j&>-:*q ^ ,- >,' '-••.--r-> ^ -p' ''-'/...

301
x v /•• w" V->; ^ - x • • •" - - "•''•'- •./;" - ••••< >• ' '•: ,^ ••'•'> -- -V .-• .... •-'>. •<•-,- r: : v'-. ,- v ,< .^v*-'. (, • • ->• -i x :' k- .- - - '•;•;-.• ' " - -,--'/,: < • . -i , ( ' ' - V . .v ~ .-:.; ;^<IPL PUBLICATION 85-5?;; .,'-~£%^.? r - • , ; ?y ",.;»''• •• : " ' . .'"V -\ v ,-" >,' '-••".--r-> 1 ^ -p' : -'"^^ -"^^^f^, :• "v^ •:>-•->:!-• V•'.- '"^ ' : I'/-.-. , MI'.^-J \' • • .'' ^" '• j&>-:*Q ^ : ''-'/ .'•••f" ' • v ' ': '- -- '* :?-'A • >'\ •'.'•'--• ":. V-.. .•.'.'-''•- -.-• •"^ > .,"-jtt^iV^/.^'•'•-.- ••-.- •-'.-''•»•.'•. ^ : -v :,•/•'. Tv>,-0-.-.---^ Jtitm&:"~ •^ftca^ /j/^--^:-^:.:-; 1 ^^^^^:'^-;!-.^?-,-^ -VA- ::,^V^>:v"--U-, -,"'-';••'• - ; - : - \;^gfl£ .^••. -/."••"-.'v''-•'-{ -'/ ' V-'-V - : . ' > , . . , . .. .,. Mo "' ' . H . /^ s .. Che-Hang,Chiles Ih ' . sV v* V;»,- : •. -^ '•,'„'•'>; •-'•' i c..-'"'.-: '• •. ,' v -:'/ 1 '\ N .- '^ '' /• '"* '/;.;•; "•' " ''*'• ..- V< ;i '-\ "- <• vNati'onal Aeronautics and ,. ,. (i ' (- •'•/;. /-.:^ -.---'/•"-, '••••.-/.. >-;-:; ( -'^. : : !.. -S-A--.- '.- •>"(•> /' Space Administration; \ : ".^" ":.v : - J \ ' > '- t - '')-•' -/" v - ,v : ^ ^ /-•••'' -."'.• :V '••'";, -, ^ t;' \-—,;S s Vl v ""^ -.:,-.. v i-^0 A-.-'V'-.'- ;--vv,-. :• ;. ^'V : '' ^ '-• '-'^ '' -' ; ^ : ? ^' ,. •'•'. , et Poulsion^Laboratory ' -.. '.'-, ' !" ' ;-'-s , -"k?. '.-•/'','" v- -,' '?:y^ '.'-••' ."•/-' M . ;!" v h,California Institute^ of Technology;;'. ' < r -V, ."^• rf - > ' :: ,' ; . i\>" ."; f' v ^ ;; .^ ''. V''Rasadena^California - 1 . '•'.. ,- x ".-V :'.% f •-../ - ; ! ';' y /\-;;.- ;.. v .-;.-.• •:.-,, N" ., ; '. rr-;'--^: 1 . >':./.=,-i. ->.-c - » v .'.-:;.. i':;' ,-.:-^> - v4 ' V . 'V'^fV x ' "- r "Y - :'\X7v->>^-v,-.'-y-' •-•:•.'•-/.rv'r^ . ? "- - ^-•.-•.v.'v' -v :3 ••• ^.V--"- '^ 7 ;^i^;^:;:^^o--^^^^vw^ ;:-^:^w^^ ' ' https://ntrs.nasa.gov/search.jsp?R=19860006781 2020-03-16T16:24:58+00:00Z

Upload: others

Post on 14-Mar-2020

14 views

Category:

Documents


0 download

TRANSCRIPT

• x v /•• w" V->; -x • • •" - - "• ' ' • ' - •./;" • - ••••< >• '' • : ,^ • • • ' • ' > - - -V . - • . . . . • - ' > . • < • - , - r : :v'-. , - v ,< .^v*- ' .(, • • ->• -i x :' k- .- - - ' • ; • ; - . • ' " - - , - - ' / , : < • . -i ,

( ' ' - V

.

