M01174748-3

403258

L1β

L1βa

98.4

0T

UC

-HO

R30.6

3T

UC

-HO

R100

TU

C-H

OR

91

TU

C-H

OR

HL

M01205114-5

200349

––

L1γ

>99.9

<0.1

TU

C-H

OR

64.5

4T

UC

-HO

R100

TU

C-H

OR

95.1

8T

UC

-HO

RH

LM

01231125-6

921379

M7.5γ

––

100

0T

UC

-HO

R99.9

7T

UC

-HO

R100

TU

CH

OR

100

TU

CH

OR

BM

01244599-5

745379

L0γ

L0γa

099.3

CO

LU

MB

A0

NO

NE

0N

ON

E100

OL

DN

M01262109+

1428057

L4γ

L2γ

099.9

BE

TA

PIC

0N

ON

E99

CH

A-N

EA

R100

OL

DA

M01294256-0

823580

M5

–M

95.9

18.9

BE

TA

PIC

0N

ON

E100

CO

LU

MB

A72.4

6C

OL

UM

BA

AM

01415823-4

633574

L0γ

L0γ

100

0T

UC

-HO

R99.8

4T

UC

-HO

R83.5

TU

C-H

OR

100

TU

C-H

OR

HL

M01531463-6

744181

L2

–L

>99.9

<0.1

TU

C-H

OR

33.2

5T

UC

-HO

R98.8

TU

C-H

OR

99.4

9T

UC

-HO

RH

LM

02103857-3

015313

L0γ

L0γa

99.4

0T

UC

-HO

R96.3

4T

UC

-HO

R56

TU

C-H

OR

100

TU

C-H

OR

HL

M02212859-6

831400

M8β

––

0.8

99.4

AB

DO

R0

NO

NE

84

CH

A-N

EA

R62

AB

DO

RA

M02215494-5

412054

M9β

––

99.8

0T

UC

-HO

R99.9

1T

UC

-HO

R61

TU

C-H

OR

100

TU

C-H

OR

HL

M02235464-5

815067

L0γ

––

100

0T

UC

-HO

R99.9

8T

UC

-HO

R95

TU

CH

OR

100

TU

CH

OR

BM

02251947-5

837295

M9β

M9γa

57.5

1.2

BE

TA

PIC

40.5

2A

BD

OR

68

TU

C-H

OR

57

TU

C-H

OR

AM

02265658-5

327032

––

L0δ

>99.9

<0.1

TU

C-H

OR

65.9

TU

C-H

OR

43

TU

C-H

OR

77.5

7T

UC

-HO

RA

M02292794-0

053282

––

L0γ

79.8

1.3

BE

TA

PIC

81.0

2A

BD

OR

96

AB

DO

R100

OL

DA

M02340093-6

442068

L0γ

L0βγa

100

0T

UC

-HO

R99.5

6T

UC

-HO

R80

TU

C-H

OR

100

TU

C-H

OR

HL

M02410564-5

511466

––

L1γ

>99.9

<0.1

TU

C-H

OR

71.2

4T

UC

-HO

R99.9

TU

C-H

OR

95.3

6T

UC

-HO

RH

LM

02411151-0

326587

L0γ

L1γ

48.5

0T

UC

-HO

R0

NO

NE

35

CH

A-N

EA

R90

OL

DA

M02501167-0

151295

––

M7β

92.9

1.1

BE

TA

PIC

0N

ON

E98.8

TU

C-H

OR

67.1

OL

DA

M02530084+

1652532

––

M7β

...

...

FIE

LD

0N

ON

E0

NO

NE

100

OL

DN

M02535980+

3206373

M7β

M6β

57.8

26.5

BE

TA

PIC

20.6

1A

BD

OR

100

BE

TA

PIC

97

BE

TA

PIC

AM

02583123-1

520536

––

L3β

88.9

<0.1

TU

C-H

OR

0N

ON

E77.4

AB

DO

R49.8

2B

ET

AP

ICA

M03032042-7

312300

L2γ

––

40.7

0T

UC

-HO

R31.4

4T

UC

-HO

R98

TU

C-H

OR

87

OL

DA

M03164512-2

848521

L0

–L

96.9

3.2

AB

DO

R50.9

9T

UC

-HO

R99.8

AB

DO

R99.2

5A

BD

OR

AM

03231002-4

631237

L0γ

L0γa

99.7

0T

UC

-HO

R73.0

8T

UC

-HO

R92

TU

C-H

OR

100

TU

C-H

OR

HL

M03264225-2

102057

L5β

L5βγa

99.4

1A

BD

OR

44.8

9A

BD

OR

66

AB

DO

R99

AB

DO

RH

LM

03350208+

2342356

M8.5

–M

7.5β

76.2

4.9

BE

TA

PIC

32.4

8A

RG

US

98

CO

LU

MB

A79

OL

DA

M03393521-3

525440

M9β

L0β

40.2

0.2

AR

GU

S43.8

2C

OM

AB

ER

0N

ON

E100

OL

DA

M03420931-2

904317

––

L0β

99.7

<0.1

TU

C-H

OR

27.8

6T

UC

-HO

R96.5

TU

C-H

OR

51.9

2C

OL

UM

BA

AM

03421621-6

817321

L4γ

––

99.8

<0.1

TU

C-H

OR

28.3

3T

UC

-HO

R99.7

TU

C-H

OR

98.7

1T

UC

-HO

RH

LM

03550477-1

032415

M8.5

–M

8.5β

93.8

<0.1

TU

C-H

OR

0N

ON

E99.9

TW

HY

A93.2

4C

OL

UM

BA

AM

03552337+

1133437

L5γ

L3-L

99.6

1.1

AB

DO

R100

AB

DO

R18

AB

DO

R100

AB

DO

RB

M03572695-4

417305c

L0β

L0β

99.2

0T

UC

-HO

R54.8

4T

UC

-HO

R62

TU

C-H

OR

53

TU

C-H

OR

AM

04062677-3

812102

L0γ

L1γ

0.3

79.6

CO

LU

MB

A41.0

7O

cta

ns

75

CH

A-N

EA

R100

OL

DA

M04185879-4

507413

––

L3γ

92.7

<0.1

TU

C-H

OR

28.9

7A

BD

OR

91.6

AB

DO

R64.9

AB

DO

RA

M04210718-6

306022

L5β

L5γa

99.5

2.4

BE

TA

PIC

52.7

4T

UC

-HO

R96

BE

TA

PIC

99

BE

TA

PIC

AM

04351455-1

414468

M8γ

M7γa

0.5

93.8

BE

TA

PIC

0N

ON

E89

CH

A-N

EA

R100

OL

DN

M04362788-4

114465

M8β

M9γ

99

0T

UC

-HO

R87.9

7T

UC

-HO

R87

TU

C-H

OR

100

TU

C-H

OR

HL

M

Page 68: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

68 Faherty et al.Table

12

—Continued

BA

NY

AN

IIL

AC

Ew

ING

Converg

ence

BA

NY

AN

IN

am

eSpT

SpT

Pro

b.

Conta

m.

Gro

up

Pro

b.

Gro

up

Pro

b.

Gro

up

Pro

b.

Gro

up

Decis

ion

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

04400972-5

126544

––

L0γ

86.7

<0.1

TU

C-H

OR

27.1

9A

BD

OR

99.8

AB

DO

R72.2

5A

BD

OR

AM

04433761+

0002051c

M9γ

M9γ

99.7

3.4

BE

TA

PIC

59.7

3A

BD

OR

96

AB

DO

R79

BE

TA

PIC

AM

04493288+

1607226

––

M9γ

1.6

98.2

BE

TA

PIC

0N

ON

E99.9

TW

HY

A82.2

4B

ET

AP

ICA

M05012406-0

010452

L4γ

L3γa

20.8

0.4

CO

LU

MB

A82.8

7A

BD

OR

99

TU

C-H

OR

100

OL

DA

M05104958-1

843548

––

L2β

68.6

6.6

CO

LU

MB

A23.7

3T

UC

-HO

R89.6

TW

HY

A87.1

CO

LU

MB

AA

M05120636-2

949540

L5γ

L5βa

53.1

1B

ET

AP

IC0

NO

NE

6C

HA

-NE

AR

88

OL

DA

M05181131-3

101529

M6.5

–M

96.2

8.8

CO

LU

MB

A0

NO

NE

90.4

CO

LU

MB

A91.2

3C

OL

UM

BA

AM

05184616-2

756457

L1γ

L1γ

99.4

0.1

CO

LU

MB

A74.9

1C

OL

UM

BA

13

CO

LU

MB

A87

CO

LU

MB

AB

M05264316-1

824315

––

M7β

93.5

12.8

CO

LU

MB

A0

NO

NE

83.1

CO

LU

MB

A88.6

6C

OL

UM

BA

AM

05341594-0

631397

M8γ

M8γ

099.8

CO

LU

MB

A0

NO

NE

100

BE

TA

PIC

99

OL

DA

M05361998-1

920396

L2γ

L2γa

99.2

0.1

CO

LU

MB

A35.2

3C

OL

UM

BA

78

BE

TA

PIC

57

BE

TA

PIC

AM

05402325-0

906326

––

M9β

72

16.1

CO

LU

MB

A0

NO

NE

95

TU

C-H

OR

87.3

CO

LU

MB

AA

M05575096-1

359503

M7

–M

36.4

0T

WH

YA

0N

ON

E99

TW

HY

A76

TW

HY

AA

M06023045+

3910592

L1

–L

2.4

0.8

AB

DO

R46.3

3A

BD

OR

37

CO

LU

MB

A98

OL

DA

M06085283-2

753583

M8.5γ

L0γ

0100

BE

TA

PIC

0N

ON

E94

CH

A-N

EA

R49

BE

TA

PIC

AM

06272161-5

308428

––

L0βγ

87.2

9.1

CA

RIN

A37.7

2A

BD

OR

90.5

CH

A-N

EA

R84.7

CO

LU

MB

AA

M06322402-5

010349

L3β

L4γ

29.5

76.7

AB

DO

R41.7

7A

BD

OR

NO

NE

94.8

9N

ON

EA

M06524851-5

741376

M8β

––

2.9

85.4

AB

DO

R0

NO

NE

98

CH

A-N

EA

R98

AB

DO

RA

M07123786-6

155528

L1β

L1γa

78.7

37.6

BE

TA

PIC

39.1

2A

BD

OR

78

BE

TA

PIC

58

BE

TA

PIC

AM

07140394+

3702459

M8

–M

7.5β

88.9

0.5

AR

GU

S0

NO

NE

10.9

CH

A-N

EA

R87.3

5A

RG

US

AM

08095903+

4434216

––

L6p

80.7

27.4

AR

GU

S21.4

9A

BD

OR

15.7

CH

A-N

EA

R92.7

9A

RG

US

AM

08561384-1

342242

––

M8γ

4.9

<0.1

TW

HY

A0

NO

NE

78.8

TW

HY

A95.9

2O

LD

AM

08575849+

5708514

L8

–L

8–

...

...

FIE

LD

30.2

1H

ER

-LY

Rr

4.7

CH

A-N

EA

R93.9

8A

RG

US

AM

09451445-7

753150

––

M9β

90.4

2.8

CA

RIN

A41.8

6O

cta

ns

88.3

CH

A-N

EA

R67.5

6O

LD

AM

09532126-1

014205

M9γ

M9βa

28.7

0T

WH

YA

87.4

CO

MA

BE

R69

TU

C-H

OR

76

OL

DA

M09593276+

4523309

––

L3γ

2.1

0.3

TW

HY

A0

NO

NE

92

AB

DO

R69

OL

DN

MG

196-3

BL

L3γ

41

23.3

AB

DO

R20.1

9A

BD

OR

42

CO

LU

MB

A95

AB

DO

RA

M10212570-2

830427

––

L4βγ

92.4

<0.1

TW

HY

A0

NO

NE

97.2

AB

DO

R99.3

TW

HY

AA

M10220489+

0200477

M9β

M9β

2.6

6.1

AB

DO

R0

NO

NE

0N

ON

E100

OL

DN

M10224821+

5825453

L1β

L1β

099.9

AB

DO

R0

NO

NE

14

AB

DO

R100

OL

DN

MT

WA

28

M8.5γ

M9γa

99.9

0T

WH

YA

100

TW

HY

A97

TW

HY

A100

TW

HY

AH

LM

11064461-3

715115

––

M9γ

94.6

<0.1

TW

HY

A0

NO

NE

99.5

CO

LU

MB

A99.8

5T

WH

YA

AM

11083081+

6830169

L1γ

L1γ

689.9

CA

RIN

A25.0

5A

BD

OR

77.6

CO

LU

MB

A96.6

3A

BD

OR

AM

11193254-1

137466

––

L7γ

92

0.0

005

TW

HY

A16

TW

HY

A90.4

TW

HY

A95.8

7T

WH

YA

HL

M11271382-3

735076

––

L0δ

92.5

<0.1

TW

HY

A0

NO

NE

99.7

CH

A-N

EA

R99.3

9T

WH

YA

AM

TW

A26

M9γ

M9γ

100

0T

WH

YA

100

TW

HY

A98

TW

HY

A100

TW

HY

AB

M114724.1

0-2

04021.3

––

L7γ

91.2

<0.1

TW

HY

A19

TW

HY

A90

TW

HY

A98

TW

HY

AH

LM

11480096-2

836488

––

L1β

68.9

<0.1

TW

HY

A91.5

3T

WH

YA

91

TW

HY

A99.9

3T

WH

YA

AM

11544223-3

400390

L0β

L1βa

91

0.6

AR

GU

S76.3

1T

WH

YA

99

CH

A-N

EA

R98

AR

GU

SA

MT

WA

27A

M8γ

M8γ

100

0T

WH

YA

100

TW

HY

A97

TW

HY

A100

TW

HY

AB

M12074836-3

900043

L0γ

L1γ

99.6

0T

WH

YA

99.7

2T

WH

YA

92

TW

HY

A100

TW

HY

AH

LM

12271545-0

636458

M9

–M

8.5β

1.5

0.6

TW

HY

A0

NO

NE

100

CO

LU

MB

A72.6

2T

WH

YA

AM

TW

A29

M9.5γ

L0γ

91.6

0T

WH

YA

76.8

6T

WH

YA

99

TW

HY

A95

TW

HY

AH

LM

12474428-3

816464

––

M9γ

36.4

0T

WH

YA

0N

ON

E99

TW

HY

A76

TW

HY

AA

M12535039-4

211215

––

M9.5γ

59.3

0T

WH

YA

0N

ON

E97.2

CO

LU

MB

A86.1

8T

WH

YA

AM

12563961-2

718455

––

L4βa

15.9

<0.1

TW

HY

A58.0

5T

WH

YA

75.8

AB

DO

R99.1

4T

WH

YA

AM

14112131-2

119503

M9β

M8βa

0.1

27.8

TW

HY

A65.1

6T

WH

YA

86

BE

TA

PIC

83

TW

HY

AA

M14252798-3

650229

L3

–L

99.9

0.1

AB

DO

R99.9

9A

BD

OR

39

AB

DO

R100

AB

DO

RB

M15104786-2

818174

M9

–M

59.1

60.2

AR

GU

S0

NO

NE

99.1

CH

A-N

EA

R90.4

5A

RG

US

AM

15291017+

6312539

––

M8β

24.6

79.2

AB

DO

R0

NO

NE

81.4

AB

DO

R93.1

6A

BD

OR

AM

15382417-1

953116

L4γ

L4γa

0100

BE

TA

PIC

0N

ON

E0

NO

NE

100

OL

DN

M15470557-1

626303

A–

–M

10.6

63.4

AB

DO

R0

NO

NE

97.1

AB

DO

R78.0

3A

BD

OR

AM

15474719-2

423493

M9γ

L0β

098.8

BE

TA

PIC

34.2

3A

BD

OR

17

TU

C-H

OR

97

OL

DN

M15515237+

0941148

L4γ

>L

5γa

0.1

99.1

AB

DO

R94.6

5C

OM

AB

ER

100

BE

TA

PIC

93

OL

DA

M15525906+

2948485

L0β

L0β

092.7

AB

DO

R21.9

5H

ER

-LY

Rr

19

TU

C-H

OR

80

OL

DA

M15575011-2

952431

M9δ

L1γa

0100

BE

TA

PIC

0N

ON

E100

AB

DO

R100

OL

DN

M16154255+

4953211

L4γ

L3-L

13.7

69

AB

DO

R31.8

2A

BD

OR

92

CO

LU

MB

A63

AB

DO

RA

M17111353+

2326333

L0γ

L1βa

0100

BE

TA

PIC

0N

ON

E94

BE

TA

PIC

96

BE

TA

PIC

NM

Page 69: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

Brown Dwarf Analogs to Exoplanets 69Table

12

—Continued

BA

NY

AN

IIL

AC

Ew

ING

Converg

ence

BA

NY

AN

IN

am

eSpT

SpT

Pro

b.

Conta

m.

Gro

up

Pro

b.

Gro

up

Pro

b.

Gro

up

Pro

b.