.v ~ .-:.; ;^<IPL PUBLICATION 85-5?;; .,'-~£%^.? r- • , ; ?y " , . ; » ' ' • •• : " ' . .'"V -\ v,-" >,' '-••".--r->1^ -p': -'"^^ -"^^^f^, :• "v^ •:>-•->:!-• V•'.- '"^ ':I ' / - . - . • , MI ' .^ -J \' • • .' ' ^" '• j&>-:*Q ^ : ' ' - ' / . ' • • • f " ' •v ' ': '- -- '*

• :?-'A • > ' \ • ' . ' • ' - - • " : . V - . . . • . ' . ' - ' ' • - - . - • •"^>.,"-jtt^iV^/.^'•'•-.- • • - . - • - ' . - ' ' • » • . ' • . ^ : -v : , • / • ' . • - "Tv> , -0 - . - . - - - ^Jtitm&:"~

•^ftca^

/j/^--^:-^:.:-;1^^^^^:'^-;!-.^?-,-^-VA- ::,^V^>:v"--U-, -," '- ' ;•• '• - ; - : - \; gfl£

. ••. - / . " • • " - . ' v ' ' - • ' - { -'/ ' V-'-V - :

.'

> , . • • . • , . . . . , .

Mo

" ' '• . H . /^ s ..

Che-Hang, Chiles Ih

' •

. sVv* V;»,- : •. -^ ' • , ' „ ' • ' > ; •-'•' i c. . - ' " ' . - : '• •. ,'v-: '/1 '\N.- '^ ' ' /• '"* '/;.;•; "• ' " ''*'• ..- V< ; i

'-\ "- <• vNati'onal Aeronautics and ,. , . ( i ' (- • ' • / ; . /-.:^ - . - - - ' / • " - , ' • • • • . - / . . >-;-:;(-'^.:: !.. -S-A-- . - '.-• > " ( • > /' Space Administration; \ :". " ":.v :-J\ ' > ' - t - '')-•' - / " v - ,v:^ / - • • • ' ' - . " ' . • :V '••'";, -, ^ "t;' \ -—,;Ss

V l v ""^ -.:,-.. v i-^0 A - . - ' V ' - . ' - ;--vv,-. :• ;. ^'V : ' ' ^ '-• ' - ' ^ '' -' ; ^:? ^ ' - :,. • ' • ' . , et Poulsion^Laboratory ' -.. '.'-, ' !" ' ;-'-s , -"k?. '.-•/'','" v- -,' ' ? : y ^ '.'-••' ."•/- ' M

. ;!" vh,California Institute^ of Technology;;'. ' <r -V, ."^•rf->'::,';. i \ > " • ."; f'v ^;; .^''. V''Rasadena^California -1. ' • ' . . ,-x " . - V :'.%f •-../ - ;!';'y / \ - ; ; . - ; . . v . - ; . - . • • : . - , , N" ., ;'.

rr-; '--^:1. >':./.=,-i. ->.-c - » v . ' . - : ; . . i':;' ,-.:-^> -v4 'V. 'V'^fV • x ' "-r"Y- : ' \X7v->>^-v , - . ' -y - ' • - • : • . ' • - / . r v ' r ^ .?"- - ^-•.-•.v.'v' - v : 3 • • • ^ .V - - " - '^ 7

• ;^i^;^:;:^^o--^^^^vw^ ;:-^:^w^^ ' '

https://ntrs.nasa.gov/search.jsp?R=19860006781 2020-03-16T16:24:58+00:00Z

JPL PUBLICATION 85-57

Dynamic Modeling and AdaptiveControl for Space StationsChe-Hang Charles IhShyh Jong Wang

July 15, 1985

NASANational Aeronautics andSpace Administration

Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadena, California

The research described in this publication was carried out by the Jet PropulsionLaboratory, California Institute of Technology, under a contract with the NationalAeronautics and Space Administration.

Reference herein to any specific commercial product, process, or service by tradename, trademark, manufacturer, or otherwise, does not constitute or imply itsendorsement by the United States Government or the Jet Propulsion Laboratory,California Institute of Technology.

ABSTRACT

Of all large space structural systems, space stations present a

unique challenge and requirement to advanced control technology. Their

operations require control system stability over an extremely broad range

of parameter changes and high level of disturbances. During shuttle

docking the system mass may suddenly increase by more than 100% and during

station assembly the mass may vary even more drastically. These coupled

with the inherent dynamic model uncertainties associated with large space

structural systems require highly sophisticated control systems that can

grow as the stations evolve and cope with the-uncertainties and time-

varying elements to maintain the stability and pointing of the space

stations.