Gro

up

Decis

ion

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

17260007+

1538190

L3.5γ

L3γa

099.8

AB

DO

R0

NO

NE

65

BE

TA

PIC

80

OL

DN

M17410280-4

642218

––

L6-L

8γa

99.7

1.8

BE

TA

PIC

78.7

8A

RG

US

94

BE

TA

PIC

100

BE

TA

PIC

AM

18212815+

1414010

L4.5

—L

4p

eca

0100

NO

NE

0N

ON

E0

NO

NE

100

OL

DN

M19350976-6

200473

––

L1γ

20.8

0.2

TU

C-H

OR

0N

ON

E100

TU

C-H

OR

97.3

2T

UC

-HO

RA

M19355595-2

846343

M9γ

M9γa

25.3

12.6

AR

GU

S0

NO

NE

100

CH

A-N

EA

R93

OL

DA

M19564700-7

542270

L0γ

L2γa

53.3

0T

UC

-HO

R26.8

TU

C-H

OR

97

CO

LU

MB

A97

TU

C-H

OR

AM

20004841-7

523070

M9γ

M9γa

99.4

3.5

BE

TA

PIC

84.0

5T

UC

-HO

R71

BE

TA

PIC

100

BE

TA

PIC

HL

M20025073-0

521524

L5β

L5-L

7γa

047.8

BE

TA

PIC

0N

ON

E0

NO

NE

100

OL

DN

M20113196-5

048112

––

L3γ

42.6

<0.1

TU

C-H

OR

0N

ON

E96.5

CO

LU

MB

A66.5

3T

UC

-HO

RA

M20135152-2

806020

M9γ

L0γa

77.6

39.5

BE

TA

PIC

28.9

4B

ET

AP

IC100

BE

TA

PIC

100

BE

TA

PIC

AM

20282203-5

637024

––

M8.5γ

44.3

<0.1

TU

C-H

OR

0N

ON

E94.6

AB

DO

R69.8

5T

UC

-HO

RA

M20334473-5

635338

––

L0γ

93.4

<0.1

TU

C-H

OR

0N

ON

E81.7

TU

C-H

OR

99.8

5T

UC

-HO

RA

M20391314-1

126531

M8

–M

2.2

46.6

AB

DO

R0

NO

NE

100

CO

LU

MB

A71.2

4A

BD

OR

AM

20575409-0

252302

L1.5

–L

0100

TU

C-H

OR

0N

ON

E0

NO

NE

100

OL

DN

MP

SO

318

––

L6-L

8γa

99.7

0.1

BE

TA

PIC

60.7

7A

RG

US

99

BE

TA

PIC

100

BE

TA

PIC

BM

21265040-8

140293b

L3γ

L3γa

9.3

1.4

BE

TA

PIC

76.5

1B

ET

AP

IC26

CH

A-N

EA

R94

TU

C-H

OR

AM

21324036+

1029494

––

L4β

30.8

61.6

AR

GU

S0

NO

NE

92.8

CH

A-N

EA

R53.4

4A

RG

US

AM

21543454-1

055308

L4β

L5γa

16.3

5.6

AR

GU

S0

NO

NE

29

CH

A-N

EA

R70

AR

GU

SA

M21544859-7

459134

––

M9.5β

99.4

<0.1

TU

C-H

OR

44.3

4T

UC

-HO

R100

TU

C-H

OR

99.9

4T

UC

-HO

RH

LM

21572060+

8340575

L0

–M

30.8

62.9

AB

DO

R0

NO

NE

63.3

AB

DO

R84

AB

DO

RA

M22025794-5

605087

––

M9γ

98.4

<0.1

TU

C-H

OR

32.4

9T

UC

-HO

R41.7

TU

C-H

OR

98.7

5T

UC

-HO

RA

M22064498-4

217208

L4γ

L4γa

99.1

1.4

AB

DO

R41.7

5A

BD

OR

89

AB

DO

R96

AB

DO

RH

LM

22081363+

2921215

L3γ

L3γ

0.2

91.2

BE

TA

PIC

0N

ON

E99

TW

HY

A66

BE

TA

PIC

NM

22134491-2

136079

L0γ

L0γ

35.4

45.8

BE

TA

PIC

0N

ON

E100

CO

LU

MB

A72

BE

TA

PIC

AM

22351658-3

844154

––

L1.5γ

96.2

<0.1

TU

C-H

OR

20.7

TU

C-H

OR

93.6

TU

C-H

OR

94.0

1T

UC

-HO

RH

LM

22353560-5

906306

––

M8.5β

99.8

<0.1

TU

C-H

OR

50.7

4T

UC

-HO

R99.7

TU

C-H

OR

99.9

5T

UC

-HO

RH

LM

22443167+

2043433

L6.5

p–

L6-L

8γa

99.4

0.5

AB

DO

R38.3

8A

BD

OR

69

AB

DO

R99

AB

DO

RH

LM

22495345+

0044046

L4γ

L3βa

0.2

96.1

AR

GU

S0

NO

NE

61

CH

A-N

EA

R100

OL

DN

M23153135+

0617146

L0γ

L0γa

099.6

CO

LU

MB

A0

NO

NE

92

CO

LU

MB

A100

OL

DN

M23224684-3

133231

L0β

L2β

054.5

AB

DO

R0

NO

NE

0N

ON

E100

OL

DN

M23225299-6

151275

L2γ

L3γa

99.9

0T

UC

-HO

R98.8

8T

UC

-HO

R34

TU

C-H

OR

100

TU

C-H

OR

HL

M23231347-0

244360

M8.5

–M

30.6

54.4

BE

TA

PIC

0N

ON

E99.9

TW

HY

A55.2

8O

LD

AM

23255604-0

259508

L3

–L

73.4

12.3

AB

DO

R21.2

8A

BD

OR

91.2

AB

DO

R98.5

AB

DO

RA

M23360735-3

541489

––

M9β

50.8

30.3

AB

DO

R30.1

7T

UC

-HO

R74.5

AB

DO

R60.8

9T

UC

-HO

RA

M23433470-3

646021

––

L3-L

68.9

4.8

AB

DO

R38.4

6T

UC

-HO

R65.9

AB

DO

R56.1

7T

UC

-HO

RA

M23453903+

0055137

M9

–M

...

...

FIE

LD

0N

ON

E99.6

BE

TA

PIC

40.3

9C

OL

UM

BA

AM

23520507-1

100435

M7

–M

90.6

4A

BD

OR

27.2

2A

BD

OR

57.2

AB

DO

R97.8

5A

BD

OR

AM

Note.

—C

om

puta

tions

of

BA

NY

AN

Iand

IIw

ere

done

wit

hth

ew

eb

calc

ula

tor,

wit

hout

photo

metr

icdata

.B

AN

YA

NII

and

LA

CE

wIN

Gw

ere

com

pute

dass

um

ing

the

ob

jects

are

young.

The

pre

dic

ted

dis

tance

and

RV

(as

pre

dic

ted

by

LA

CE

wIN

Gfo

rth

efinal

gro

up)

should

be

com

pare

dto

the

valu

es

inT

able

10.

aT

hese

sourc

es

have

new

infr

are

dsp

ectr

apre

sente

din

this

pap

er.

Inth

em

ajo

rity

of

case

sw

euse

the

infr

are

dsp

ectr

al

typ

eand

gra

vit

ycla

ssifi

cati

on

dia

gnose

din

this

work

.If

an

ob

ject

had

Sp

eX

data

we

defa

ult

toth

ere

sult

ant

typ

eand

cla

ssifi

cati

on

wit

hth

at

data

.b

Deacon

et

al.

(2016)

use

the

para

llax

rep

ort

ed

inth

isw

ork

tosh

ow

that

this

sourc

eis

co-m

ovin

gw

ith

the

Mdw

arf

TY

C9486-9

27-1

.In

that

work

they

rep

ort

alikelihood

of

mem

bers

hip

in

theβ

pic

tori

sm

ovin

ggro

up,

how

ever

we

find

this

unlikely

wit

hth

egiv

en

kin

em

ati

cs.

The

mem

bers

hip

of

this

inte

rest

ing

wid

esy

stem

rem

ain

sunknow

n.

cT

hese

sourc

es

were

list

ed

inF

ilip

pazzo

et

al.

(2015)

as

mem

bers

of

ass

ocia

tions

but

as

has

been

note

din

Table

12,

we

have

dow

ngra

ded

them

toam

big

uos

young

ob

jects

dT

he

sourc

e0335+

2342

islist

ed

as

ab

onafide

mem

ber

ofβ

Pic

tori

sin

Gagne

et

al.

(2014d)

usi

ng

a2M

ASS

toW

ISE

pro

per

moti

on.

Asi

de

from

the

Shkoln

iket

al.

(2012)

pro

per

moti

on

use

din

this

work

,th

isso

urc

eals

ohas

aP

PM

XL

pro

per

moti

on.

Dep

endin

gon

whic

hvalu

eis

use

din

the

kin

em

ati

canaly

sis,

the

pro

babilit

yof

mem

bers

hip

vari

es.

Base

don

its

posi

tion

on

the

vari

ous

photo

metr

icand

abso

lute

magnit

ude

dia

gra

ms

inth

isw

ork

,w

esu

spect

this

sourc

eis

Pic

tori

sm

em

ber.

How

ever

refined

kin

em

ati

cs

will

confirm

this

.Furt

herm

ore

,A

llers

&L

iu

(2013)

list

this

ob

ject

as

an

M7

VL

Gso

urc

ehow

ever

we

have

chose

nto

list

itas

an

M7.5β

base

don

the

analy

sis

inG

agne

et

al.

(2014d).

Page 70: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

70 Faherty et al.Table

13

Hig

hC

onfidence

Movin

gG

roup

Mem

bers

2M

ASS

SpT

SpT

µRA

µDEC

πR

VLBol

Teff

Mass

aR

ef

OpT

NIR

′′yr−

1′′

yr−

1m

as

km

s−1

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

AB

DORADUS

00192626+

4614078

M8

–M

0.1

4000±

0.0

6-0

.1±

0.0

5(3

3)

-19.5±

2-2

.773±

0.1

29

2637.0±

371.0

66.6

48.9

92,4

00325584-4

405058

L0γ

L0β

0.1

2830±

0.0

034

-0.0

934±

0.0

03

21.6±

7.2

12.9

1.9

2-3

.388±

0.2

89

2066.0±

413.0

41.6

29.4

71,5

00470038+

6803543

L7

(γ?)

L6-L

0.3

8700±

0.0

04

-0.1

97±

0.0

04

82±

3-2

1.4

-4.4

29±

0.0

33

1230.0±

27.0

11.8

2.6

37

03264225-2

102057

L5β

L5βγa

0.1

08±

0.0

14

-0.1

46±

0.0

15

(41±

1)

(22.9

2.0

7)

-4.2

35±

0.0

22

1346.0±

26.0

13.7

2.6

1,2

03552337+

1133437

L5γ

L3-L

0.2

2500±

0.0

132

-0.6

0.0

15

110.8±

4.3

11.9

0.2

2-4

.104±

0.0

34

1478.0±

58.0

21.6

6.1

46,1

414252798-3

650229

L3

–L

-0.2

8489±

0.0

014

-0.4

6308±

0.0

01

86.4

0.8

35.3

0.2

5-4

.038±

0.0

09

1535.0±

53.0

22.5

6.0

713,1

422064498-4

217208

L4γ

L4γa

0.1

28±

0.0

13

-0.1

81±

0.0

08

(35±

2)

(7.6±

2.0

)-3

.997±

0.0

09

1566.0±

59.0

23.1

6.3

71

22443167+

2043433

L6.5

p–

L6-L

8γa

0.2

52±

0.0

14

-0.2

14±

0.0

11

(54±

4)

(-15.5±

1.7

)-4

.503±

0.0

07

1184.0±

10.0

10.4

1.4

91,2

ARG

US

00452143+

1634446

L2β

L2γa

0.3

5500±

0.0

1-0

.04±

0.0

162.5±

3.7

3.1

0.8

3-3

.405±

0.0

31

2059.0±

45.0

24.9

4.6

21

βPictoris

20004841-7

523070

M9γ

M9γa

0.0

69±

0.0

12

-0.1

0.0

04

(31±

1)

4.3

97±

2.8

42

-2.9

72±

0.0

28

2375.0±

74.0

24.2

5.6

31

PSO

318

––

L6-L

8γa

0.1

3730±

0.0

013

-0.1

387±

0.0

014

40.7±

2.4

−6.0

+0.8

−1.1

-4.3

0.0

52

1213.0±

38.0

6.4

1.2

921

COLUM

BA

05184616-2

756457

L1γ

L1γ

0.0

2860±

0.0

042

-0.0

16±

0.0

04

21.4±

6.9

24.3

0.1

9-3

.575±

0.2

81808.0±

301.0

19.9

9.2

31,8

TUCAN

AH

OROLOG

IUM

00040288-6

410358

L1γ

L1γa

0.0

64±

0.0

12

-0.0

47±

0.0

12

(17±

1)

(6.0

2.8

9)

-3.4

0.0

51

1904.0±

63.0

16.1

2.9

100191296-6

226005

––

L1γ

0.0

541±

0.0

047

-0.0

345±

0.0

121

(21±

6)

(6.7±

2.5

)-3

.644±

0.2

48

1755.0±

258.0

14.8

4.5

21,1

000381489-6

403529

––

M9.5β

0.0

871±

0.0

038

-0.0

353±

0.0

105

(23±

5)

(7.2

2.8

1)

-3.4

23±

0.1

89

1957.0±

226.0

22.0

9.3

91,1

001174748-3

403258

L1β

L1βa

0.0

84±

0.0

15

-0.0

45±

0.0

08

(20±

3)

(3.9

2.0

9)

-3.4

77±

0.1

31902.0±

152.0

16.3

3.6

91

01205114-5

200349

––

L1γ

0.0

921±

0.0

058

-0.0

404±

0.0

102

(24±

4)

(7.2

2.5

)-3

.737±

0.1

45

1685.0±

145.0

13.9

3.5

11,1

001231125-6

921379

M7.5γ

––

0.0

8278±

0.0

0174

-0.0

2646±

0.0

0139

21.6±

3.3

10.9±

3-2

.525±

0.1

33

2743.0±

317.0

55.5

33.2

14,9

01415823-4

633574

L0γ

L0γ

0.1

05±

0.0

1-0

.049±

0.0

1(2

3)

6.4

09±

1.5

6-3

.485±

0.1

04

1899.0±

123.0

16.2±

3.4

101531463-6

744181

L2

–L

0.0

71±

0.0

037

-0.0

166±

0.0

127

(21±

7)

(10.4

2.7

1)

-3.9

0.2

91545.0±

264.0

11.8

5.3

61,1

002103857-3

015313

L0γ

L0γa

0.1

45±

0.0

36

-0.0

0.0

07

(32±

8)

7.8

0.2

74

-3.8

26±

0.2

17

1610.0±

207.0

13.0

4.3

11

02215494-5

412054

M9β

––

0.1

36±

0.0

1-0

.01±

0.0

17

(31±

5)

10.1

0.0

97

——

—1,2

02235464-5

815067

L0γ

––

0.0

9860±

0.0

008

-0.0

182±

0.0

009

27.4±

2.6

10.3

0.2

3-3

.509±

0.0

82

1879.0±

98.0

15.9

3.1

21

02340093-6

442068

L0γ

L0βγ

0.0

88±

0.0

12

-0.0

15±

0.0

12

(21±

5)

11.7

62±

0.7

21

-3.5

38±

0.2

07

1848.0±

229.0

15.9

4.2

91

02410564-5

511466

––

L1γ

0.0

965±

0.0

052

-0.0

123±

0.0

106

(24±

4)

(11.7

2.4

4)

-3.6

79±

0.1

45

1731.0±

151.0

14.4

3.4

91,1

003231002-4

631237

L0γ

L0γa

0.0

66±

0.0

08

0.0

01±

0.0

16

(17±

3)

13.0

01±

0.0

45

-3.3

48±

0.1

53

2031.0±

201.0

23.1

9.7

51

03421621-6

817321

L4γ

––

0.0

653±

0.0

028

0.0

185±

0.0

091

(21±

9)

(13.8

2.6

2)

-3.8

48±

0.3

72

1590.0±

349.0

12.3

6.1

11

04362788-4

114465

M8β

M9γ

0.0

73±

0.0

12

0.0

13±

0.0

16

(23±

6)

14.9

72±

1.4

46

-2.8

72±

0.2

27

2452.0±

404.0

38.5±

22.5

91,2

21544859-7

459134

––

M9.5β

0.0

407±

0.0

022

-0.0

796±

0.0

122

(21±

7)

(6.2

3.1

)-3

.219±

0.2

92118.0±

385.0

28.5

15.1

51,1

022351658-3

844154

––

L1.5γ

0.0

505±

0.0

078

-0.0

757±

0.0

109

(22±

2)

(-4.9±

3.1

)—

——

10

22353560-5

906306

––

M8.5β

0.0

556±

0.0

051

-0.0

81±

0.0

108

(23±

5)

(1.7

3.1

4)

-3.2

94±

0.1

89

2076.0±

251.0

25.1

11.5

81,1

023225299-6

151275

L2γ

L3γa

0.0

62±

0.0

1-0

.085±

0.0

09

(22±

1)

6.7

47±

0.7

5-3

.606±

0.0

41793.0±

50.0

15.0

2.6

61

TW

HYDRAE

TW

A28

M8.5γ

M9γa

-0.0

6720±

0.0

006

-0.0

14±

0.0

006

18.1±

0.5

(13.3±

1.8

)-2

.561±

0.0

24

2664.0±

81.0

35.3

10.2

318

TW

A26

M9γ

M9γ

-0.0

8120±

0.0

039

-0.0

277±

0.0

021

23.8

2.5

811.6±

2-2

.587±

0.0

94

2641.0±

192.0

35.3±

13.7

315,1

6T

WA

27A

M8γ

M8γ

-0.0

6300±

0.0

02

-0.0

23±

0.0

03

19.1±

0.4

11.2±

2-2

.602±

0.0

18

2635.0±

73.0

33.0

9.3

216,1

911193254-1

137466

––

L7γ

-.1451±

0.0

149

-0.0

724±

0.0

16

(35±

5)

8.5±

3.3

-4.3

63±

0.1

24

1223.0±

90.0

6.5

1.9

427

114724.1

0-2

04021.3

––

L7γ

-0.1

221±

0.0

12

-0.0

745±

0.0

113

(32±

4)

(9.6

)-4

.346±

0.1

09

1235.0±

80.0

6.6

1.8

928

12074836-3

900043

L0γ

L1γ

-0.0

572±

0.0

079

-0.0

248±

0.0

105

(15±

3)

(9.4

1.9

1)

-3.4

85±

0.0

76

1882.0±

84.0

13.7

0.7

517

TW

A29

M9.5γ

L0γ

-0.0

4030±

0.0

117

-0.0

203±

0.0

17

12.6

2.0

7(7

.74±

2.0

4)

-2.9

05±

0.1

42

2394.0±

236.0

24.7

8.4

315

Note.

—a

These

sourc

es

have

new

infr

are

dsp

ectr

apre

sente

din

this

pap

er.

Inth

em

ajo

rity

of

case

sw

euse

the

infr

are

dsp

ectr

al

typ

eand

gra

vit

ycla

ssifi

cati

on

dia

gnose

din

this

work

.If

an

ob

ject

had

Sp

eX

data

we

defa

ult

toth

ere

sult

ant

typ

eand

cla

ssifi

cati

on

wit

hth

at

data

.

Page 71: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

Brown Dwarf Analogs to Exoplanets 71

Table 14Fundamental Parameters for Young Sources

2MASS SpT SpT π LBolb Teff

b Massb

OpT NIR mas K MJupiter

(1) (2) (3) (4) (5) (6) (7)

00040288-6410358 L1 γ L1 γa (17 ± 1) -3.48±0.051 1904.0±63.0 16.11±2.900191296-6226005 – – L1 γ (21 ± 6) -3.644±0.248 1755.0±258.0 14.88±4.5200192626+4614078 M8 – M8 β (31±3) -2.773±0.129 2637.0±371.0 66.62±48.9900274197+0503417 M9.5β L0β 13.8±1.6 -3.545±0.101 1945.0±197.0 31.64±19.2500303013-1450333 L7– L4-L6β 37.42±4.50 -4.378±0.105 1436.0±131.0 50.89±23.4300325584-4405058 L0γ L0β 21.6±7.2 -3.388±0.289 2066.0±413.0 41.64±29.47003323.86-1521309 L4β L1 24.8±2.5 -3.616±0.088 1880.0±173.0 29.68±17.7100381489-6403529 – – M9.5 β (23 ± 5) -3.423±0.189 1957.0±226.0 22.03±9.3900452143+1634446 L2β L2γ 62.5±3.7 -3.405±0.031 2059.0±45.0 24.98±4.6200470038+6803543 L7(γ?) L6-L8γ 82±3 -4.429±0.033 1230.0±27.0 11.84±2.6300584253-0651239 L0– L1β 33.8±4.0 -3.635±0.103 1860.0±180.0 29.48±17.7601033203+1935361 L6β L6β 46.9±7.6 -4.407±0.141 1223.0±113.0 12.82±8.4301174748-3403258 L1 β L1 βa (20 ± 3) -3.477±0.13 1902.0±152.0 16.36±3.6901205114-5200349 – – L1 γ (24 ± 4) -3.737±0.145 1685.0±145.0 13.97±3.5101231125-6921379 M7.5γ —- 21.6±3.3 -2.525±0.133 2743.0±317.0 55.56±33.2101415823-4633574 L0 γ L0 γ (25 ± 3) -3.485±0.104 1899.0±123.0 16.2±3.401531463-6744181 L2 – L3 β (21 ± 7) -3.91±0.29 1545.0±264.0 11.89±5.3602103857-3015313 L0 γ L0 γa (32 ± 8) -3.826±0.217 1610.0±207.0 13.03±4.3102212859-6831400 M8β —- 25.4±3.6 — — —02215494-5412054 M9 β —- (31 ± 5) — — —02235464-5815067 L0γ —- 27.4±2.6 -3.509±0.082 1879.0±98.0 15.91±3.1202340093-6442068 L0 γ L0β γ (21 ± 5) -3.538±0.207 1848.0±229.0 15.97±4.2902410564-5511466 – – L1 γ (24 ± 4) -3.679±0.145 1731.0±151.0 14.49±3.4902411151-0326587 L0γ L1γ 21.4±2.6 -3.717±0.106 1787.0±172.0 27.68±16.6702501167-0151295 —- M7β 30.2±4.5 -3.001±0.129 2821.0±242.0 103.42±16.1702530084+1652532 —- M7β 260.63±2.69 -3.193±0.121 2641.0±210.0 90.37±13.8802535980+3206373 M7β M6β 17.7±2.5 -2.788±0.123 2627.0±362.0 65.02±47.4803231002-4631237 L0 γ L0 γa (17 ± 3) -3.348±0.153 2031.0±201.0 23.17±9.7503264225-2102057 L5 β L5βγa (41 ± 1) -4.235±0.022 1346.0±26.0 13.77±2.603350208+2342356 M8.5– M7.5β 23.6±1.3 — — —03393521-3525440 M9β L0β 155.89±1.03 -3.563±0.005 1939.0±142.0 29.62±16.6703421621-6817321 L4 γ – – (21 ± 9) -3.848±0.372 1590.0±349.0 12.38±6.1103552337+1133437 L5γ L3-L6γ 110.8±4.3 -4.104±0.034 1478.0±58.0 21.62±6.1404362788-4114465 M8 β M9 γ (23 ± 6) -2.872±0.227 2452.0±404.0 38.5±22.5905012406-0010452 L4γ L3γ 51±3.7 -3.962±0.063 1563.0±116.0 22.15±13.205184616-2756457 L1γ L1γ 21.4±6.9 -3.575±0.28 1808.0±301.0 19.94±9.2305361998-1920396 L2γ L2γ 25.6±9.4 -3.826±0.319 1666.0±334.0 27.71±20.4605575096-1359503 M7– M7γ 1.9±1 — — —06023045+3910592 L1– L1β 88.5±1.6 -3.65±0.016 1857.0±133.0 27.88±15.6306085283-2753583 M8.5γ L0γ 32±3.6 -3.344±0.098 2147.0±228.0 37.85±24.0506524851-5741376 M8β —- 31.3±3.2 — — —07123786-6155528 L1β L1γ 22.9±9.1 -3.598±0.345 1861.0±412.0 35.66±25.807140394+3702459 M8– M7.5β 80.10±4.8 -3.479±0.052 2352.0±97.0 77.81±11.75G196-3B L3β L3γ 41±4.1 -3.752±0.087 1789.0±177.0 32.83±20.2510220489+0200477 M9β M9β 26.4±11.5 -3.323±0.378 2097.0±526.0 47.09±35.0910224821+5825453 L1β L1β 54.3±2.5 -3.682±0.041 1823.0±136.0 27.55±15.72TWA28 M8.5γ M9γ 18.1±0.5 -2.561±0.024 2664.0±81.0 35.39±10.2311193254-1137466 —- L7γ (35±5) -4.363±0.124 1223.0±90.0 6.57±1.94TWA26 M9γ M9γ 23.82±2.58 -2.587±0.094 2641.0±192.0 35.3±13.73114724.10-204021.3 —- L7γ (32±4) -4.346±0.109 1235.0±80.0 6.64±1.89TWA27A M8γ M8γ 19.1±0.4 -2.602±0.018 2635.0±73.0 33.04±9.3212074836-3900043 L0 γ L1 γ (15 ± 3) -3.485±0.076 1882.0±84.0 13.75±0.75TWA29 M9.5γ L0γ 12.66±2.07 -2.905±0.142 2394.0±236.0 24.74±8.4314252798-3650229 L3– L4γ 86.45±0.83 -4.038±0.009 1535.0±53.0 22.52±6.0715525906+2948485 L0β L0β 48.8±2.7 -3.538±0.017 1967.0±153.0 30.34±17.317260007+1538190 L3.5γ L3γ 28.6±2.9 -3.844±0.088 1667.0±146.0 24.82±14.8618212815+1414010 L4.5— L4pec 106.65±0.23 -2.801±0.006 2986.0±23.0 121.27±6.3820004841-7523070 M9 γ M9 γa (31 ± 1) -2.972±0.028 2375.0±74.0 24.28±5.6320575409-0252302 L1.5– L2β 70.1±3.7 -3.767±0.046 2041.0±88.0 69.5±13.04PSO318 —- L6-L8γ 40.7±2.4 -4.39±0.052 1213.0±38.0 6.44±1.2921265040-8140293 L3γ L3γ 31.3±2.6 -3.866±0.072 1651.0±132.0 24.21±14.321544859-7459134 – – M9.5 β (21 ± 7) -3.219±0.29 2118.0±385.0 28.51±15.1522064498-4217208 L4 γ L4 γa (35 ± 2) -3.997±0.009 1566.0±59.0 23.15±6.3722081363+2921215 L3γ L3γ 21.2±0.7 -3.705±0.029 1799.0±131.0 26.96±15.222351658-3844154 – – L1.5 γ (22±2) — — —22353560-5906306 – – M8.5 β (23 ± 5) -3.294±0.189 2076.0±251.0 25.13±11.5822443167+2043433 L6.5p – L6-L8 γa (54 ± 4) -4.503±0.007 1184.0±10.0 10.46±1.4923224684-3133231 L0β L2β 58.6±5.6 -3.85±0.083 1667.0±139.0 24.65±14.6923225299-6151275 L2 γ L3 γa (22 ± 1) -3.606±0.04 1793.0±50.0 15.05±2.66

Page 72: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

72 Faherty et al.

Table 14 — Continued

2MASS SpT SpT π LBolb Teff

b Massb

OpT NIR mas K MJupiter

(1) (2) (3) (4) (5) (6) (7)

Note. —b

Lbol, Teff, and Mass are calculated as described in Filippazzo et al. (2015). Values that are slightly different from that work, have been updated

using new data presented in this paper.a

These sources have new infrared spectra presented in this paper. In the majority of cases we use the infrared spectral type and gravity

classification diagnosed in this work. If an object had SpeX data we default to the resultant type and classification with that data.

Page 73: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

Brown Dwarf Analogs to Exoplanets 73Table

15

Avera

ge

Infr

are

dC

olo

rsof

late

-typ

eM

and

Ldw

arf

s

SpT

NJ−H

a(J

-H) avg

σ(J

-H)

NJ−K

a(J

-K) avg

σ(J

-K)

NJ−W

1a

(J-W

1) avg

σ(J

-W1)

NJ−W

2a

(J-W

2) avg

σ(J

-W2)

NH−K

a(H

-K) avg

σ(H

-K)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

M7

1998

0.6

10.0

91976

0.9

70.1

01992

1.1

70.0

91990

1.3

70.1

01976

0.3

60.1

0M

8703

0.6

50.0

9698

1.0

60.1

1692

1.2

70.1

2692

1.4

90.1

3698

0.4

10.0

9M

9430

0.6

90.1

0428

1.1

50.1

1420

1.4

10.1

4420

1.6

50.1

7428

0.4

50.1

0L

0231

0.7

50.1

2223

1.2

20.1

5228

1.5

50.1

7225

1.8

30.1

9210

0.4

80.1

2L

1129

0.8

10.1

4125

1.3

50.1

9114

1.7

10.2

1114

1.9

70.2

3127

0.5

40.1

3L

265

0.9

10.1

466

1.5

10.2

157

1.9

80.2

857

2.2

70.3

265

0.5

90.1

1L

365

0.9

60.1

464

1.6

10.2

259

2.1

10.2

959

2.4

20.3

464

0.6

50.1

5L

439

1.0

70.1

738

1.7

40.2

534

2.4

00.3

433

2.7

40.4

038

0.6

70.1

4L

536

1.0

90.1

436

1.7

50.2

239

2.4

80.2

539

2.8

30.3

036

0.6

60.1

1L

618

1.1

10.2

019

1.8

40.2

821

2.5

90.4

121

3.0

00.5

223

0.7

60.1

6L

712

1.1

10.1

212

1.8

10.1

613

2.5

40.2

613

3.0

10.3

012

0.7

00.0

9L

818

1.1

10.1

219

1.7

80.1

617

2.5

60.2

017

3.1

30.2

420

0.6

70.0

9

aO

nly

norm

al

(non-

low

surf

ace

gra

vit

y,

sub

dw

arf

,or

young)

Ldw

arf

sw

ith

photo

metr

icuncert

ain

ty<

0.1

were

use

din

calc

ula

ting

the

avera

ge.

Page 74: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

74 Faherty et al.Table

16

Avera

ge

Infr

are

dC

olo

rsof

late

-typ

eM

and

Ldw

arf

s

SpT

NH−W

1a

(H-W

1) avg

σ(H

-W1)

NH−W

2a

(H-W

2) avg

σ(H

-W2)

NK−W

1a

(K-W

1) avg

σ(K

-W1)

NK−W

2a

(K-W

2) avg

σ(K

-W2)

NW

1−W

2a

(W1-W

2) avg

σ(W

1-W

2)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

M7

1992

0.5

50.0

91988

0.7

60.1

01970

0.2

00.0

91970

0.4

10.1

01991

0.2

10.0

6M

8692

0.6

20.1

0692

0.8

40.1

2687

0.2

20.0

9687

0.4

40.1

1692

0.2

20.0

6M

9420

0.7

20.1

1420

0.9

60.1

5417

0.2

60.1

0417

0.5

10.1

4421

0.2

40.0

6L

0222

0.8

10.1

3219

1.0

80.1

7223

0.3

40.1

2219

0.6

10.1

3229

0.2

70.0

8L

1113

0.9

10.1

5113

1.1

70.1

8112

0.3

70.1

1111

0.6

30.1

4118

0.2

60.0

6L

256

1.0

50.1

756

1.3

40.2

257

0.4

50.1

257

0.7

40.1

658

0.2

90.0

7L

358

1.1

60.2

058

1.4

70.2

459

0.5

10.1

459

0.8

20.1

863

0.3

10.0

6L

434

1.3

40.2

434

1.6

70.2

934

0.6

80.1

434

1.0

10.1

835

0.3

40.0

7L

540

1.3

90.1

539

1.7

40.2

038

0.7

40.1

237

1.0

80.1

841

0.3

50.0

8L

621

1.4

90.3

021

1.9

20.3

822

0.7

70.2

022

1.1

90.2

623

0.4

10.1

2L

714

1.4

50.1

914

1.9

10.2

414

0.7

60.1

414

1.2

20.1

915

0.4

50.0

9L

819

1.4

60.1

618

2.0

40.1

919

0.8

00.1

118

1.3

70.1

419

0.5

60.1

1

aO

nly

norm

al

(non-

low

surf

ace

gra

vit

y,

sub

dw

arf

,or

young)

Ldw

arf

sw

ith

photo

metr

icuncert

ain

ty<

0.1

were

use

din

calc

ula

ting

the

avera

ge.

Page 75: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

Brown Dwarf Analogs to Exoplanets 75Table

17

Infr

are

dC

olo

rsof

low

gra

vit

yla

te-t

yp

eM

and

Ldw

arf

s

Nam

eSpT

SpT

(J-H

)#

ofσ(J−H

)a

(J-K

)#

ofσ(J−K

)a

(J-W

1)

#ofσ(J−W

1)a

(J-W

2)

#ofσ(J−W

2)a

(H-K

)#

ofσ(H−K

)a

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

01231125-6

921379

M7.5γ

––

0.6

0.0

30.0

1.0

0.0

30.3

1.2

0.0

31.0

1.5

0.0

31.3

0.3

0.0

30.3

01294256-0

823580

M5

–M

0.5

0.0

3-0

.40.8

0.0

3-0

.91.1

0.0

3-0

.71.3

0.0

3-0

.40.3

0.0

3-0

.502501167-0

151295

––

M7β

0.6

0.0

30.0

0.9

0.0

30.1

1.2

0.0

30.3

1.4

0.0

30.6

0.3

0.0

30.1

02530084+

1652532

––

M7β

0.5

0.0

4-1

.10.8

0.0

5-1

.61.0

0.0

3-1

.11.3

0.0

3-0

.30.3

0.0

6-0

.602535980+

3206373

M7β

M6β

0.6

0.0

30.8

1.0

0.0

31.0

1.2

0.0

31.4

1.4

0.0

31.2

0.3

0.0

30.2

03350208+

2342356

M8.5

–M

7.5β

0.6

0.0

3-0

.20.9

0.0

20.2

1.2

0.0

30.4

1.4

0.0

31.1

0.3

0.0

20.3

05181131-3

101529

M6.5

–M

0.6

0.0

30.4

0.9

0.0

30.1

1.2

0.0

30.7

1.4

0.0

31.1

0.3

0.0

3-0

.305264316-1

824315

––

M7β

0.5

0.0

3-1

.00.9

0.0

3-0

.61.1

0.0

3-0

.11.4

0.0

30.4

0.3

0.0

30.3

05575096-1

359503

M7–

M7γ

0.7

0.0

31.3

1.1

0.0

31.7

1.5

0.0

34.1

2.0

0.0

37.0

0.4

0.0

30.5

07140394+

3702459

M8–

M7.5β

0.7

0.0

31.3

1.1

0.0

31.7

1.4

0.0

32.7

1.6

0.0

32.6

0.4

0.0

30.5

20391314-1

126531

M8–

M7β

0.6

0.0

40.6

1.1

0.0

41.4

1.3

0.0

31.7

1.6

0.0

32.6

0.4

0.0

50.9

00192626+

4614078

M8

–M

0.6

0.0

30.1

1.1

0.0

20.4

1.3

0.0

30.6

1.6

0.0

30.9

0.4

0.0

20.3

02212859-6

831400

M8β

––

0.6

0.0

50.4

1.1

0.0

50.9

1.4

0.0

41.9

1.7

0.0

42.2

0.4

0.0

50.7

03550477-1

032415

M8.5

–M

8.5β

0.6

0.0

3-0

.41.1

0.0

30.4

1.3

0.0

30.8

1.6

0.0

31.3

0.4

0.0

30.9

04351455-1

414468

M8γ

M7γ

1.2

0.0

46.7

1.9

0.0

47.9

2.1

0.0

47.5

2.6

0.0

48.6

0.6

0.0

32.9

04362788-4

114465

M8β

M9γ

0.6

0.0

30.2

1.0

0.0

3-0

.11.3

0.0

30.7

1.6

0.0

31.1

0.3

0.0

3-0

.305341594-0

631397

M8γ

M8γ

0.6

0.1

20.4

1.1

0.1

20.5

1.2

0.0

80.0

1.8

0.0

92.4

0.4

0.1

40.2

06085283-2

753583

M8.5γ

L0γ

0.7

0.0

40.5

1.2

0.0

41.5

1.6

0.0

42.9

1.9

0.0

33.7

0.5

0.0

31.3

06524851-5

741376

M8β

––

0.6

0.0

30.2

1.1

0.0

31.1

1.4

0.0

31.7

1.7

0.0

32.2

0.5

0.0

31.2

08561384-1

342242

––

M8γ

0.6

0.0

4-0

.31.1

0.0

30.5

1.4

0.0

31.5

1.9

0.0

33.8

0.4

0.0

40.9

TW

A28

M8.5γ

M9γ

0.6

0.0

30.3

1.1

0.0

30.8

1.6

0.0

32.7

2.2

0.0

35.8

0.4

0.0

30.6

TW

A27A

M8γ

M8γ

0.6

0.0

4-0

.41.0

0.0

4-0

.11.4

0.0

41.5

1.9

0.0

43.9

0.4

0.0

40.3

12271545-0

636458

M9–

M8.5β

0.8

0.0

41.7

1.3

0.0

42.3

1.6

0.0

43.4

1.9

0.0

43.4

0.5

0.0

51.1

15291017+

6312539

––

M8β

0.7

0.0

40.6

1.0

0.0

30.3

1.3

0.0

30.7

1.5

0.0

30.7

0.3

0.0

4-0

.320282203-5

637024

––

M8.5γ

0.5

0.0

3-0

.61.1

0.0

30.6

1.3

0.0

30.8

1.6

0.0

31.3

0.5

0.0

41.4

22353560-5

906306

––

M8.5β

0.6

0.0

50.4

1.1

0.0

40.5

1.5

0.0

42.7

1.9

0.0

43.3

0.4

0.0

50.2

23231347-0

244360

M8.5

–M

0.6

0.0

40.1

1.1

0.0

30.4

1.3

0.0

30.6

1.6

0.0

31.0

0.4

0.0

40.4

23520507-1

100435

M7–

M8β

0.6

0.0

30.3

1.1

0.0

30.3

1.4

0.0

31.1

1.6

0.0

31.6

0.4

0.0

30.2

00274197+

0503417

M9.5β

L0β

0.9

0.1

42.1

1.2

0.1

50.7

1.5

0.1

01.1

2.0

0.1

12.4

0.3

0.1

5-1

.200381489-6

403529

––

M9.5β

0.6

0.0

5-0

.31.1

0.0

4-0

.21.6

0.0

41.5

1.9

0.0

42.0

0.4

0.0

60.2

00425923+

1142104

––

M9β

0.6

0.0

6-0

.11.2

0.0

50.8

1.5

0.0

40.8

1.8

0.0

51.1

0.5

0.0

51.1

00464841+

0715177

M9β

L0δ

0.7

0.0

40.2

1.3

0.0

41.7

1.8

0.0

42.9

2.2

0.0

33.5

0.6

0.0

41.8

02215494-5

412054

M9β

––

0.6

0.0

4-0

.11.2

0.0

40.7

1.5

0.0

41.2

1.9

0.0

41.7

0.5

0.0

41.0

02251947-5

837295

M9β

M9γ

0.6

0.0

4-0

.11.1

0.0

40.3

1.5

0.0

30.7

1.8

0.0

31.0

0.5

0.0

40.5

03393521-3

525440

M9β

L0β

0.7

0.0

30.2

1.1

0.0

30.2

1.5

0.0

31.3

1.9

0.0

31.6

0.4

0.0

30.2

04433761+

0002051

M9γ

M9γ

0.7

0.0

30.1

1.2

0.0

31.2

1.6

0.0

31.9

2.0

0.0

32.2

0.5

0.0

31.3

04493288+

1607226

––

M9γ

0.7

0.0

40.9

1.2

0.0

40.4

1.5

0.0

40.9

1.8

0.0

41.2

0.4

0.0

4-0

.405402325-0

906326

––

M9β

0.7

0.0

50.5

1.2

0.0

61.0

1.5

0.0

41.0

1.8

0.0

51.1

0.5

0.0

60.7

09451445-7

753150

––

M9β

0.6

0.0

4-0

.31.1

0.0

4-0

.41.3

0.0

4-0

.21.6

0.0

4-0

.20.4

0.0

4-0

.109532126-1

014205

M9γ

M9β

0.8

0.0

41.3

1.3

0.0

31.6

1.7

0.0

32.2

2.0

0.0

32.4

0.5

0.0

30.5

10220489+

0200477

M9β

M9β

0.7

0.0

40.1

1.2

0.0

40.5

1.4

0.0

40.6

1.7

0.0

40.6

0.5

0.0

40.5

11064461-3

715115

––

M9γ

0.6

0.0

4-0

.51.1

0.0

50.0

1.4

0.0

40.0

1.7

0.0

40.5

0.5

0.0

50.6

TW

A26

M9γ

M9γ

0.6

0.0

30.0

1.1

0.0

30.3

1.5

0.0

30.9

1.8

0.0

31.4

0.4

0.0

30.4

TW

A29

M9.5γ

L0γ

0.7

0.0

50.3

1.1

0.0

50.0

1.5

0.0

40.8

1.9

0.0

41.4

0.4

0.0

5-0

.212474428-3

816464

––

M9γ

0.6

0.0

50.0

1.2

0.0

50.6

1.6

0.0

41.9

2.2

0.0

43.6

0.5

0.0

50.7

12535039-4

211215

––

M9.5γ

0.7

0.1

50.1

1.2

0.1

51.0

1.7

0.1

12.2

2.0

0.1

12.5

0.5

0.1

51.1

14112131-2

119503

M9β

M8β

0.6

0.0

3-0

.81.1

0.0

3-0

.41.3

0.0

3-0

.41.6

0.0

3-0

.20.5

0.0

30.5

15104786-2

818174

M9–

M9β

0.7

0.0

40.4

1.1

0.0

40.0

1.5

0.0

40.8

1.8

0.0

41.0

0.4

0.0

4-0

.315470557-1

626303A

––

M9β

0.6

0.0

4-0

.71.1

0.0

4-0

.21.4

0.0

40.1

1.7

0.0

40.4

0.5

0.0

40.6

15474719-2

423493

M9γ

L0β

0.7

0.0

40.1

1.2

0.0

30.7

1.5

0.0

41.1

1.8

0.0

41.3

0.5

0.0

40.8

15575011-2

952431

M9δ

L1γ

0.8

0.1

61.8

1.4

0.1

62.9

1.8

0.1

23.4

2.2

0.1

33.5

0.6

0.1

51.5

19355595-2

846343

M9γ

M9γ

0.7

0.0

30.8

1.2

0.0

40.8

1.6

0.0

41.4

2.0

0.0

32.3

0.4

0.0

30.2

20004841-7

523070

M9γ

M9γa

0.7

0.0

30.8

1.2

0.0

30.7

1.6

0.0

31.5

1.9

0.0

31.7

0.4

0.0

40.1

20135152-2

806020

M9γ

L0γ

0.7

0.0

40.9

1.3

0.0

41.4

1.7

0.0

42.2

2.0

0.0

42.5

0.5

0.0

40.7

21544859-7

459134

––

M9.5β

0.7

0.0

50.3

1.2

0.0

40.5

1.5

0.0

41.2

1.9

0.0

41.5

0.4

0.0

50.3

21572060+

8340575

L0–

M9γ

0.9

0.0

42.2

1.3

0.0

42.2

1.8

0.0

33.4

2.2

0.0

33.8

0.4

0.0

40.3

22025794-5

605087

––

M9γ

0.7

0.0

50.5

1.2

0.0

50.4

1.5

0.0

41.0

1.8

0.0

40.9

0.4

0.0

50.1

Page 76: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

76 Faherty et al.Table

17

—Continued

Nam

eSpT

SpT

(J-H

)#

ofσ(J−H

)a

(J-K

)#

ofσ(J−K

)a

(J-W

1)