This report first deals with the aspects of space station operational

properties including configurations, dynamic models, shuttle docking

contact dynamics, solar panel interaction and load reduction to yield a

set of system models and conditions. A model reference adaptive control

algorithm along with the inner-loop plant augmentation design for

controlling the space stations under severe operational conditions of

shuttle docking, excessive model parameter errors, and model truncation

are then investigated. The instability problem caused by the zero-

frequency rigid body modes and a proposed solution using plant augmentation

are addressed. Two sets of sufficient conditions which guarantee the

globally asymptotic stability for the space station systems are obtained.

The performance of this adaptive control system on space stations

is analyzed through extensive simulations. Asymptotic stability, high

iii

rate of convergence, and robustness of the system are observed under the

above-mentioned severe conditions and constraints induced by control hard-

ware saturation. It is also found that further actuation level reductions

can be achieved by using model switching and disturbance modeling

techniques.

iv

TABLE OF CONTENTS

CHAPTER I INTRODUCTION 1

1.1 Adaptive Control and Large Space Structures 1

1.2 Objectives and-Motivations 3

1.3 Literature Review 4

1.4 Outline of this Report 10

CHAPTER II CONFIGURATIONS AND MASS PROPERTIES OF SPACE STATIONS 12

2.1 Two-Panel Baseline Configuration 12

2.2 Four-Panel Planar Configuration 14

CHAPTER III DYNAMIC MODELS FOR SPACE STATIONS 23

3.1 Finite-Element Model for the Two-Panel StationConfiguration 23

3.1.1 Dynamic Variables, Coordinates, andParameters * • 23

3.1.2 The Stiffness Matrix 253.1.3 The Consistent-Mass Matrix 313.1.4 The Lumped-Mass Matrix and System-Mass

Matrix 333.1.5 Equations of Motion 333.1.6 Modal Coordinates and Modal Properties 34

3.2 Finite-Element Model for the Four-Panel StationConfiguration 36

3.2.1 Dynamic Variables, Coordinates, andParameters 36

3.2.2 The Stiffness Matrix 39

3.2.3 The Consistent-Mass Matrix 473.2.4 The Lumped-Mass Matrix and System Mass

Matrix 523.2.5 Payload Dynamics and Hinge Torque Model .... 523.2.6 Equations of Motion 543.2.7 Modal Coordinates and Modal Properties 57

3.3 Frequency Characterization of Space StationDynamical Systems 62

CHAPTER IV PROBLEM FORMULATION 65

CHAPTER V CONTROL ARCHITECTURE 67

5.1 Control Architecture for the Two-PanelConfiguration 67

5.2 Control Architecture for the Four-PanelConfiguration ..................................... 69

CHAPTER VI ADAPTIVE CONTROL ALGORITHM 73

6.1 The Command Generator Tracker Theory ..*•• 74

6.2 Direct Model Reference Adaptive Control 78

6.3 Instability Problem Caused by Rigid Body Modes .... 83

6.4 Plant Augmentation 87

6.5 Sufficient Conditions for Global AsymptoticStability 90

CHAPTER VII PERFORMANCE ANALYSIS AND PRACTICAL CONSIDERATIONS . 108

7.1 Shuttle Reaction Control Subsystem Residual Rates . 109

7.2 Design of Shuttle Docking Devices

7.3 Performance of Adaptive Control on the Two-PanelSpace Station7.3.1 Augmented Plant Modal Properties7.3.2 The Selection of the Reference Model 116