#ofσ(J−W

1)a

(J-W

2)

#ofσ(J−W

2)a

(H-K

)#

ofσ(H−K

)a

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

23360735-3

541489

––

M9β

0.8

0.0

41.5

1.2

0.0

51.1

1.6

0.0

31.7

2.0

0.0

42.1

0.4

0.0

5-0

.323453903+

0055137

M9–

M9β

0.6

0.0

4-0

.41.1

0.0

40.4

1.5

0.0

41.1

1.8

0.0

41.4

0.5

0.0

40.9

00182834-6

703130

––

L0γ

0.9

0.0

81.9

1.7

0.0

73.5

2.2

0.0

64.3

2.6

0.0

64.5

0.7

0.0

72.4

00325584-4

405058

L0γ

L0β

0.9

0.0

51.4

1.5

0.0

51.9

1.9

0.0

42.4

2.2

0.0

42.4

0.5

0.0

50.9

00374306-5

846229

L0γ

––

1.1

0.0

73.0

1.7

0.0

73.8

2.2

0.0

64.1

2.6

0.0

64.2

0.6

0.0

71.6

01244599-5

745379

L0γ

L0γ

1.2

0.1

44.2

1.9

0.1

45.1

2.5

0.1

15.8

2.9

0.1

16.0

0.7

0.1

22.2

01415823-4

633574

L0γ

L0γ

0.9

0.0

51.7

1.7

0.0

53.4

2.2

0.0

54.3

2.6

0.0

54.4

0.7

0.0

42.5

02103857-3

015313

L0γ

L0γa

0.9

0.0

61.3

1.5

0.0

62.3

2.0

0.0

53.0

2.4

0.0

53.1

0.6

0.0

61.5

02235464-5

815067

L0γ

––

1.0

0.0

62.6

1.6

0.0

62.9

2.2

0.0

54.1

2.6

0.0

54.3

0.5

0.0

60.9

02265658-5

327032

––

L0δ

1.0

0.0

72.6

1.6

0.0

62.9

2.1

0.0

53.7

2.6

0.0

54.2

0.5

0.0

70.9

02292794-0

053282

––

L0γ

0.7

0.1

4-0

.11.3

0.1

70.6

1.7

0.1

01.3

2.1

0.1

11.7

0.5

0.1

70.7

02340093-6

442068

L0γ

L0βγ

0.8

0.0

81.1

1.4

0.0

91.7

2.0

0.0

73.1

2.4

0.0

73.1

0.5

0.0

90.9

02411151-0

326587

L0γ

L1γ

0.9

0.0

82.0

1.7

0.0

83.6

2.1

0.0

73.6

2.5

0.0

73.8

0.7

0.0

72.4

03231002-4

631237

L0γ

L0γa

1.0

0.0

92.7

1.6

0.0

93.1

2.3

0.0

74.5

2.7

0.0

74.7

0.6

0.0

81.2

03420931-2

904317

––

L0β

0.5

0.1

4-1

.51.5

0.1

22.1

1.9

0.0

92.3

2.3

0.0

92.9

0.9

0.1

44.1

03572695-4

417305

L0β

L0β

0.8

0.0

40.7

1.4

0.0

41.6

1.8

0.0

42.0

2.2

0.0

42.4

0.6

0.0

41.2

04062677-3

812102

L0γ

L1γ

1.0

0.1

62.6

1.6

0.1

72.9

2.3

0.1

34.5

2.6

0.1

34.4

0.6

0.1

51.0

04400972-5

126544

––

L0γ

0.9

0.0

91.3

1.5

0.0

92.0

2.1

0.0

73.2

2.4

0.0

73.5

0.6

0.0

81.1

06272161-5

308428

––

L0βγ

1.1

0.1

53.3

1.7

0.1

43.2

2.5

0.1

25.6

2.8

0.1

25.5

0.5

0.1

30.5

11271382-3

735076

––

L0δ

0.9

0.1

41.3

1.2

0.1

80.1

2.0

0.1

02.7

2.3

0.1

12.8

0.3

0.1

9-1

.211544223-3

400390

L0β

L1β

0.8

0.0

41.0

1.3

0.0

40.8

1.8

0.0

41.7

2.1

0.0

41.7

0.4

0.0

40.0

12074836-3

900043

L0γ

L1γ

0.8

0.0

81.1

1.4

0.0

81.6

1.8

0.0

61.8

2.2

0.0

62.4

0.5

0.0

80.7

15525906+

2948485

L0β

L0β

0.8

0.0

31.0

1.4

0.0

31.6

1.9

0.0

32.3

2.2

0.0

32.3

0.5

0.0

40.9

17111353+

2326333

L0γ

L1β

0.8

0.0

40.7

1.4

0.0

41.5

1.9

0.0

32.2

2.2

0.0

32.3

0.6

0.0

41.1

19564700-7

542270

L0γ

L2γ

1.1

0.1

43.1

1.9

0.1

24.7

2.4

0.1

15.4

2.9

0.1

15.7

0.8

0.1

22.7

20334473-5

635338

––

L0γ

0.5

0.1

4-1

.41.4

0.1

21.7

1.9

0.0

92.1

2.3

0.0

92.5

0.8

0.1

43.4

22134491-2

136079

L0γ

L0γ

0.9

0.0

61.9

1.6

0.0

52.6

2.1

0.0

43.5

2.5

0.0

43.8

0.6

0.0

71.4

23153135+

0617146

L0γ

L0γ

1.1

0.1

13.0

1.7

0.1

03.8

2.3

0.0

94.5

2.7

0.0

94.9

0.6

0.0

91.7

23224684-3

133231

L0β

L2β

0.7

0.0

40.3

1.2

0.0

40.2

1.6

0.0

40.3

1.8

0.0

40.2

0.4

0.0

3-0

.100040288-6

410358

L1γ

L1γa

0.9

0.1

01.0

1.7

0.0

82.2

2.4

0.0

83.4

2.8

0.0

83.8

0.8

0.0

92.2

00191296-6

226005

––

L1γ

1.0

0.0

81.5

1.6

0.0

81.8

2.2

0.0

72.8

2.7

0.0

73.4

0.6

0.0

70.9

00344300-4

102266

––

L1β

0.9

0.0

90.6

1.6

0.0

91.4

2.2

0.0

72.4

2.6

0.0

72.8

0.7

0.0

91.4

00584253-0

651239

L0–

L1β

0.8

0.0

40.4

1.4

0.0

40.3

1.7

0.0

30.2

2.0

0.0

40.4

0.5

0.0

40.0

01174748-3

403258

L1β

L1βa

0.9

0.0

51.1

1.6

0.0

51.8

2.1

0.0

42.1

2.5

0.0

42.5

0.7

0.0

51.4

01205114-5

200349

––

L1γ

0.9

0.1

01.2

1.8

0.0

92.8

2.4

0.0

83.3

2.8

0.0

83.9

0.9

0.0

92.8

02410564-5

511466

––

L1γ

1.0

0.0

81.8

1.6

0.0

71.6

2.2

0.0

62.3

2.5

0.0

62.6

0.5

0.0

60.4

03164512-2

848521

L0–

L1β

0.8

0.0

50.0

1.4

0.0

50.6

1.9

0.0

51.0

2.2

0.0

51.3

0.6

0.0

50.9

05184616-2

756457

L1γ

L1γ

0.9

0.0

61.1

1.6

0.0

61.5

2.2

0.0

52.4

2.6

0.0

52.7

0.6

0.0

61.0

06023045+

3910592

L1–

L1β

0.8

0.0

30.3

1.4

0.0

30.4

1.8

0.0

30.7

2.1

0.0

30.9

0.5

0.0

30.4

07123786-6

155528

L1β

L1γ

0.9

0.0

70.7

1.6

0.0

81.5

2.3

0.0

72.8

2.6

0.0

73.0

0.7

0.0

61.4

10224821+

5825453

L1β

L1β

0.8

0.0

40.3

1.3

0.0

3-0

.11.7

0.0

30.1

2.0

0.0

30.1

0.4

0.0

4-0

.411083081+

6830169

L1γ

L1γ

0.8

0.0

30.6

1.5

0.0

31.0

2.0

0.0

31.5

2.3

0.0

31.7

0.6

0.0

30.9

11480096-2

836488

––

L1β

0.9

0.1

10.8

1.5

0.1

21.1

1.9

0.0

81.3

2.3

0.0

91.6

0.6

0.1

20.6

19350976-6

200473

––

L1γ

0.9

0.1

41.1

1.5

0.1

40.9

2.2

0.1

12.3

2.6

0.1

12.8

0.5

0.1

40.2

22351658-3

844154

––

L1.5γ

0.9

0.0

70.7

1.5

0.0

71.1

2.1

0.0

62.2

2.5

0.0

62.5

0.6

0.0

60.8

23255604-0

259508

L3–

L1γ

1.0

0.1

01.5

1.8

0.1

02.6

2.2

0.0

82.6

2.6

0.0

82.8

0.8

0.0

92.2

00452143+

1634446

L2β

L2γ

1.0

0.0

40.6

1.6

0.0

30.9

2.2

0.0

31.1

2.6

0.0

31.2

0.6

0.0

40.9

00550564+

0134365

L2γ

L2γ

1.1

0.1

41.8

2.0

0.1

32.3

2.7

0.1

22.8

3.2

0.1

23.0

0.8

0.1

02.2

03032042-7

312300

L2γ

––

1.0

0.1

40.9

1.8

0.1

41.5

2.3

0.1

11.4

2.7

0.1

11.6

0.7

0.1

21.7

05104958-1

843548

––

L2β

1.0

0.0

80.7

1.5

0.0

80.1

2.1

0.0

60.4

2.4

0.0

60.4

0.5

0.0

8-0

.605361998-1

920396

L2γ

L2γ

1.0

0.1

01.2

1.9

0.1

01.9

2.5

0.0

81.9

2.9

0.0

82.2

0.8

0.0

92.3

20575409-0

252302

L1.5

–L

0.8

0.0

3-0

.41.4

0.0

3-0

.51.8

0.0

3-0

.42.1

0.0

3-0

.40.5

0.0

3-0

.423225299-6

151275

L2γ

L3γa

1.0

0.0

90.7

1.6

0.0

70.8

2.3

0.0

71.2

2.7

0.0

71.4

0.6

0.0

70.8

01531463-6

744181

L2

–L

1.3

0.1

62.4

1.9

0.1

71.7

2.7

0.1

42.0

3.2

0.1

42.3

0.6

0.1

30.2

02583123-1

520536

––

L3β

1.0

0.0

90.6

1.7

0.0

90.5

2.2

0.0

80.6

2.7

0.0

80.9

0.6

0.0

80.2

04185879-4

507413

––

L3γ

1.1

0.1

11.1

1.5

0.1

2-0

.22.3

0.0

90.7

2.7

0.0

90.8

0.4

0.1

1-1

.306322402-5

010349

L3β

L4γ

0.9

0.0

60.2

1.6

0.0

50.3

2.4

0.0

51.0

2.8

0.0

51.3

0.6

0.0

50.3

09593276+

4523309

––

L3γ

1.1

0.1

01.2

2.2

0.0

82.7

3.0

0.0

73.1

3.5

0.0

73.2

1.0

0.0

82.9

Page 77: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

Brown Dwarf Analogs to Exoplanets 77Table

17

—Continued

Nam

eSpT

SpT

(J-H

)#

ofσ(J−H

)a

(J-K

)#

ofσ(J−K

)a

(J-W

1)

#ofσ(J−W

1)a

(J-W

2)

#ofσ(J−W

2)a

(H-K

)#

ofσ(H−K

)a

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

G196-3

BL

L3γ

1.1

0.0

61.6

2.0

0.0

62.0

3.1

0.0

53.5

3.7

0.0

53.8

0.8

0.0

51.5

17260007+

1538190

L3.5γ

L3γ

1.2

0.0

81.7

2.0

0.0

81.8

2.6

0.0

71.7

2.9

0.0

71.6

0.8

0.0

71.0

20113196-5

048112

––

L3γ

1.1

0.1

41.5

1.8

0.1

41.1

2.4

0.1

11.0

2.7

0.1

21.0

0.6

0.1

20.2

21265040-8

140293

L3γ

L3γ

1.1

0.0

81.3

1.9

0.0

71.7

2.6

0.0

61.8

3.0

0.0

61.9

0.8

0.0

71.4

22081363+

2921215

L3γ

L3γ

1.0

0.1

10.3

1.6

0.1

10.2

2.4

0.0

91.1

2.9

0.0

91.4

0.6

0.1

00.0

00011217+

1535355

––

L4β

1.0

0.0

8-0

.31.8

0.0

70.3

2.5

0.0

70.5

3.0

0.0

70.7

0.8

0.0

70.9

003323.8

6-1

521309

L4β

L1

1.0

0.0

80.0

1.8

0.0

70.5

2.4

0.0

60.2

2.8

0.0

60.2

0.8

0.0

60.9

01262109+

1428057

L4γ

L2γ

0.9

0.3

1-0

.81.8

0.2

60.4

2.8

0.2

21.4

3.4

0.2

21.7

0.8

0.2

61.6

03421621-6

817321

L4γ

––

1.4

0.1

62.3

2.3

0.1

62.3

2.9

0.1

41.5

3.3

0.1

41.6

0.8

0.1

21.2

05012406-0

010452

L4γ

L3γ

1.2

0.0

51.2

2.0

0.0

51.1

2.9

0.0

41.6

3.4

0.0

41.8

0.7

0.0

50.6

10212570-2

830427

––

L4βγ

1.0

0.1

90.0

1.9

0.2

00.8

2.7

0.1

61.0

3.2

0.1

61.2

0.8

0.1

71.4

12563961-2

718455

––

L4β

1.0

0.1

8-0

.21.7

0.1

6-0

.12.3

0.1

3-0

.22.7

0.1

30.0

0.6

0.1

50.0

14252798-3

650229

L3–

L4γ

1.1

0.0

40.6

1.9

0.0

40.8

2.7

0.0

41.0

3.1

0.0

31.1

0.7

0.0

30.7

15382417-1

953116

L4γ

L4γ

1.0

0.0

90.1

1.9

0.0

80.8

2.7

0.0

71.1

3.2

0.0

71.2

0.8

0.0

81.3

15515237+

0941148

L4γ

>L

1.2

0.1

30.8

2.0

0.1

21.1

2.7

0.1

10.9

3.2

0.1

11.1

0.8

0.0

91.0

16154255+

4953211

L4γ

L3-L

1.4

0.1

72.3

2.4

0.1

53.0

3.5

0.1

43.5

4.1

0.1

43.6

1.0

0.1

22.5

18212815+

1414010

L4.5

—L

4p

ec

1.0

0.0

3-0

.21.7

0.0

30.2

2.5

0.0

30.5

2.9

0.0

30.5

0.7

0.0

30.5

21324036+

1029494

––

L4β

1.2

0.1

80.9

1.9

0.1

70.9

2.5

0.1

40.5

3.0

0.1

40.7

0.7

0.1

50.4

21543454-1

055308

L4β

L5γ

1.3

0.1

51.8

2.2

0.1

42.0

3.0

0.1

22.0

3.5

0.1

22.0

0.8

0.1

11.4

22064498-4

217208

L4γ

L4γa

1.1

0.0

90.2

1.9

0.0

90.8

2.7

0.0

71.0

3.1

0.0

71.1

0.8

0.0

81.2

22495345+

0044046

L4γ

L3β

1.1

0.1

70.6

2.2

0.1

41.9

3.0

0.1

31.8

3.4

0.1

31.8

1.0

0.1

32.8

23433470-3

646021

––

L3-L

1.5

0.1

42.9

2.3

0.1

42.5

3.4

0.1

33.1

3.9

0.1

33.0

0.8

0.0

91.0

00303013-1

450333

L7–

L4-L

1.0

0.1

5-0

.61.8

0.1

50.2

2.6

0.1

10.6

3.0

0.1

20.6

0.7

0.1

41.2

03264225-2

102057

L5β

L5βγa

1.3

0.1

21.8

2.2

0.1

12.1

3.1

0.1

02.8

3.7

0.1

02.9

0.8

0.1

01.9

03552337+

1133437

L5γ

L3-L

1.5

0.0

43.1

2.5

0.0

33.5

3.5

0.0

34.2

4.1

0.0

34.3

1.0

0.0

33.1

04210718-6

306022

L5β

L5γ

1.2

0.0

61.4

2.1

0.0

61.7

3.0

0.0

52.1

3.4

0.0

52.0

0.8

0.0

61.6

05120636-2

949540

L5γ

L5β

1.3

0.0

71.5

2.1

0.0

71.9

3.0

0.0

62.4

3.5

0.0

62.4

0.8

0.0

61.9

20025073-0

521524

L5β

L5-L

1.0

0.0

7-0

.41.9

0.0

60.7

2.7

0.0

51.2

3.2

0.0

61.3

0.8

0.0

61.8

00470038+

6803543

L7(γ

?)

L6-L

1.6

0.0

84.4

2.5

0.0

74.6

3.7

0.0

74.6

4.3

0.0

74.4

0.9

0.0

52.4

01033203+

1935361

L6β

L6β

1.3

0.1

01.4

2.1

0.1

01.1

3.1

0.0

81.3

3.5

0.0

81.1

0.7

0.0

8-0

.108095903+

4434216

––

L6p

1.2

0.1

50.7

2.0

0.1

30.6

3.0

0.1

21.2

3.6

0.1

21.2

0.7

0.1

10.0

08575849+

5708514

L8–

L8—

1.2

0.0

61.2

2.0

0.0

51.9

3.0

0.0

42.3

3.6

0.0

42.1

0.8

0.0

51.8

11193254-1

137466

—L

1.6

0.0

74.7

2.7

0.0

65.6

3.9

0.0

65.3

4.5

0.0

65.2

1.0

0.0

43.7

114724.1

0-2

04021.3

––

L7γ

1.8

0.1

36.4

2.7

0.0

66.0

3.9

0.0

65.3

4.5

0.0

75.1

0.8

0.1

12.1

17410280-4

642218

––

L6-L

1.2

0.0

91.2

2.3

0.0

83.4

3.4

0.0

83.6

4.1

0.0

83.7

1.1

0.0

64.4

PSO

318

––

L6-L

1.6

0.0

94.6

2.8

0.0

96.5

4.0

0.0

85.9

4.8

0.0

96.0

1.1

0.0

65.4

22443167+

2043433

L6.5

p–

L6-L

8γa

1.4

0.1

51.8

2.4

0.1

62.2

3.7

0.1

42.7

4.3

0.1

42.6

0.9

0.1

01.4

aV

alu

es

are

the

#ofσ

(as

rep

ort

ed

inT

able

15)

from

the

field

sequence

that

each

ob

ject

diff

ers

.A

negati

ve

(-)

num

ber

indic

ate

sth

at

the

colo

rw

as

blu

ew

ard

of

the

field

sequence

avera

ge

where

as

ap

osi

tive

(+)

num

ber

indic

ate

sth

at

the

colo

rw

as

redw

ard

of

the

field

sequence

avera

ge.

Page 78: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

78 Faherty et al.Table

18

Infr

are

dC

olo

rsof

low

gra

vit

yla

te-t

yp

eM

and

Ldw

arf

s

Nam

eSpT

SpT

(H-W

1)

#ofσ(H−W

1)a

(H-W

2)

#ofσ(H−W

2)a

(K-W

1)

#ofσ(K−W

1)a

(K-W

2)

#ofσ(K−W

2)a

(W1-W

2)

#ofσ(W

1−W

2)a

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

01231125-6

921379

M7.5γ

––

0.6

0.0

31.1

0.8

0.0

31.3

0.2

0.0

30.7

0.5

0.0

31.0

0.2

0.0

30.5

01294256-0

823580

M5–

M7β

0.5

0.0

3-0

.10.7

0.0

30.0

0.2

0.0

30.3

0.4

0.0

30.3

0.2

0.0

30.1

02501167-0

151295

––

M7β

0.5

0.0

30.4

0.8

0.0

30.7

0.2

0.0

30.2

0.4

0.0

30.5

0.2

0.0

30.5

02530084+

1652532

––

M7β

0.5

0.0

50.1

0.8

0.0

40.7

0.2

0.0

50.7

0.5

0.0

51.2

0.2

0.0

30.9

02535980+

3206373

M7β

M6β

0.6

0.0

30.6

0.8

0.0

30.4

0.2

0.0

30.3

0.4

0.0

30.1

0.2

0.0

3-0

.203350208+

2342356

M8.5

–M

7.5β

0.6

0.0

30.7

0.8

0.0

31.3

0.2

0.0

30.2

0.4

0.0

20.8

0.2

0.0

31.1

05181131-3

101529

M6.5

–M

0.5

0.0

30.5

0.8

0.0

30.7

0.2

0.0

30.7

0.5

0.0

30.9

0.2

0.0

30.5

05264316-1

824315

––

M7β

0.6

0.0

30.9

0.8

0.0

31.3

0.2

0.0

30.5

0.5

0.0

30.9

0.2

0.0

30.8

05575096-1

359503

M7–

M7γ

0.8

0.0

32.9

1.3

0.0

35.8

0.4

0.0

32.2

0.9

0.0

35.2

0.5

0.0

35.4

07140394+

3702459

M8–

M7.5β

0.6

0.0

41.5

0.9

0.0

31.5

0.2

0.0

30.8

0.4

0.0

30.8

0.2

0.0

30.2

20391314-1

126531

M8–

M7β

0.6

0.0

41.3

0.9

0.0

42.0

0.2

0.0

40.2

0.5

0.0

41.0

0.3

0.0

31.5

00192626+

4614078

M8

–M

0.6

0.0

30.6

0.9

0.0

30.8

0.2

0.0

30.2

0.5

0.0

20.6

0.2

0.0

30.7

02212859-6

831400

M8β

––

0.8

0.0

41.8

1.0

0.0

42.0

0.3

0.0

41.3

0.6

0.0

41.6

0.2

0.0

31.0

03550477-1

032415

M8.5

–M

8.5β

0.7

0.0

31.3

1.0

0.0

31.6

0.2

0.0

30.5

0.5

0.0

31.0

0.2

0.0

31.1

04351455-1

414468

M8γ

M7γ

0.9

0.0

42.9

1.3

0.0

34.3

0.2

0.0

30.2

0.6

0.0

32.2

0.4

0.0

33.7

04362788-4

114465

M8β

M9γ

0.6

0.0

30.7

0.9

0.0

31.1

0.3

0.0

31.0

0.5

0.0

31.4

0.2

0.0

31.0

05341594-0

631397

M8γ

M8γ

0.5

0.1

0-0

.41.1

0.1

12.3

0.1

0.1

0-0

.70.6

0.1

12.2

0.5

0.0

75.2

06085283-2

753583

M8.5γ

L0γ

0.9

0.0

33.0

1.2

0.0

33.6

0.3

0.0

31.9

0.7

0.0

32.8

0.3

0.0

32.2

06524851-5

741376

M8β

––

0.8

0.0

31.9

1.1

0.0

32.2

0.3

0.0

30.9

0.5

0.0

31.4

0.3

0.0

31.3

08561384-1

342242

––

M8γ

0.8

0.0

42.0

1.3

0.0

44.3

0.3

0.0

31.3

0.8

0.0

33.9

0.5

0.0

35.2

TW

A28

M8.5γ

M9γ

0.9

0.0

33.0

1.5

0.0

36.0

0.4

0.0

32.6

1.1

0.0

36.0

0.6

0.0

37.0

TW

A27A

M8γ

M8γ

0.8

0.0

42.1

1.3

0.0

44.5

0.3

0.0

41.9

0.9

0.0

44.6

0.5

0.0

35.4

12271545-0

636458

M9–

M8.5β

0.8

0.0

42.5

1.1

0.0

42.4

0.3

0.0

51.6

0.6

0.0

41.7

0.2

0.0

40.6

15291017+

6312539

––

M8β

0.6

0.0

40.3

0.8

0.0

40.3

0.2

0.0

30.5

0.5

0.0

30.5

0.2

0.0

30.2

20282203-5

637024

––

M8.5γ

0.7

0.0

31.5

1.0

0.0

41.9

0.2

0.0

30.2

0.5

0.0

40.9

0.3

0.0

31.3

22353560-5

906306

––

M8.5β

0.9

0.0

42.8

1.2

0.0

53.2

0.4

0.0

42.9

0.8

0.0

43.3

0.3

0.0

41.8

23231347-0

244360

M8.5

–M

0.6

0.0

40.7

0.9

0.0

41.1

0.2

0.0

40.3

0.5

0.0

40.8

0.2

0.0

31.0

23520507-1

100435

M7–

M8β

0.7

0.0

31.1

1.0

0.0

31.5

0.3

0.0

30.9

0.6

0.0

31.4

0.2

0.0

31.2

00274197+

0503417

M9.5β

L0β

0.6

0.1

1-0

.51.1

0.1

11.3

0.3

0.1

20.8

0.8

0.1

32.3

0.4

0.0

64.1

00381489-6

403529

––

M9.5β

0.9

0.0

52.2

1.3

0.0

52.5

0.4

0.0

42.3

0.8

0.0

42.5

0.3

0.0

32.1

00425923+

1142104

––

M9β

0.8

0.0

51.1

1.1

0.0

51.3

0.2

0.0

40.2

0.6

0.0

40.6

0.3

0.0

41.3

00464841+

0715177

M9β

L0δ

1.1

0.0

43.5

1.5

0.0

43.9

0.4

0.0

42.2

0.9

0.0

32.9

0.4

0.0

33.2

02215494-5

412054

M9β

––

0.9

0.0

41.6

1.2

0.0

42.0

0.3

0.0

40.9

0.7

0.0

41.4

0.3

0.0

32.0

02251947-5

837295

M9β

M9γ

0.8

0.0

30.9

1.1

0.0

31.1

0.3

0.0

40.7

0.6

0.0

30.9

0.3

0.0

31.1

03393521-3

525440

M9β

L0β

0.8

0.0

31.5

1.2

0.0

31.7

0.4

0.0

31.6

0.7

0.0

31.7

0.3

0.0

31.4

04433761+

0002051

M9γ

M9γ

0.9

0.0

32.3

1.3

0.0

32.5

0.3

0.0

31.3

0.7

0.0

31.7

0.3

0.0

31.8

04493288+

1607226

––

M9γ

0.7

0.0

40.4

1.0

0.0

40.7

0.3

0.0

40.9

0.6

0.0

41.0

0.3

0.0

41.1

05402325-0

906326

––

M9β

0.8

0.0

40.9

1.1

0.0

41.0

0.3

0.0

50.4

0.5

0.0

50.5

0.2

0.0

40.8

09451445-7

753150

––

M9β

0.7

0.0

40.0

0.9

0.0

40.0

0.2

0.0

40.2

0.5

0.0

40.0

0.2

0.0

3-0

.109532126-1

014205

M9γ

M9β

0.8

0.0

31.5

1.2

0.0

31.9

0.3

0.0

31.2

0.7

0.0

31.6

0.3

0.0

31.9

10220489+

0200477

M9β

M9β

0.7

0.0

40.6

1.0

0.0

40.7

0.2

0.0

40.3

0.5

0.0

40.4

0.2

0.0

40.5

11064461-3

715115

––

M9γ

0.7

0.0

40.5

1.0

0.0

40.9

0.2

0.0

50.1

0.5

0.0

50.5

0.3

0.0

41.3

TW

A26

M9γ

M9γ

0.8

0.0

31.1

1.2

0.0

31.6

0.3

0.0

30.9

0.7

0.0

31.4

0.3

0.0

32.0

TW

A29

M9.5γ

L0γ

0.8

0.0

40.8

1.1

0.0

41.4

0.3

0.0

41.2

0.7

0.0

41.7

0.3

0.0

32.2

12474428-3

816464

––

M9γ

0.9

0.0

42.4

1.5

0.0

44.1

0.4

0.0

52.1

1.0

0.0

53.9

0.5

0.0

35.8

12535039-4

211215

––

M9.5γ

1.0

0.1

12.7

1.3

0.1

12.8

0.4

0.1

12.0

0.8

0.1

12.2

0.3

0.0

52.0

14112131-2

119503

M9β

M8β

0.7

0.0

30.3

1.0

0.0

30.3

0.2

0.0

3-0

.10.5

0.0

30.0

0.2

0.0

30.4

15104786-2

818174

M9–

M9β

0.8

0.0

40.7

1.1

0.0

40.9

0.3

0.0

41.1

0.6

0.0

41.2

0.3

0.0

31.0

15470557-1

626303A

––

M9β

0.8

0.0

40.8

1.1

0.0

40.9

0.3

0.0

40.4

0.5

0.0

40.6

0.2

0.0

40.9

15474719-2

423493

M9γ

L0β

0.8

0.0

41.3

1.1

0.0

51.4

0.3

0.0

30.7

0.6

0.0

40.9

0.3

0.0

41.0

15575011-2

952431

M9δ

L1γ

1.0

0.1

12.7

1.3

0.1

22.8

0.4

0.1

21.5

0.7

0.1

32.0

0.3

0.0

72.2

19355595-2

846343

M9γ

M9γ

0.8

0.0

31.0

1.2

0.0

32.1

0.3

0.0

41.0

0.8

0.0

42.1

0.4

0.0

43.3

20004841-7

523070

M9γ

M9γa

0.8

0.0

31.3

1.1

0.0

31.4

0.4

0.0

31.4

0.7

0.0

31.4

0.3

0.0

31.2

20135152-2

806020

M9γ

L0γ

0.9

0.0

42.0

1.3

0.0

42.3

0.4

0.0

41.5

0.7

0.0

41.9

0.3

0.0

42.0

21544859-7

459134

––

M9.5β

0.8

0.0

51.3

1.1

0.0

51.5

0.3

0.0

41.2

0.7

0.0

41.4

0.3

0.0

41.5

21572060+

8340575

L0–

M9γ

0.9

0.0

42.3

1.3

0.0

42.8

0.5

0.0

32.4

0.9

0.0

32.8

0.4

0.0

32.8

22025794-5

605087

––

M9γ

0.8

0.0

40.8

1.0

0.0

40.7

0.3

0.0

40.9

0.6

0.0

40.7

0.2

0.0

40.2

Page 79: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

Brown Dwarf Analogs to Exoplanets 79Table

18

—Continued

Nam

eSpT

SpT

(H-W

1)

#ofσ(H−W

1)a

(H-W

2)

#ofσ(H−W

2)a

(K-W

1)

#ofσ(K−W

1)a

(K-W

2)

#ofσ(K−W

2)a

(W1-W

2)