7.3.3 Adaptive Regulator Control 117

7.3.4 Adaptive Control During Shuttle Docking .... 12°

7.4 Performance of Adaptive Control on the Four-PanelSpace Station 127

7.4.1 Augmented Plant Modal Properties 128

7.4.2 The Selection of the Reference Model 128

7.4.3 Adaptive Regulator Control with High InitialTransient .. 130

7.4.4 Adaptive Control During Shuttle Hard Docking 133

CHAPTER VIII CONCLUSIONS 138

vi

APPENDICES A. DEVELOPMENT OF HINGED PAYLOAD DYNAMICS USINGLAGRANGIAN APPROACH FOR FOUR-PANELCONFIGURATION 226

B. DEFINITION OF POSITIVE REALNESS AND STRICTLYPOSITIVE REALNESS OF MATRICES 237

C. DERIVATION OF FORMULAS FOR CALCULATING THESPRING CONSTANTS AND DAMPING FACTORS OFDOCKING DEVICE . . . ? 238

D. PROGRAM LISTING FOR THE SIMULATION OF ADAPTIVECONTROL DURING SHUTTLE HARD DOCKING TO FOUR-PANEL SPACE STATION 241

E. NUMERICAL OUTPUTS FOR THE SIMULATION OF ADAPTIVECONTROL DURING SHUTTLE HARD DOCKING TO FOUR-PANEL SPACE STATION 261

BIBLIOGRAPHY 280

vii

LIST OF TABLES

Table 1 Component Dimension and Mass for Four-PanelConfiguration 20

Table 2 Component Self Moment of Inertia for Four-PanelConfiguration 21

Table 3 Component Moment of Inertia w.r.t. the Center ofReference Frame for the Four-Panel Configuration 22

viii

LIST OF FIGURES

Page

Figure 1 Adaptive Control Problems for Space Stations 5

Figure 2 Two-Panel IOC Baseline Configuration 13

Figure 3 IOC Baseline Configuration with Payloads 15

Figure 4 IOC Baseline Configuration Closest to the 6-DOFDynamic Model • 16

Figure 5 Four-Panel CDG Split-Module Planar Configuration .... 17

Figure 6 6-DOF Finite-Element Model for the Two-PanelConfiguration 24

Figure 7 Uniform Ream Elements 28

Figure 8 . Combined Uniform Beam Elements 30

Figure 9 Modal Properties for the 6-DOF Two-Panel ConfigurationModel 37

Figure 10 19-DOF Finite-Element Model for the Four-Panel PlanarConfiguration 38

Figure 11 Elastic Model for Solar Panels — South 41

Figure 12 Elastic Model for Solar Panels — North 41

Figure 13 Elastic Model for the Main Structure 42

Figure 14 Distributed Mass Model for Solar Panels — South .... 48

Figure 15 Distributed Mass Model for Solar Panels — North .... 48

Figure 16 Distributed Mass Model for the Main Structure 49

Figure 17 Payload Dynamics and Hinge Model 53

Figure 18 Modal Properties for the Four-Panel ConfigurationModel 59

Figure 19

Figure 20 Space Station Adaptive Control System Block Diagram .

Frequency Characteristics of Space Station DynamicalSystems 63

ix

Figure 21 Shuttle Reaction Control Subsystem (RCS) ResidualRates 110

Figure 22 Concept and Design of Shuttle Docking Device 112

Figure 23 Augmented Plant Modal Properties for the 6-DOF Two-Panel Configuration Model 115

Figure 24 Adaptive Regulator Control for Two-Panel Configuration— Plant and Model Outputs 141

Figure 25 Adaptive Regulator Control for Two-Panel Configuration— Plant and Model Translational State Responses .... 142

Figure 26 Adaptive Regulator Control for Two-Panel Configuration— Plant and Model Rotational State Responses 143

Figure 27 Adaptive Regulator Control for Two-Panel Configuration— Plant and Model Modal Responses 144

Figure 28 Adaptive Regulator Control for Two-Panel Configuration— High Frequency Plant Modal Responses 145

Figure 29 Adaptive Regulator Control for Two-Panel Configuration— Adaptive Control Inputs 146

Figure 30 Adaptive Regulator Control with Measurement Noise forTwo-Panel Configuration — Plant and Model Outputs .. 147

Figure 31 Adaptive Regulator Control with Measurement Noise forTwo-Panel Configuration — Adaptive Control Inputs .. 148

Figure 32 Adaptive Control During Shuttle Hard Docking for Two-Panel Configuration — Plant and Model Outputs 149

Figure 33 Adaptive Control During Shuttle Hard Docking for Two-Panel Configuration— Plant and Model TranslationalState Responses 130

Figure 34 Adaptive Control During Shuttle Hard Docking for Two-Panel Configuration —Plant and Model RotationalState Responses . 151

Figure 35 Adaptive Control During Shuttle Hard Docking for Two-Panel Configuration — Plant and Model ModalResponses 152

Figure 36 Adaptive Control During Shuttle Hard Docking for Two-Panel Configuration — High Frequency Plant ModalResponses 153

x

Figure 37 Adaptive Control During Shuttle Hard Docking for Two-Panel Configuration — Shuttle Angular Position andRate 154

Figure 38 Adaptive Control During Shuttle Hard Docking for Two-Panel Configuration —Docking Force and Torque 155

Figure 39 Adaptive Control During Shuttle Hard Docking for Two-Panel Configuration — Adaptive Control Inputs 156

Figure 40 Adaptive Control During Shuttle Soft Docking for Two-Panel Configuration — Plant and Model Outputs 157

Figure 41 Adaptive Control During Shuttle Soft Docking for Two-Panel Configuration — Plant and Model TranslationalState Responses 158

Figure 42 Adaptive Control During Shuttle Soft Docking for Two-Panel Configuration — Plant and Model RotationalState Responses 159

Figure 43 Adaptive Control During Shuttle Soft Docking for Two-Panel Configuration — Plant and Model Modal Responses 160

Figure 44 Adaptive Control During Shuttle Soft Docking for Two-Panel Configuration — High Frequency Plant ModalResponses 161

Figure 45 Adaptive Control During Shuttle Soft Docking for Two-Panel Configuration — Shuttle Angular Position andRate 162

Figure 46 Adaptive Control During Shuttle Soft Docking for Two-Panel Configuration — Docking Force and Torque 163

Figure 47 Adaptive Control During Shuttle Soft Docking for Two-Panel Configuration — Adaptive Control Inputs 164

Figure 48 Comparative Shuttle Soft Docking Responses —Relative Panel Tip Displacements 165

Figure 49 Comparative Shuttle Soft Docking Responses —Relative Panel Tip Acceleration 166

Figure 50 Adaptive Control During Shuttle Hard Docking withActuator Saturation for Two-Panel Configuration —Plant and Model Outputs 167

xi

Figure 51 Adaptive Control During Shuttle Hard Docking withActuator Saturation for Two-Panel Configuration —Plant and Model Translational State Responses 168

Figure 52 Adaptive Control During Shuttle Hard Docking withActuator Saturation for Two-Panel Configuration —Plant and Model Rotational State Responses 169

Figure 53 Adaptive Control During Shuttle Hard Docking withActuator Saturation for Two-Panel Configuration —Plant and Model Modal Responses 170

Figure 54 Adaptive Control During Shuttle Hard Docking withActuator Saturation for Two-Panel Configuration —High Frequency Plant Modal Responses 171

Figure 55 Adaptive Control During Shuttle Hard Docking withActuator Saturation for Two-Panel Configuration —Shuttle Angular Position and Rate 172

Figure 56 Adaptive Control During Shuttle Hard-Docking withActuator Saturation for Two-Panel Configuration —Docking Force and Torque .. • 173

Figure 57 Adaptive Control During Shuttle Hard Docking withActuator Saturation for Two-Panel Configuration—Adaptive Control Inputs 174

Figure 58 Adaptive Control During Shuttle Hard Docking with MoreSevere Actuator Saturation for Two-Panel Configuration— Plant and Model Outputs 175

Figure 59 Adaptive Control During Shuttle Hard Docking with MoreSevere Actuator Saturation for Two-Panel Configuration— Adaptive Control Inputs .................. ••• 176

Figure 60 Adaptive Control During Shuttle Hard Docking withModel Switching and Disturbance Modeling for Two-Panel Configuration — Plant and Model Outputs

Figure 61 Adaptive Control During Shuttle Hard Docking withModel Switching and Disturbance Modeling for Two-Panel Configuration — Plant and Model TranslationalState Responses 178

Figure 62 Adaptive Control During Shuttle Hard Docking withModel Switching and Disturbance Modeling for Two-Panel Configuration — Plant and Model RotationalState Responses • 179

xii

Figure 63 Adaptive Control During Shuttle Hard Docking withModel Switching and Disturbance Modeling for Two-Panel Configuration — Plant and Model ModalResponses 180

Figure 64 Adaptive Control During Shuttle Hard Docking withModel Switching and Disturbance Modeling for Two-Panel Configuration — High Frequency Plant ModalResponses 181

Figure 65 Adaptive Control During Shuttle Hard Docking withModel Switching and Disturbance Modeling for Two-Panel Configuration — Adaptive Control Inputs ...... 182

Figure 66 Augmented Plant Modal Properties for the Four-PanelConfiguration Model 183

Figure 67 Adaptive Regulator Control for Four-Panel Configuration— Plant and Model Outputs 186

Figure 68 Adaptive Regulator Control for Four-Panel Configuration— Plant and Model Physical State Responses 189