#ofσ(W

1−W

2)a

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

23360735-3

541489

––

M9β

0.8

0.0

30.8

1.1

0.0

41.3

0.3

0.0

51.2

0.7

0.0

51.6

0.3

0.0

41.9

23453903+

0055137

M9–

M9β

0.9

0.0

41.7

1.2

0.0

31.9

0.3

0.0

41.1

0.7

0.0

41.4

0.3

0.0

31.6

00182834-6

703130

––

L0γ

1.3

0.0

73.8

1.7

0.0

73.7

0.5

0.0

51.7

0.9

0.0

52.6

0.4

0.0

41.7

00325584-4

405058

L0γ

L0β

1.0

0.0

41.7

1.3

0.0

41.7

0.4

0.0

40.9

0.7

0.0

41.3

0.3

0.0

40.8

00374306-5

846229

L0γ

––

1.1

0.0

62.5

1.5

0.0

62.6

0.4

0.0

51.0

0.8

0.0

51.9

0.3

0.0

41.5

01244599-5

745379

L0γ

L0γ

1.2

0.0

93.7

1.7

0.0

93.7

0.5

0.0

91.7

0.9

0.0

92.8

0.4

0.0

42.0

01415823-4

633574

L0γ

L0γ

1.3

0.0

34.0

1.7

0.0

33.7

0.5

0.0

41.7

0.9

0.0

42.5

0.3

0.0

31.4

02103857-3

015313

L0γ

L0γa

1.1

0.0

52.7

1.5

0.0

52.5

0.5

0.0

51.3

0.8

0.0

51.8

0.3

0.0

41.0

02235464-5

815067

L0γ

––

1.1

0.0

42.9

1.5

0.0

42.9

0.6

0.0

52.2

0.9

0.0

52.9

0.3

0.0

31.5

02265658-5

327032

––

L0δ

1.1

0.0

62.4

1.5

0.0

62.8

0.5

0.0

51.6

0.9

0.0

52.8

0.4

0.0

42.1

02292794-0

053282

––

L0γ

1.0

0.1

01.7

1.4

0.1

12.0

0.4

0.1

41.0

0.8

0.1

51.9

0.3

0.0

61.5

02340093-6

442068

L0γ

L0βγ

1.2

0.0

63.0

1.5

0.0

62.7

0.6

0.0

72.2

0.9

0.0

72.6

0.3

0.0

40.9

02411151-0

326587

L0γ

L1γ

1.1

0.0

62.8

1.5

0.0

62.8

0.4

0.0

60.5

0.7

0.0

61.3

0.3

0.0

41.4

03231002-4

631237

L0γ

L0γa

1.2

0.0

73.4

1.6

0.0

73.4

0.6

0.0

62.4

1.0

0.0

63.3

0.4

0.0

31.8

03420931-2

904317

––

L0β

1.3

0.1

14.4

1.8

0.1

14.3

0.4

0.0

90.6

0.8

0.0

91.8

0.4

0.0

42.0

03572695-4

417305

L0β

L0β

1.0

0.0

31.9

1.4

0.0

32.1

0.4

0.0

30.8

0.8

0.0

31.6

0.3

0.0

31.5

04062677-3

812102

L0γ

L1γ

1.2

0.1

13.5

1.6

0.1

13.1

0.6

0.1

22.7

1.0

0.1

23.1

0.3

0.0

51.0

04400972-5

126544

––

L0γ

1.1

0.0

63.0

1.5

0.0

63.0

0.5

0.0

62.0

0.9

0.0

72.8

0.3

0.0

41.5

06272161-5

308428

––

L0βγ

1.3

0.0

94.2

1.7

0.1

03.8

0.8

0.0

93.9

1.1

0.0

94.4

0.3

0.0

41.4

11271382-3

735076

––

L0δ

1.1

0.1

12.3

1.4

0.1

22.3

0.7

0.1

63.6

1.1

0.1

64.0

0.3

0.0

61.1

11544223-3

400390

L0β

L1β

0.9

0.0

41.3

1.2

0.0

41.3

0.5

0.0

41.3

0.8

0.0

41.6

0.3

0.0

30.5

12074836-3

900043

L0γ

L1γ

0.9

0.0

61.3

1.3

0.0

61.8

0.4

0.0

70.5

0.8

0.0

71.7

0.4

0.0

41.9

15525906+

2948485

L0β

L0β

1.0

0.0

31.9

1.4

0.0

31.9

0.4

0.0

31.1

0.8

0.0

31.6

0.3

0.0

30.8

17111353+

2326333

L0γ

L1β

1.0

0.0

42.1

1.4

0.0

42.1

0.4

0.0

41.2

0.8

0.0

41.7

0.3

0.0

31.1

19564700-7

542270

L0γ

L2γ

1.3

0.1

04.1

1.7

0.1

04.2

0.5

0.0

71.6

0.9

0.0

72.9

0.4

0.0

42.2

20334473-5

635338

––

L0γ

1.3

0.1

13.9

1.7

0.1

13.8

0.4

0.0

90.7

0.8

0.0

91.7

0.4

0.0

41.7

22134491-2

136079

L0γ

L0γ

1.1

0.0

62.8

1.5

0.0

62.9

0.5

0.0

51.6

0.9

0.0

52.4

0.4

0.0

41.6

23153135+

0617146

L0γ

L0γ

1.2

0.0

73.0

1.6

0.0

83.4

0.5

0.0

71.5

0.9

0.0

72.8

0.4

0.0

42.3

23224684-3

133231

L0β

L2β

0.8

0.0

30.0

1.0

0.0

30.0

0.3

0.0

30.1

0.6

0.0

30.1

0.2

0.0

30.0

00040288-6

410358

L1γ

L1γa

1.4

0.0

83.7

1.8

0.0

84.0

0.6

0.0

52.5

1.0

0.0

53.2

0.4

0.0

42.9

00191296-6

226005

––

L1γ

1.2

0.0

62.4

1.7

0.0

63.1

0.6

0.0

62.1

1.0

0.0

63.2

0.4

0.0

43.5

00344300-4

102266

––

L1β

1.3

0.0

72.7

1.7

0.0

73.0

0.5

0.0

62.0

0.9

0.0

62.5

0.4

0.0

42.3

00584253-0

651239

L0–

L1β

0.8

0.0

4-0

.21.2

0.0

40.1

0.3

0.0

4-0

.30.6

0.0

40.2

0.3

0.0

40.9

01174748-3

403258

L1β

L1βa

1.1

0.0

51.8

1.5

0.0

52.3

0.4

0.0

40.8

0.8

0.0

41.7

0.4

0.0

42.4

01205114-5

200349

––

L1γ

1.4

0.0

83.5

1.8

0.0

84.0

0.5

0.0

61.4

0.9

0.0

62.5

0.4

0.0

43.2

02410564-5

511466

––

L1γ

1.1

0.0

61.5

1.5

0.0

61.9

0.5

0.0

41.7

0.9

0.0

52.1

0.3

0.0

31.9

03164512-2

848521

L0–

L1β

1.1

0.0

41.4

1.4

0.0

41.6

0.4

0.0

40.9

0.8

0.0

41.2

0.3

0.0

31.3

05184616-2

756457

L1γ

L1γ

1.2

0.0

52.3

1.6

0.0

52.6

0.5

0.0

51.9

0.9

0.0

52.4

0.3

0.0

42.1

06023045+

3910592

L1–

L1β

1.0

0.0

30.7

1.3

0.0

30.9

0.4

0.0

30.5

0.7

0.0

30.8

0.3

0.0

30.8

07123786-6

155528

L1β

L1γ

1.4

0.0

53.3

1.7

0.0

53.3

0.6

0.0

52.8

1.0

0.0

53.0

0.3

0.0

31.8

10224821+

5825453

L1β

L1β

0.8

0.0

4-0

.21.1

0.0

4-0

.10.4

0.0

30.3

0.6

0.0

30.2

0.2

0.0

30.1

11083081+

6830169

L1γ

L1γ

1.1

0.0

31.5

1.4

0.0

31.7

0.4

0.0

31.0

0.8

0.0

31.4

0.3

0.0

31.5

11480096-2

836488

––

L1β

1.0

0.0

90.9

1.4

0.0

91.3

0.4

0.0

90.5

0.7

0.0

91.1

0.3

0.0

51.8

19350976-6

200473

––

L1γ

1.2

0.1

02.2

1.6

0.1

02.6

0.6

0.1

02.7

1.0

0.1

13.2

0.4

0.0

52.5

22351658-3

844154

––

L1.5γ

1.2

0.0

52.4

1.6

0.0

52.5

0.6

0.0

52.3

0.9

0.0

52.5

0.3

0.0

41.7

23255604-0

259508

L3–

L1γ

1.2

0.0

72.2

1.5

0.0

82.3

0.4

0.0

60.5

0.7

0.0

71.0

0.3

0.0

41.4

00452143+

1634446

L2β

L2γ

1.2

0.0

41.4

1.6

0.0

41.5

0.6

0.0

31.3

0.9

0.0

31.5

0.3

0.0

31.2

00550564+

0134365

L2γ

L2γ

1.5

0.0

83.2

2.0

0.0

83.3

0.7

0.0

72.6

1.2

0.0

83.1

0.4

0.0

42.7

03032042-7

312300

L2γ

––

1.3

0.0

91.6

1.7

0.0

91.8

0.5

0.0

90.8

0.9

0.0

91.4

0.4

0.0

42.0

05104958-1

843548

––

L2β

1.0

0.0

60.2

1.4

0.0

60.3

0.5

0.0

60.9

0.8

0.0

60.8

0.3

0.0

40.4

05361998-1

920396

L2γ

L2γ

1.4

0.0

72.2

1.9

0.0

82.6

0.5

0.0

71.1

1.0

0.0

72.0

0.4

0.0

42.6

20575409-0

252302

L1.5

–L

1.0

0.0

3-0

.31.2

0.0

3-0

.20.4

0.0

30.1

0.7

0.0

30.0

0.2

0.0

3-0

.123225299-6

151275

L2γ

L3γa

1.2

0.0

71.4

1.6

0.0

71.6

0.6

0.0

51.4

1.0

0.0

51.7

0.4

0.0

41.6

01531463-6

744181

L2

–L

1.4

0.0

91.2

1.8

0.0

91.8

0.7

0.1

11.4

1.2

0.1

12.2

0.5

0.0

43.1

02583123-1

520536

––

L3β

1.2

0.0

70.4

1.6

0.0

70.8

0.5

0.0

60.4

1.0

0.0

61.0

0.4

0.0

42.0

04185879-4

507413

––

L3γ

1.1

0.0

80.1

1.5

0.0

80.5

0.7

0.0

91.6

1.1

0.0

91.8

0.4

0.0

41.7

06322402-5

010349

L3β

L4γ

1.4

0.0

41.3

1.8

0.0

41.6

0.7

0.0

41.6

1.1

0.0

41.9

0.4

0.0

32.2

09593276+

4523309

––

L3γ

1.9

0.0

73.7

2.4

0.0

73.9

0.8

0.0

52.2

1.3

0.0

52.7

0.5

0.0

43.1

Page 80: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

80 Faherty et al.Table

18

—Continued

Nam

eSpT

SpT

(H-W

1)

#ofσ(H−W

1)a

(H-W

2)

#ofσ(H−W

2)a

(K-W

1)

#ofσ(K−W

1)a

(K-W

2)

#ofσ(K−W

2)a

(W1-W

2)

#ofσ(W

1−W

2)a

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

G196-3

BL

L3γ

1.9

0.0

53.9

2.5

0.0

54.4

1.0

0.0

44.1

1.6

0.0

44.6

0.5

0.0

34.3

17260007+

1538190

L3.5γ

L3γ

1.3

0.0

51.2

1.7

0.0

51.3

0.5

0.0

60.6

0.9

0.0

60.8

0.3

0.0

41.1

20113196-5

048112

––

L3γ

1.2

0.0

90.4

1.5

0.0

90.5

0.5

0.0

90.4

0.9

0.0

90.5

0.3

0.0

50.5

21265040-8

140293

L3γ

L3γ

1.5

0.0

61.7

1.9

0.0

61.9

0.6

0.0

50.9

1.0

0.0

51.4

0.4

0.0

32.1

22081363+

2921215

L3γ

L3γ

1.4

0.0

81.4

1.9

0.0

81.8

0.8

0.0

82.0

1.2

0.0

82.5

0.4

0.0

42.6

00011217+

1535355

––

L4β

1.5

0.0

60.9

1.9

0.0

61.1

0.7

0.0

50.7

1.1

0.0

51.0

0.4

0.0

31.2

003323.8

6-1

521309

L4β

L1

1.4

0.0

60.3

1.7

0.0

60.2

0.6

0.0

5-0

.50.9

0.0

5-0

.40.3

0.0

4-0

.301262109+

1428057

L4γ

L2γ

1.9

0.2

22.5

2.4

0.2

22.8

1.0

0.1

52.6

1.5

0.1

53.2

0.5

0.0

52.8

03421621-6

817321

L4γ

––

1.4

0.0

90.4

1.9

0.0

90.8

0.5

0.0

9-0

.71.0

0.0

90.3

0.4

0.0

41.9

05012406-0

010452

L4γ

L3γ

1.6

0.0

41.3

2.2

0.0

41.8

0.9

0.0

41.6

1.4

0.0

42.4

0.5

0.0

32.7

10212570-2

830427

––

L4βγ

1.6

0.1

21.5

2.1

0.1

21.7

0.8

0.1

31.0

1.3

0.1

31.6

0.4

0.0

52.0

12563961-2

718455

––

L4β

1.2

0.1

2-0

.21.6

0.1

30.0

0.6

0.1

0-0

.41.0

0.1

00.0

0.3

0.0

40.8

14252798-3

650229

L3–

L4γ

1.5

0.0

31.0

2.0

0.0

31.1

0.8

0.0

30.9

1.2

0.0

31.2

0.4

0.0

31.2

15382417-1

953116

L4γ

L4γ

1.6

0.0

71.4

2.1

0.0

71.6

0.8

0.0

61.1

1.2

0.0

61.5

0.4

0.0

41.6

15515237+

0941148

L4γ

>L

1.5

0.0

80.7

1.9

0.0

81.1

0.7

0.0

60.2

1.1

0.0

61.0

0.4

0.0

42.0

16154255+

4953211

L4γ

L3-L

2.1

0.1

03.3

2.7

0.1

03.6

1.1

0.0

73.1

1.6

0.0

73.8

0.5

0.0

33.4

18212815+

1414010

L4.5

—L

4p

ec

1.5

0.0

30.8

1.9

0.0

30.9

0.8

0.0

30.8

1.1

0.0

30.9

0.3

0.0

30.5

21324036+

1029494

––

L4β

1.3

0.1

20.0

1.7

0.1

20.4

0.6

0.1

1-0

.51.0

0.1

10.3

0.4

0.0

51.6

21543454-1

055308

L4β

L5γ

1.7

0.0

91.5

2.1

0.0

91.7

0.8

0.0

71.1

1.2

0.0

71.5

0.4

0.0

41.6

22064498-4

217208

L4γ

L4γa

1.6

0.0

71.2

2.0

0.0

71.4

0.7

0.0

60.8

1.2

0.0

61.2

0.4

0.0

31.5

22495345+

0044046

L4γ

L3β

1.8

0.1

12.1

2.2

0.1

22.1

0.7

0.0

80.7

1.2

0.0

91.1

0.4

0.0

61.3

23433470-3

646021

––

L3-L

1.8

0.0

72.3

2.4

0.0

72.5

1.0

0.0

72.8

1.5

0.0

73.2

0.5

0.0

42.4

00303013-1

450333

L7–

L4-L

1.6

0.1

01.5

2.0

0.1

11.4

0.8

0.1

00.7

1.2

0.1

10.8

0.3

0.0

40.6

03264225-2

102057

L5β

L5βγa

1.8

0.0

83.0

2.3

0.0

83.1

0.9

0.0

71.9

1.4

0.0

72.3

0.5

0.0

32.1

03552337+

1133437

L5γ

L3-L

2.0

0.0

44.1

2.5

0.0

44.2

1.0

0.0

32.2

1.5

0.0

32.8

0.5

0.0

32.9

04210718-6

306022

L5β

L5γ

1.7

0.0

52.2

2.1

0.0

52.0

0.8

0.0

51.3

1.3

0.0

51.3

0.4

0.0

30.9

05120636-2

949540

L5γ

L5β

1.7

0.0

52.6

2.2

0.0

52.5

0.9

0.0

51.4

1.3

0.0

51.6

0.4

0.0

31.3

20025073-0

521524

L5β

L5-L

1.7

0.0

62.4

2.1

0.0

62.2

0.8

0.0

41.2

1.3

0.0

41.4

0.4

0.0

31.2

00470038+

6803543

L7(γ

?)

L6-L

2.0

0.0

53.4

2.7

0.0

53.3

1.1

0.0

43.0

1.7

0.0

43.0

0.6

0.0

31.8

01033203+

1935361

L6β

L6β

1.7

0.0

60.8

2.2

0.0

60.7

0.9

0.0

61.0

1.4

0.0

61.0

0.4

0.0

40.6

08095903+

4434216

––

L6p

1.8

0.1

01.2

2.3

0.1

01.2

1.0

0.0

61.5

1.6

0.0

61.6

0.5

0.0

41.0

08575849+

5708514

L8–

L8—

1.7

0.0

51.9

2.3

0.0

51.8

0.9

0.0

41.3

1.5

0.0

41.3

0.6

0.0

30.4

11193254-1

137466

—L

2.2

0.0

44.2

2.9

0.0

44.1

1.2

0.0

33.2

1.8

0.0

33.4

0.6

0.0

42.4

114724.1

0-2

04021.3

––

L7γ

2.0

0.1

13.1

2.6

0.1

23.2

1.1

0.0

32.8

1.7

0.0

33.0

0.6

0.0

42.0

17410280-4

642218

––

L6-L

2.2

0.0

64.1

2.8

0.0

64.0

1.1

0.0

42.7

1.7

0.0

42.9

0.6

0.0

32.0

PSO

318

––

L6-L

2.4

0.0

55.0

3.1

0.0

55.2

1.2

0.0

53.3

1.9

0.0

54.0

0.7

0.0

43.4

22443167+

2043433

L6.5

p–

L6-L

8γa

2.2

0.0

72.4

2.8

0.0

72.6

1.2

0.0

82.4

1.9

0.0

82.8

0.6

0.0

32.2

aV

alu

es

are

the

#ofσ

(as

rep

ort

ed

inT

able

16)

from

the

field

sequence

that

each

ob

ject

diff

ers

.A

negati

ve

(-)

num

ber

indic

ate

sth

at

the

colo

rw

as

blu

ew

ard

of

the

field

sequence

avera

ge

where

as

ap

osi

tive

(+)

num

ber

indic

ate

sth

at

the

colo

rw

as

redw

ard

of

the

field

sequence

avera

ge.

Page 81: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

Brown Dwarf Analogs to Exoplanets 81

Table 19Coefficients of Polynomial Fits for M6 -T9 Dwarfs

MFilter x rms c0 c1 c2 c3 c4 c5 c6

MJ FLD 6.0<SpT <29.0 0.402 -8.350e+00 7.157e+00 -1.058e+00 7.771e-02 -2.684e-03 3.478e-05 · · ·MJ YNG 7.0<SpT <17.0 0.647 4.032e-03 -1.416e-01 2.097e+00 8.478e-01 · · · · · · · · ·MJ GRP 7.0<SpT <17.0 0.660 -3.825e-03 1.370e-01 -9.279e-01 10.141e+00 · · · · · · · · ·MH FLD 6.0<SpT <29.0 0.389 -7.496e+00 6.406e+00 -9.174e-01 6.551e-02 -2.217e-03 2.841e-05 · · ·MH YNG 7.0<SpT <17.0 0.634 2.642e-03 -1.049e-01 1.753e+00 1.207e+00 · · · · · · · · ·MH GRP 7.0<SpT <17.0 0.603 -3.909e-03 1.346e-01 -9.347e-01 9.728e+00 · · · · · · · · ·MKs FLD 6.0<SpT <29.0 0.537 -6.704e+00 5.970e+00 -8.481e-01 5.978e-02 -1.997e-03 2.540e-05 · · ·MKs YNG 7.0<SpT <17.0 0.640 -1.585e-02 7.338e-01 4.537e+00 · · · · · · · · · · · ·MKs GRP 7.0<SpT <17.0 0.556 -4.006e-03 1.378e-01 -1.031e+00 9.916e+00 · · · · · · · · ·MW1 FLD 6.0<SpT <29.0 0.365 -1.664e-01 2.991e+00 -3.603e-01 2.258e-02 -6.897e-04 8.337e-06 · · ·MW1 YNG 7.0<SpT <17.0 0.648 -1.397e-02 5.955e-01 5.247e+00 · · · · · · · · · · · ·MW1 GRP 7.0<SpT <17.0 0.551 -4.483e-03 1.505e-01 -1.208e+00 10.403e+00 · · · · · · · · ·MW2 FLD 6.0<SpT <29.0 0.398 -5.043e-01 3.032e+00 -3.655e-01 2.283e-02 -6.938e-04 8.190e-06 · · ·MW2 YNG 7.0<SpT <17.0 0.694 -1.507e-02 5.944e-01 5.061e+00 · · · · · · · · · · · ·MW2 GRP 7.0<SpT <17.0 0.616 -6.821e-03 2.322e-01 -2.133e+00 13.322e+00 · · · · · · · · ·MW3 FLD 6.0<SpT <29.0 0.446 6.462e+00 3.365e-01 1.520e-02 -2.573e-03 9.477e-05 -1.024e-06 · · ·MW3 YNG 7.0<SpT <17.0 0.717 -1.003e-04 -1.670e-03 2.023e-01 7.529e+00 · · · · · · · · ·MW3 GRP 7.0<SpT <17.0 0.427 -5.684e-03 1.993e-01 -1.987e+00 13.972e+00 · · · · · · · · ·Teff FLD 6.0<SpT <29.0 113.431 4.747e+03 -7.005e+02 1.155e+02 -1.191e+01 6.318e-01 -1.606e-02 1.546e-04Teff YNG 7.0<SpT <17.0 180.457 1.330e+00 -66.8637 1235.42 -10068.8 32766.4 · · · · · ·Teff YNG2 7.0<SpT <28.0 197.737 2.795e+04 -9.183e+03 1.360e+03 -1.066e+02 4.578e+00 -1.016e-01 9.106e-04Teff GRP 7.0<SpT <17.0 172.215 7.383e+00 -344.522 4879.86 · · · · · · · · · · · ·Lbol FLD 7.0<SpT <28.0 0.133 2.787e+00 -2.310e+00 3.727e-01 -3.207e-02 1.449e-03 -3.220e-05 2.736e-07Lbol YNG 7.0<SpT <17.0 0.335 -6.514e-03 2.448e-01 -3.113e+00 9.492e+00 · · · · · · · · ·Lbol YNG2 7.0<SpT <28.0 0.206 2.059e-01 9.585 -3.985 4.923e-01 -3.048e-02 9.134e-04 -1.056e-05Lbol GRP 7.0<SpT <17.0 0.221 6.194e-03 -3.757e-01 2.728e-02 · · · · · · · · · · · ·

MLconverteda 7.0<SpT <28.0 -3.46623e-01 3.40366e-02 -3.072e-03

Note. — Relations use 2MASS or WISE magnitudes. Polynomial fits to optical M/L dwarfs and NIR T dwarfs (L dwarfs with no opticalspectral type have NIR spectral types) excluding subdwarfs, low-gravity dwarfs, and binaries for the field (FLD) relations. We present polynomialsinclusive of (1) all γ and β sources under the YNG polynomials as well as (2) only High Likelihood/bonafide moving group members under the

GRP polynomials (see Table 13). The function is defined as MJ,H,Ks,W1,W2,W3,Lbol,Teff=∑ni=0 ci(SpT)i and is valid for varying spectral types

M6-T9 where 6=M6, 10=L0, 20=T0, etc. An FTEST was used to determine the goodness of fit for each polynomial. In the case of all FLDpolynomials, the sample of Filippazzo et al. (2015) is used. In the case of all YNG or GRP polynomials, they are valid from M7 - L7. We list asecond Lbol and Teff for the YNG polynomial (captioned YNG2) that includes planetary mass companions (e.g. HN Peg b, Gu Psc b, Ross 458C,etc) from Filippazzo et al. (2015) and allows us to extend the polynomial from M7-T8.a

Add W1 photometry to SpT polynomial conversion: MLconverted= W1 +∑ni=0 ci(SpT)i

Page 82: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

82 Faherty et al.

This publication has made use of the Carnegie As-trometric Program parallax reduction software as wellas the data products from the Two Micron All-SkySurvey, which is a joint project of the University ofMassachusetts and the Infrared Processing and Anal-ysis Center/California Institute of Technology, fundedby the National Aeronautics and Space Administrationand the National Science Foundation. This researchhas alsp made use of the NASA/ IPAC Infrared ScienceArchive, which is operated by the Jet Propulsion Lab-oratory, California Institute of Technology, under con-tract with the National Aeronautics and Space Admin-istration. Furthermore, this publication makes use ofdata products from the Wide-field Infrared Survey Ex-plorer (WISE), which is a joint project of the Univer-sity of California, Los Angeles, and the Jet PropulsionLaboratory/California Institute of Technology, and NE-OWISE, which is a project of the Jet Propulsion Labora-tory/California Institute of Technology. WISE and NE-OWISE are funded by the US National Aeronautics andSpace Administration. Australian access to the Magel-lan Telescopes was supported through the National Col-laborative Research Infrastructure and Collaborative Re-search Infrastructure Strategies of the Australian FederalGovernment. CGT acknowledges the support in this re-search of Australian Research Council grants DP0774000and DP130102695. JRT gratefully acknowledges supportfrom NSF grants AST-0708810 and AST-1008217

REFERENCES

Ackerman, A. S. & Marley, M. S. 2001, ApJ, 556, 872Aganze, C., Burgasser, A. J., Faherty, J. K., Choban, C., Escala,

I., Lopez, M. A., Jin, Y., Tamiya, T., Tallis, M., & Rockward,W. 2016, AJ, 151, 46

Allard, F. & Hauschildt, P. H. 1995, ApJ, 445, 433Allard, F., Hauschildt, P. H., Alexander, D. R., Tamanai, A., &

Schweitzer, A. 2001, ApJ, 556, 357Aller, K. M., Liu, M. C., Magnier, E. A., Best, W. M. J., Kotson,

M. C., Burgett, W. S., Chambers, K. C., Hodapp, K. W.,Flewelling, H., Kaiser, N., Metcalf, N., Tonry, J. L., Wainscoat,R. J., & Waters, C. 2016, ApJ, 821, 120

Allers, K. N., Gallimore, J. F., Liu, M. C., & Dupuy, T. J. 2016,ArXiv e-prints

Allers, K. N., Jaffe, D. T., Luhman, K. L., Liu, M. C., Wilson,J. C., Skrutskie, M. F., Nelson, M., Peterson, D. E., Smith,J. D., & Cushing, M. C. 2007, ApJ, 657, 511

Allers, K. N. & Liu, M. C. 2013, ApJ, 772, 79Anglada-Escude, G., Boss, A. P., Weinberger, A. J., Thompson,

I. B., Butler, R. P., Vogt, S. S., & Rivera, E. J. 2012, ApJ, 746,37

Apai, D., Radigan, J., Buenzli, E., Burrows, A., Reid, I. N., &Jayawardhana, R. 2013, ApJ, 768, 121

Artigau, E., Gagne, J., Faherty, J., Malo, L., Naud, M.-E.,Doyon, R., Lafreniere, D., & Beletsky, Y. 2015, ApJ, 806, 254

Baraffe, I., Homeier, D., Allard, F., & Chabrier, G. 2015, A&A,577, A42

Barenfeld, S. A., Bubar, E. J., Mamajek, E. E., & Young, P. A.2013, ApJ, 766, 6

Barman, T. S., Macintosh, B., Konopacky, Q. M., & Marois, C.2011a, ApJ, 733, 65

—. 2011b, ApJL, 735, L39Basri, G. 2000, ARA&A, 38, 485Bessell, M. S. 1990, PASP, 102, 1181Best, W. M. J., Liu, M. C., Magnier, E. A., Deacon, N. R., Aller,

K. M., Redstone, J., Burgett, W. S., Chambers, K. C., Draper,P., Flewelling, H., Hodapp, K. W., Kaiser, N., Metcalfe, N.,Tonry, J. L., Wainscoat, R. J., & Waters, C. 2015, ApJ, 814,118

Binks, A. S. & Jeffries, R. D. 2014, MNRAS, 438, L11

Blake, C. H., Charbonneau, D., & White, R. J. 2010, ApJ, 723,684

Blake, C. H., Charbonneau, D., White, R. J., Marley, M. S., &Saumon, D. 2007, ApJ, 666, 1198

Bochanski, J. J., Hennawi, J. F., Simcoe, R. A., Prochaska, J. X.,West, A. A., Burgasser, A. J., Burles, S. M., Bernstein, R. A.,Williams, C. L., & Murphy, M. T. 2009, PASP, 121, 1409

Bonnefoy, M., Boccaletti, A., Lagrange, A.-M., Allard, F.,Mordasini, C., Beust, H., Chauvin, G., Girard, J. H. V.,Homeier, D., Apai, D., Lacour, S., & Rouan, D. 2013, A&A,555, A107

Bonnefoy, M., Chauvin, G., Rojo, P., Allard, F., Lagrange, A.-M.,Homeier, D., Dumas, C., & Beuzit, J.-L. 2010, A&A, 512, A52

Bonnefoy, M., Marleau, G.-D., Galicher, R., Beust, H., Lagrange,A.-M., Baudino, J.-L., Chauvin, G., Borgniet, S., Meunier, N.,Rameau, J., Boccaletti, A., Cumming, A., Helling, C., Homeier,D., Allard, F., & Delorme, P. 2014, A&A, 567, L9

Boss, A. P., Weinberger, A. J., Anglada-Escude, G., Thompson,I. B., Burley, G., Birk, C., Pravdo, S. H., Shaklan, S. B.,Gatewood, G. D., Majewski, S. R., & Patterson, R. J. 2009,PASP, 121, 1218

Bowler, B. P., Liu, M. C., & Dupuy, T. J. 2010a, ApJ, 710, 45Bowler, B. P., Liu, M. C., Dupuy, T. J., & Cushing, M. C. 2010b,

ApJ, 723, 850Bowler, B. P., Liu, M. C., Shkolnik, E. L., & Dupuy, T. J. 2013,

ApJ, 774, 55Buenzli, E., Apai, D., Radigan, J., Reid, I. N., & Flateau, D.

2014, ApJ, 782, 77Buenzli, E., Saumon, D., Marley, M. S., Apai, D., Radigan, J.,

Bedin, L. R., Reid, I. N., & Morley, C. V. 2015, ApJ, 798, 127Burgasser, A. J., Cruz, K. L., Cushing, M., Gelino, C. R., Looper,

D. L., Faherty, J. K., Kirkpatrick, J. D., & Reid, I. N. 2010a,ApJ, 710, 1142

Burgasser, A. J., Gillon, M., Faherty, J. K., Radigan, J., Triaud,A. H. M. J., Plavchan, P., Street, R., Jehin, E., Delrez, L., &Opitom, C. 2014, ApJ, 785, 48

Burgasser, A. J., Kirkpatrick, J. D., Brown, M. E., Reid, I. N.,Burrows, A., Liebert, J., Matthews, K., Gizis, J. E., Dahn,C. C., Monet, D. G., Cutri, R. M., & Skrutskie, M. F. 2002a,ApJ, 564, 421

Burgasser, A. J., Liu, M. C., Ireland, M. J., Cruz, K. L., &Dupuy, T. J. 2008, ApJ, 681, 579

Burgasser, A. J., Logsdon, S. E., Gagne, J., Bochanski, J. J.,Faherty, J. K., West, A. A., Mamajek, E. E., Schmidt, S. J., &Cruz, K. L. 2015, ApJS, 220, 18

Burgasser, A. J., Marley, M. S., Ackerman, A. S., Saumon, D.,Lodders, K., Dahn, C. C., Harris, H. C., & Kirkpatrick, J. D.2002b, ApJL, 571, L151

Burgasser, A. J., Simcoe, R. A., Bochanski, J. J., Saumon, D.,Mamajek, E. E., Cushing, M. C., Marley, M. S., McMurtry, C.,Pipher, J. L., & Forrest, W. J. 2010b, ApJ, 725, 1405

Burrows, A., Hubbard, W. B., Lunine, J. I., & Liebert, J. 2001,Reviews of Modern Physics, 73, 719

Canty, J. I., Lucas, P. W., Roche, P. F., & Pinfield, D. J. 2013,MNRAS, 435, 2650

Chauvin, G., Lagrange, A.-M., Dumas, C., Zuckerman, B.,Mouillet, D., Song, I., Beuzit, J.-L., & Lowrance, P. 2004,A&A, 425, L29

Chauvin, G., Lagrange, A.-M., Zuckerman, B., Dumas, C.,Mouillet, D., Song, I., Beuzit, J.-L., Lowrance, P., & Bessell,M. S. 2005, A&A, 438, L29

Crifo, F., Phan-Bao, N., Delfosse, X., Forveille, T., Guibert, J.,Martın, E. L., & Reyle, C. 2005, A&A, 441, 653

Cruz, K. L., Kirkpatrick, J. D., & Burgasser, A. J. 2009, AJ, 137,3345

Cruz, K. L., Reid, I. N., Kirkpatrick, J. D., Burgasser, A. J.,Liebert, J., Solomon, A. R., Schmidt, S. J., Allen, P. R.,Hawley, S. L., & Covey, K. R. 2007, AJ, 133, 439

Cruz, K. L., Reid, I. N., Liebert, J., Kirkpatrick, J. D., &Lowrance, P. J. 2003, AJ, 126, 2421

Currie, T., Burrows, A., Itoh, Y., Matsumura, S., Fukagawa, M.,Apai, D., Madhusudhan, N., Hinz, P. M., Rodigas, T. J.,Kasper, M., Pyo, T.-S., & Ogino, S. 2011, ApJ, 729, 128

Currie, T., Daemgen, S., Debes, J., Lafreniere, D., Itoh, Y.,Jayawardhana, R., Ratzka, T., & Correia, S. 2014, ApJL, 780,L30

Page 83: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

Brown Dwarf Analogs to Exoplanets 83

Cushing, M. C., Kirkpatrick, J. D., Gelino, C. R., Griffith, R. L.,Skrutskie, M. F., Mainzer, A., Marsh, K. A., Beichman, C. A.,Burgasser, A. J., Prato, L. A., Simcoe, R. A., Marley, M. S.,Saumon, D., Freedman, R. S., Eisenhardt, P. R., & Wright,E. L. 2011, ApJ, 743, 50

Cushing, M. C., Vacca, W. D., & Rayner, J. T. 2004, PASP, 116,362

Cutri, R. M. & et al. 2013, VizieR Online Data Catalog, 2328Cutri, R. M., Skrutskie, M. F., van Dyk, S., Beichman, C. A.,

Carpenter, J. M., Chester, T., Cambresy, L., Evans, T., Fowler,J., Gizis, J., Howard, E., Huchra, J., Jarrett, T., Kopan, E. L.,Kirkpatrick, J. D., Light, R. M., Marsh, K. A., McCallon, H.,Schneider, S., Stiening, R., Sykes, M., Weinberg, M., Wheaton,W. A., Wheelock, S., & Zacarias, N. 2003, 2MASS All SkyCatalog of point sources., ed. Cutri, R. M., Skrutskie, M. F.,van Dyk, S., Beichman, C. A., Carpenter, J. M., Chester, T.,Cambresy, L., Evans, T., Fowler, J., Gizis, J., Howard, E.,Huchra, J., Jarrett, T., Kopan, E. L., Kirkpatrick, J. D., Light,R. M., Marsh, K. A., McCallon, H., Schneider, S., Stiening, R.,Sykes, M., Weinberg, M., Wheaton, W. A., Wheelock, S., &Zacarias, N.

Dahn, C. C., Harris, H. C., Vrba, F. J., Guetter, H. H., Canzian,B., Henden, A. A., Levine, S. E., Luginbuhl, C. B., Monet,A. K. B., Monet, D. G., Pier, J. R., Stone, R. C., Walker,R. L., Burgasser, A. J., Gizis, J. E., Kirkpatrick, J. D., Liebert,J., & Reid, I. N. 2002, AJ, 124, 1170

Deacon, N. R., Schlieder, J. E., & Murphy, S. J. 2016, ArXive-prints

Delorme, P., Gagne, J., Malo, L., Reyle, C., Artigau, E., Albert,L., Forveille, T., Delfosse, X., Allard, F., & Homeier, D. 2012,A&A, 548, A26

Dieterich, S. B., Henry, T. J., Jao, W.-C., Winters, J. G., Hosey,A. D., Riedel, A. R., & Subasavage, J. P. 2014, AJ, 147, 94

Dittmann, J. A., Irwin, J. M., Charbonneau, D., &Berta-Thompson, Z. K. 2014, ApJ, 784, 156

Ducourant, C., Teixeira, R., Galli, P. A. B., Le Campion, J. F.,Krone-Martins, A., Zuckerman, B., Chauvin, G., & Song, I.2014, A&A, 563, A121

Dupuy, T. J. & Liu, M. C. 2012, ArXiv e-printsEggen, O. J. & Iben, I. J. 1989, AJ, 97, 431Faherty, J. K., Beletsky, Y., Burgasser, A. J., Tinney, C., Osip,

D. J., Filippazzo, J. C., & Simcoe, R. A. 2014a, ApJ, 790, 90Faherty, J. K., Burgasser, A. J., Cruz, K. L., Shara, M. M.,

Walter, F. M., & Gelino, C. R. 2009, AJ, 137, 1Faherty, J. K., Burgasser, A. J., Walter, F. M., Van der Bliek, N.,

Shara, M. M., Cruz, K. L., West, A. A., Vrba, F. J., &Anglada-Escude, G. 2012, ApJ, 752, 56

Faherty, J. K., Rice, E. L., Cruz, K. L., Mamajek, E. E., &Nunez, A. 2013, AJ, 145, 2

Faherty, J. K., Tinney, C. G., Skemer, A., & Monson, A. J.2014b, ApJL, 793, L16

Filippazzo, J. C., Rice, E. L., Faherty, J., Cruz, K. L., VanGordon, M. M., & Looper, D. L. 2015, ApJ, 810, 158

Fuhrmann, K. & Chini, R. 2015, ApJ, 806, 163Gagne, J., Burgasser, A. J., Faherty, J. K., Lafreniere, D., Doyon,

R., Filippazzo, J. C., Bowsher, E., & Nicholls, C. P. 2015a,ApJL, 808, L20

Gagne, J., Faherty, J. K., Cruz, K., Lafreniere, D., Doyon, R.,

Malo, L., & Artigau, E. 2014a, ApJL, 785, L14Gagne, J., Faherty, J. K., Cruz, K. L., Lafreniere, D., Doyon, R.,

Malo, L., Burgasser, A. J., Naud, M.-E., Artigau, E.,Bouchard, S., Gizis, J. E., & Albert, L. 2015b, ApJS, 219, 33

Gagne, J., Lafreniere, D., Doyon, R., Artigau, E., Malo, L.,Robert, J., & Nadeau, D. 2014b, ApJL, 792, L17

Gagne, J., Lafreniere, D., Doyon, R., Malo, L., & Artigau, E.2014c, ApJ, 783, 121

—. 2014d, ApJ, 783, 121—. 2015c, ApJ, 798, 73Galvez-Ortiz, M. C., Clarke, J. R. A., Pinfield, D. J., Jenkins,

J. S., Folkes, S. L., Perez, A. E. G., Day-Jones, A. C.,Burningham, B., Jones, H. R. A., Barnes, J. R., & Pokorny,R. S. 2010, MNRAS, 409, 552

Gauza, B., Bejar, V. J. S., Perez-Garrido, A., Rosa ZapateroOsorio, M., Lodieu, N., Rebolo, R., Palle, E., & Nowak, G.2015, ApJ, 804, 96

Gillon, M., Triaud, A. H. M. J., Jehin, E., Delrez, L., Opitom, C.,Magain, P., Lendl, M., & Queloz, D. 2013, A&A, 555, L5

Gizis, J. E. 2002, ApJ, 575, 484Gizis, J. E., Allers, K. N., Liu, M. C., Harris, H. C., Faherty,

J. K., Burgasser, A. J., & Kirkpatrick, J. D. 2015, ApJ, 799,203

Gizis, J. E., Faherty, J. K., Liu, M. C., Castro, P. J., Shaw, J. D.,Vrba, F. J., Harris, H. C., Aller, K. M., & Deacon, N. R. 2012,AJ, 144, 94

Gizis, J. E., Monet, D. G., Reid, I. N., Kirkpatrick, J. D., Liebert,J., & Williams, R. J. 2000, AJ, 120, 1085

Golimowski, D. A., Leggett, S. K., Marley, M. S., Fan, X.,Geballe, T. R., Knapp, G. R., Vrba, F. J., Henden, A. A.,Luginbuhl, C. B., Guetter, H. H., Munn, J. A., Canzian, B.,Zheng, W., Tsvetanov, Z. I., Chiu, K., Glazebrook, K.,Hoversten, E. A., Schneider, D. P., & Brinkmann, J. 2004, AJ,127, 3516

Gorlova, N. I., Meyer, M. R., Rieke, G. H., & Liebert, J. 2003,ApJ, 593, 1074

Hallinan, G., Littlefair, S. P., Cotter, G., Bourke, S., Harding,L. K., Pineda, J. S., Butler, R. P., Golden, A., Basri, G., Doyle,J. G., Kao, M. M., Berdyugina, S. V., Kuznetsov, A., Rupen,M. P., & Antonova, A. 2015, Nature, 523, 568

Hawley, S. L., Covey, K. R., Knapp, G. R., Golimowski, D. A.,Fan, X., Anderson, S. F., Gunn, J. E., Harris, H. C., Ivezic, Z.,Long, G. M., Lupton, R. H., McGehee, P. M., Narayanan, V.,Peng, E., Schlegel, D., Schneider, D. P., Spahn, E. Y., Strauss,M. A., Szkody, P., Tsvetanov, Z., Walkowicz, L. M.,Brinkmann, J., Harvanek, M., Hennessy, G. S., Kleinman,S. J., Krzesinski, J., Long, D., Neilsen, E. H., Newman, P. R.,Nitta, A., Snedden, S. A., & York, D. G. 2002, AJ, 123, 3409

Hayashi, C. & Nakano, T. 1963, Progress of Theoretical Physics,30, 460

Henry, T. J., Jao, W.-C., Subasavage, J. P., Beaulieu, T. D.,Ianna, P. A., Costa, E., & Mendez, R. A. 2006, AJ, 132, 2360

Hinkley, S., Bowler, B. P., Vigan, A., Aller, K. M., Liu, M. C.,Mawet, D., Matthews, E., Wahhaj, Z., Kraus, S., Baraffe, I., &Chabrier, G. 2015, ApJL, 805, L10

Hinz, P. M., Rodigas, T. J., Kenworthy, M. A., Sivanandam, S.,Heinze, A. N., Mamajek, E. E., & Meyer, M. R. 2010, ApJ,716, 417

Johnson, D. R. H. & Soderblom, D. R. 1987, AJ, 93, 864Kellogg, K., Metchev, S., Gagne, J., & Faherty, J. 2016, ArXiv

e-printsKellogg, K., Metchev, S., Geißler, K., Hicks, S., Kirkpatrick,

J. D., & Kurtev, R. 2015, AJ, 150, 182Kendall, T. R., Delfosse, X., Martın, E. L., & Forveille, T. 2004,

A&A, 416, L17Kirkpatrick, J. D. 2005, ARA&A, 43, 195Kirkpatrick, J. D., Barman, T. S., Burgasser, A. J., McGovern,

M. R., McLean, I. S., Tinney, C. G., & Lowrance, P. J. 2006,ApJ, 639, 1120

Kirkpatrick, J. D., Cruz, K. L., Barman, T. S., Burgasser, A. J.,Looper, D. L., Tinney, C. G., Gelino, C. R., Lowrance, P. J.,Liebert, J., Carpenter, J. M., Hillenbrand, L. A., & Stauffer,J. R. 2008, ApJ, 689, 1295

Kirkpatrick, J. D., Cushing, M. C., Gelino, C. R., Griffith, R. L.,Skrutskie, M. F., Marsh, K. A., Wright, E. L., Mainzer, A.,Eisenhardt, P. R., McLean, I. S., Thompson, M. A., Bauer,J. M., Benford, D. J., Bridge, C. R., Lake, S. E., Petty, S. M.,Stanford, S. A., Tsai, C.-W., Bailey, V., Beichman, C. A.,Bloom, J. S., Bochanski, J. J., Burgasser, A. J., Capak, P. L.,Cruz, K. L., Hinz, P. M., Kartaltepe, J. S., Knox, R. P.,Manohar, S., Masters, D., Morales-Calderon, M., Prato, L. A.,Rodigas, T. J., Salvato, M., Schurr, S. D., Scoville, N. Z.,Simcoe, R. A., Stapelfeldt, K. R., Stern, D., Stock, N. D., &Vacca, W. D. 2011, ApJS, 197, 19

Kirkpatrick, J. D., Looper, D. L., Burgasser, A. J., Schurr, S. D.,Cutri, R. M., Cushing, M. C., Cruz, K. L., Sweet, A. C.,Knapp, G. R., Barman, T. S., Bochanski, J. J., Roellig, T. L.,McLean, I. S., McGovern, M. R., & Rice, E. L. 2010, ApJS,190, 100

Kirkpatrick, J. D., Reid, I. N., Liebert, J., Gizis, J. E., Burgasser,A. J., Monet, D. G., Dahn, C. C., Nelson, B., & Williams, R. J.2000, AJ, 120, 447

Page 84: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

84 Faherty et al.

Knapp, G. R., Leggett, S. K., Fan, X., Marley, M. S., Geballe,T. R., Golimowski, D. A., Finkbeiner, D., Gunn, J. E.,Hennawi, J., Ivezic, Z., Lupton, R. H., Schlegel, D. J., Strauss,M. A., Tsvetanov, Z. I., Chiu, K., Hoversten, E. A.,Glazebrook, K., Zheng, W., Hendrickson, M., Williams, C. C.,Uomoto, A., Vrba, F. J., Henden, A. A., Luginbuhl, C. B.,Guetter, H. H., Munn, J. A., Canzian, B., Schneider, D. P., &Brinkmann, J. 2004, AJ, 127, 3553

Kraus, A. L., Ireland, M. J., Cieza, L. A., Hinkley, S., Dupuy,T. J., Bowler, B. P., & Liu, M. C. 2014, ApJ, 781, 20

Kumar, S. S. 1963, ApJ, 137, 1121Kuzuhara, M., Tamura, M., Kudo, T., Janson, M., Kandori, R.,

Brandt, T. D., Thalmann, C., Spiegel, D., Biller, B., Carson,J., Hori, Y., Suzuki, R., Burrows, A., Henning, T., Turner,E. L., McElwain, M. W., Moro-Martın, A., Suenaga, T.,Takahashi, Y. H., Kwon, J., Lucas, P., Abe, L., Brandner, W.,Egner, S., Feldt, M., Fujiwara, H., Goto, M., Grady, C. A.,Guyon, O., Hashimoto, J., Hayano, Y., Hayashi, M., Hayashi,S. S., Hodapp, K. W., Ishii, M., Iye, M., Knapp, G. R., Matsuo,T., Mayama, S., Miyama, S., Morino, J.-I., Nishikawa, J.,Nishimura, T., Kotani, T., Kusakabe, N., Pyo, T.-S., Serabyn,E., Suto, H., Takami, M., Takato, N., Terada, H., Tomono, D.,Watanabe, M., Wisniewski, J. P., Yamada, T., Takami, H., &Usuda, T. 2013, ApJ, 774, 11

Lagrange, A.-M., Bonnefoy, M., Chauvin, G., Apai, D.,Ehrenreich, D., Boccaletti, A., Gratadour, D., Rouan, D.,Mouillet, D., Lacour, S., & Kasper, M. 2010, Science, 329, 57

Liu, M. C., Magnier, E. A., Deacon, N. R., Allers, K. N., Dupuy,T. J., Kotson, M. C., Aller, K. M., Burgett, W. S., Chambers,K. C., Draper, P. W., Hodapp, K. W., Jedicke, R., Kaiser, N.,Kudritzki, R.-P., Metcalfe, N., Morgan, J. S., Price, P. A.,Tonry, J. L., & Wainscoat, R. J. 2013, ApJL, 777, L20

Lodders, K. 1999, ApJ, 519, 793Looper, D. L., Burgasser, A. J., Kirkpatrick, J. D., & Swift, B. J.

2007, ApJL, 669, L97Looper, D. L., Kirkpatrick, J. D., Cutri, R. M., Barman, T.,

Burgasser, A. J., Cushing, M. C., Roellig, T., McGovern,M. R., McLean, I. S., Rice, E., Swift, B. J., & Schurr, S. D.2008, ApJ, 686, 528

Lucas, P. W., Roche, P. F., Allard, F., & Hauschildt, P. H. 2001,MNRAS, 326, 695

Luhman, K. L. 2014, ApJL, 786, L18Luhman, K. L., Peterson, D. E., & Megeath, S. T. 2004, ApJ,

617, 565Mace, G. N., Kirkpatrick, J. D., Cushing, M. C., Gelino, C. R.,

McLean, I. S., Logsdon, S. E., Wright, E. L., Skrutskie, M. F.,Beichman, C. A., Eisenhardt, P. R., & Kulas, K. R. 2013, ApJ,777, 36

Macintosh, B., Graham, J. R., Barman, T., De Rosa, R. J.,Konopacky, Q., Marley, M. S., Marois, C., Nielsen, E. L.,Pueyo, L., Rajan, A., Rameau, J., Saumon, D., Wang, J. J.,Ammons, M., Arriaga, P., Artigau, E., Beckwith, S., Brewster,J., Bruzzone, S., Bulger, J., Burningham, B., Burrows, A. S.,Chen, C., Chiang, E., Chilcote, J. K., Dawson, R. I., Dong, R.,Doyon, R., Draper, Z. H., Duchene, G., Esposito, T. M.,Fabrycky, D., Fitzgerald, M. P., Follette, K. B., Fortney, J. J.,Gerard, B., Goodsell, S., Greenbaum, A. Z., Hibon, P., Hinkley,S., Hufford, T., Hung, L.-W., Ingraham, P., Johnson-Groh, M.,Kalas, P., Lafreniere, D., Larkin, J. E., Lee, J., Line, M., Long,D., Maire, J., Marchis, F., Matthews, B. C., Max, C. E.,Metchev, S., Millar-Blanchaer, M. A., Mittal, T., Morley,C. V., Morzinski, K. M., Murray-Clay, R., Oppenheimer, R.,Palmer, D. W., Patel, R., Patience, J., Perrin, M. D., Poyneer,L. A., Rafikov, R. R., Rantakyro, F. T., Rice, E., Rojo, P.,Rudy, A. R., Ruffio, J.-B., Ruiz, M. T., Sadakuni, N.,Saddlemyer, L., Salama, M., Savransky, D., Schneider, A. C.,Sivaramakrishnan, A., Song, I., Soummer, R., Thomas, S.,Vasisht, G., Wallace, J. K., Ward-Duong, K., Wiktorowicz,S. J., Wolff, S. G., & Zuckerman, B. 2015, ArXiv e-prints

Madhusudhan, N., Burrows, A., & Currie, T. 2011, ApJ, 737, 34Males, J. R., Close, L. M., Morzinski, K. M., Wahhaj, Z., Liu,

M. C., Skemer, A. J., Kopon, D., Follette, K. B., Puglisi, A.,Esposito, S., Riccardi, A., Pinna, E., Xompero, M., Briguglio,R., Biller, B. A., Nielsen, E. L., Hinz, P. M., Rodigas, T. J.,Hayward, T. L., Chun, M., Ftaclas, C., Toomey, D. W., & Wu,Y.-L. 2014, ApJ, 786, 32

Malo, L., Doyon, R., Feiden, G. A., Albert, L., Lafreniere, D.,

Artigau, E., Gagne, J., & Riedel, A. 2014, ApJ, 792, 37

Malo, L., Doyon, R., Lafreniere, D., Artigau, E., Gagne, J.,Baron, F., & Riedel, A. 2013, ApJ, 762, 88

Marley, M. S., Saumon, D., Cushing, M., Ackerman, A. S.,Fortney, J. J., & Freedman, R. 2012, ArXiv e-prints

Marocco, F., Andrei, A. H., Smart, R. L., Jones, H. R. A.,Pinfield, D. J., Day-Jones, A. C., Clarke, J. R. A., Sozzetti, A.,Lucas, P. W., Bucciarelli, B., & Penna, J. L. 2013, AJ, 146, 161

Marois, C., Macintosh, B., Barman, T., Zuckerman, B., Song, I.,Patience, J., Lafreniere, D., & Doyon, R. 2008, Science, 322,1348

Marois, C., Zuckerman, B., Konopacky, Q. M., Macintosh, B., &Barman, T. 2010, Nature, 468, 1080

McGovern, M. R., Kirkpatrick, J. D., McLean, I. S., Burgasser,A. J., Prato, L., & Lowrance, P. J. 2004, ApJ, 600, 1020

McLean, I. S., Becklin, E. E., Bendiksen, O., Brims, G., Canfield,J., Figer, D. F., Graham, J. R., Hare, J., Lacayanga, F., Larkin,J. E., Larson, S. B., Levenson, N., Magnone, N., Teplitz, H., &Wong, W. 1998, in Society of Photo-Optical InstrumentationEngineers (SPIE) Conference Series, Vol. 3354, InfraredAstronomical Instrumentation, ed. A. M. Fowler, 566–578

Metchev, S. A., Heinze, A., Apai, D., Flateau, D., Radigan, J.,

Burgasser, A., Marley, M. S., Artigau, E., Plavchan, P., &Goldman, B. 2015, ApJ, 799, 154

Metchev, S. A. & Hillenbrand, L. A. 2006, ApJ, 651, 1166Mohanty, S., Jayawardhana, R., & Barrado y Navascues, D. 2003,

ApJL, 593, L109Mohanty, S., Jayawardhana, R., Huelamo, N., & Mamajek, E.

2007, ApJ, 657, 1064Oppenheimer, B. R., Baranec, C., Beichman, C., Brenner, D.,

Burruss, R., Cady, E., Crepp, J. R., Dekany, R., Fergus, R.,Hale, D., Hillenbrand, L., Hinkley, S., Hogg, D. W., King, D.,Ligon, E. R., Lockhart, T., Nilsson, R., Parry, I. R., Pueyo, L.,Rice, E., Roberts, J. E., Roberts, Jr., L. C., Shao, M.,Sivaramakrishnan, A., Soummer, R., Truong, T., Vasisht, G.,Veicht, A., Vescelus, F., Wallace, J. K., Zhai, C., &Zimmerman, N. 2013, ApJ, 768, 24

Patience, J., King, R. R., De Rosa, R. J., Vigan, A., Witte, S.,Rice, E., Helling, C., & Hauschildt, P. 2012, A&A, 540, A85

Patten, B. M., Stauffer, J. R., Burrows, A., Marengo, M., Hora,J. L., Luhman, K. L., Sonnett, S. M., Henry, T. J., Raghavan,D., Megeath, S. T., Liebert, J., & Fazio, G. G. 2006, ApJ, 651,502

Persson, S. E., Murphy, D. C., Smee, S., Birk, C., Monson, A. J.,Uomoto, A., Koch, E., Shectman, S., Barkhouser, R., Orndorff,J., Hammond, R., Harding, A., Scharfstein, G., Kelson, D.,Marshall, J., & McCarthy, P. J. 2013, PASP, 125, 654

Phan-Bao, N., Bessell, M. S., Martın, E. L., Simon, G.,Borsenberger, J., Tata, R., Guibert, J., Crifo, F., Forveille, T.,Delfosse, X., Lim, J., & de Batz, B. 2008, MNRAS, 383, 831

Pickles, A. J. 1998, PASP, 110, 863

Radigan, J., Jayawardhana, R., Lafreniere, D., Artigau, E.,Marley, M., & Saumon, D. 2012, ApJ, 750, 105

Radigan, J., Lafreniere, D., Jayawardhana, R., & Artigau, E.2014, ApJ, 793, 75

Reid, I. N., Cruz, K. L., & Allen, P. R. 2007, AJ, 133, 2825Reid, I. N., Cruz, K. L., Kirkpatrick, J. D., Allen, P. R., Mungall,

F., Liebert, J., Lowrance, P., & Sweet, A. 2008, AJ, 136, 1290Reid, I. N., Kirkpatrick, J. D., Liebert, J., Gizis, J. E., Dahn,

C. C., & Monet, D. G. 2002, AJ, 124, 519Reiners, A. 2009, ApJL, 702, L119Reiners, A. & Basri, G. 2009, ApJ, 705, 1416Rice, E. L., Faherty, J. K., Cruz, K., Barman, T., Looper, D.,

Malo, L., Mamajek, E. E., Metchev, S., & Shkolnik, E. L. 2011,ArXiv e-prints

Rice, E. L., Faherty, J. K., & Cruz, K. L. 2010, ApJL, 715, L165Riedel, A. 2015, TBDRodriguez, D. R., Zuckerman, B., Kastner, J. H., Bessell, M. S.,

Faherty, J. K., & Murphy, S. J. 2013, ApJ, 774, 101Sahlmann, J., Lazorenko, P. F., Bouy, H., Martın, E. L., Queloz,

D., Segransan, D., & Zapatero Osorio, M. R. 2016, MNRAS,455, 357

Salim, S. & Gould, A. 2003, ApJ, 582, 1011Saumon, D. & Marley, M. S. 2008, ApJ, 689, 1327

Page 85: Jacqueline K. Faherty , Adric R. Riedel Erini Lambrides ... · Erini Lambrides 2, Haley Fica , Alycia Weinberger1, John R. Thorstensen8, C. G. Tinney7,12, Vivienne Baldassare2,5,

Brown Dwarf Analogs to Exoplanets 85

Schmidt, S. J., Cruz, K. L., Bongiorno, B. J., Liebert, J., & Reid,I. N. 2007, AJ, 133, 2258

Schmidt, S. J., West, A. A., Hawley, S. L., & Pineda, J. S. 2010,AJ, 139, 1808

Schneider, A., Melis, C., & Song, I. 2012a, ApJ, 754, 39Schneider, A., Song, I., Melis, C., Zuckerman, B., & Bessell, M.

2012b, ApJ, 757, 163Schneider, A. C., Cushing, M. C., Kirkpatrick, J. D., Mace,

G. N., Gelino, C. R., Faherty, J. K., Fajardo-Acosta, S., &Sheppard, S. S. 2014, AJ, 147, 34

Schneider, A. C., Windsor, J., Cushing, M. C., Kirkpatrick, J. D.,& Wright, E. L. 2016, ArXiv e-prints

Scholz, R.-D., McCaughrean, M. J., Zinnecker, H., & Lodieu, N.2005, A&A, 430, L49

Seifahrt, A., Reiners, A., Almaghrbi, K. A. M., & Basri, G. 2010,A&A, 512, A37

Shkolnik, E. L., Anglada-Escude, G., Liu, M. C., Bowler, B. P.,Weinberger, A. J., Boss, A. P., Reid, I. N., & Tamura, M. 2012,ApJ, 758, 56

Shkolnik, E. L., Liu, M. C., Reid, I. N., Dupuy, T., &Weinberger, A. J. 2011, ApJ, 727, 6

Simcoe, R. A., Burgasser, A. J., Schechter, P. L., Fishner, J.,Bernstein, R. A., Bigelow, B. C., Pipher, J. L., Forrest, W.,McMurtry, C., Smith, M. J., & Bochanski, J. J. 2013, PASP,125, 270

Skemer, A. J., Hinz, P. M., Esposito, S., Burrows, A., Leisenring,J., Skrutskie, M., Desidera, S., Mesa, D., Arcidiacono, C.,Mannucci, F., Rodigas, T. J., Close, L., McCarthy, D., Kulesa,C., Agapito, G., Apai, D., Argomedo, J., Bailey, V., Boutsia,K., Briguglio, R., Brusa, G., Busoni, L., Claudi, R., Eisner, J.,Fini, L., Follette, K. B., Garnavich, P., Gratton, R., Guerra,J. C., Hill, J. M., Hoffmann, W. F., Jones, T., Krejny, M.,Males, J., Masciadri, E., Meyer, M. R., Miller, D. L.,Morzinski, K., Nelson, M., Pinna, E., Puglisi, A., Quanz, S. P.,Quiros-Pacheco, F., Riccardi, A., Stefanini, P., Vaitheeswaran,V., Wilson, J. C., & Xompero, M. 2012, ApJ, 753, 14

Skemer, A. J., Morley, C. V., Zimmerman, N. T., Skrutskie,M. F., Leisenring, J., Buenzli, E., Bonnefoy, M., Bailey, V.,Hinz, P., Defrere, D., Esposito, S., Apai, D., Biller, B.,Brandner, W., Close, L., Crepp, J. R., De Rosa, R. J.,Desidera, S., Eisner, J., Fortney, J., Freedman, R., Henning, T.,Hofmann, K.-H., Kopytova, T., Lupu, R., Maire, A.-L., Males,J. R., Marley, M., Morzinski, K., Oza, A., Patience, J., Rajan,A., Rieke, G., Schertl, D., Schlieder, J., Stone, J., Su, K., Vaz,A., Visscher, C., Ward-Duong, K., Weigelt, G., & Woodward,C. E. 2015, ArXiv e-prints

Stauffer, J. R., Schultz, G., & Kirkpatrick, J. D. 1998, ApJL, 499,L199

Stephens, D. C., Leggett, S. K., Cushing, M. C., Marley, M. S.,Saumon, D., Geballe, T. R., Golimowski, D. A., Fan, X., &Noll, K. S. 2009, ApJ, 702, 154

Teegarden, B. J., Pravdo, S. H., Hicks, M., Lawrence, K.,Shaklan, S. B., Covey, K., Fraser, O., Hawley, S. L., McGlynn,T., & Reid, I. N. 2003, ApJL, 589, L51

Teixeira, R., Ducourant, C., Chauvin, G., Krone-Martins, A.,Song, I., & Zuckerman, B. 2008, A&A, 489, 825

Thompson, M. A., Kirkpatrick, J. D., Mace, G. N., Cushing,M. C., Gelino, C. R., Griffith, R. L., Skrutskie, M. F.,Eisenhardt, P. R. M., Wright, E. L., Marsh, K. A., Mix, K. J.,Beichman, C. A., Faherty, J. K., Toloza, O., Ferrara, J.,Apodaca, B., McLean, I. S., & Bloom, J. S. 2013, PASP, 125,809

Thorstensen, J. R. 2003, AJ, 126, 3017Thorstensen, J. R., Lepine, S., & Shara, M. 2008, AJ, 136, 2107Tinney, C. G., Burgasser, A. J., & Kirkpatrick, J. D. 2003, AJ,

126, 975Tinney, C. G., Faherty, J. K., Kirkpatrick, J. D., Cushing, M.,

Morley, C. V., & Wright, E. L. 2014, ApJ, 796, 39Tinney, C. G., Faherty, J. K., Kirkpatrick, J. D., Wright, E. L.,

Gelino, C. R., Cushing, M. C., Griffith, R. L., & Salter, G.2012, ApJ, 759, 60

Tinney, C. G., Reid, I. N., Gizis, J., & Mould, J. R. 1995, AJ,110, 3014

Tokunaga, A. T. & Kobayashi, N. 1999, AJ, 117, 1010Torres, C. A. O., Quast, G. R., Melo, C. H. F., & Sterzik, M. F.

2008, Young Nearby Loose Associations, ed. Reipurth, B., 757

Tremblin, P., Amundsen, D. S., Chabrier, G., Baraffe, I.,Drummond, B., Hinkley, S., Mourier, P., & Venot, O. 2016,ApJL, 817, L19

Tsuji, T., Ohnaka, K., & Aoki, W. 1996a, A&A, 305, L1Tsuji, T., Ohnaka, K., Aoki, W., & Nakajima, T. 1996b, A&A,

308, L29Vacca, W. D., Cushing, M. C., & Rayner, J. T. 2003, PASP, 115,

389Vrba, F. J., Henden, A. A., Luginbuhl, C. B., Guetter, H. H.,

Munn, J. A., Canzian, B., Burgasser, A. J., Kirkpatrick, J. D.,Fan, X., Geballe, T. R., Golimowski, D. A., Knapp, G. R.,Leggett, S. K., Schneider, D. P., & Brinkmann, J. 2004, AJ,127, 2948

Weinberger, A. J., Anglada-Escude, G., & Boss, A. P. 2013, ApJ,762, 118

West, A. A., Hawley, S. L., Bochanski, J. J., Covey, K. R., Reid,I. N., Dhital, S., Hilton, E. J., & Masuda, M. 2008, AJ, 135, 785

Wilson, J. C., Miller, N. A., Gizis, J. E., Skrutskie, M. F., Houck,J. R., Kirkpatrick, J. D., Burgasser, A. J., & Monet, D. G.2003, in IAU Symposium, Vol. 211, Brown Dwarfs, ed.E. Martın, 197

Woitke, P. & Helling, C. 2004, A&A, 414, 335Zapatero Osorio, M. R., Bejar, V. J. S., Miles-Paez, P. A., Pena

Ramırez, K., Rebolo, R., & Palle, E. 2014, A&A, 568, A6Zuckerman, B. & Song, I. 2004, ARA&A, 42, 685Zuckerman, B., Song, I., & Bessell, M. S. 2004, ApJL, 613, L65