Figure 69 Adaptive Regulator Control for Four-Panel Configuration— Plant and Model Physical State Rate Responses .... 193

Figure 70 Adaptive Regulator Control for Four-Panel Configuration— Plant and Model Rigid Body Modal Responses 197

Figure 71 Adaptive Regulator Control for Four-Panel Configuration— Plant and Model First Bending Group Modal Responses 198

Figure 72 Adaptive Regulator Control for Four-Panel Configuration— Plant Second Bending Group Modal Responses 200

Figure 73 Adaptive Regulator Control for Four-Panel Configuration— Adaptive Control Inputs 202

Figure 74 Adaptive Control During Shuttle Hard Docking for Four-Panel Configuration — Plant and Model Outputs 205

Figure 75 Adaptive Control During Shuttle Hard Docking for Four-Panel Configuration — Plant and Model Physical StateResponses 208

Figure 76 Adaptive Control During Shuttle Hard Docking for Four-Panel Configuration — Plant and Model Physical StateRate Responses 212

xiii

Figure 77 Adaptive Control During Shuttle Hard Docking for Four-Panel Configuration — Plant and Model Rigid bodyModal Responses 216

Figure 78 Adaptive Control During Shuttle Hard Docking for Four-Panel Configuration — Plant and Model First BendingGroup Modal Responses 217

Figure 79 Adaptive Control During Shuttle Hard Docking for Four-Panel Configuration — Plant Second Bending GroupModal Responses 219

Figure 80 Adaptive Control During Shuttle Hard Docking for Four-Panel Configuration — Adaptive Control Inputs ...... 221

Figure 81 Adaptive Control During Shuttle Hard Docking for Four-Panel Configuration — Shuttle Linear and AngularPosition 224

Figure 82 Adaptive Control During Shuttle Hard Docking for Four-Panel Configuration — Docking Force .and Torque 225

xiv

CHAPTER I

INTRODUCTION

1.1 Adaptive Control and Large Space Structures

Most of the well-developed control theory, either in the

frequency domain or in the time domain, deals with systems whose

mathematical representations are completely known. However, in many

practical situations, the parameters of the systems are .either poorly

known or time-varying. In such situations the usual fixed-gain

controller will be inadequate to achieve satisfactory performance in

the entire range over which the characteristics of the system may

vary. Hence, some type of monitoring of the system's behavior,

followed by the adjustment of the control input, is needed and is

referred to as adaptive control. In other words, while a

conventional control system is oriented toward the elimination of the

effects of state perturbations, the adaptive control system is

oriented toward the elimination of the effects of structural

perturbations upon the performance of the control system.

Model Reference Adaptive Control (MRAC) and Self Tuning

Regulators (STR) are two principal approaches to the adaptive control

problems. In MRAC, the objective is to make the output of an unknown

plant asymptotically approach that of a given reference model which

specifies the desired performance of the plant. With STR, a controller

for a plant with assumed parameters is first chosen and the control

gains are then updated with the recursively estimated parameters of the

unknown plant.

MRAC can be classified into the following two types based on the

adaptation method used:

(i) Indirect Control, in which the plant parameters are

estimated and these in turn are used to adjust the

controller parameters to meet the performance requirement

dictated by the reference model.

(ii) Direct Control, in which no effort is made to identify the

plant parameters, the control parameters are adjusted

directly so that, the error between the plant outputs and

the model outputs approaches zero asymptotically.

Since the adaptive control systems are highly nonlinear closed-

loop feedback systems, there is a distinct possibility that such

systems can become unstable. In fact, the proof of global stability

of adaptive control schemes had been a long standing problem for two

decades and was not resolved until around 1979-1980. One ideal

application area for adaptive control is in large space structures

(LSS). The purposes of applying adaptive control to LSS are to

reduce the structural and parameter sensitivities of the controller.

This is due to the fundamental difficulties of obtaining an accurate

model for a distributed parameter system. One often has to

deal with linearized reduced-order models; hence, a great deal

of uncertainties in the mathematical model describing the dynamics of

LSS exist. In addition, time variation in the parameter values are

quite common in LSS environments. Slow time-varying effects may be

caused by structural settling, thermal distortions, or reorientations of,

system or subsystems. Spontaneous changes can also happen,

especially for space stations.

1.2 Objectives and Motivations

After the space shuttle, the next major space endeavor will be a

permanent manned space station. The launching of an initial space

station is planned for the early 1990's. By virtue of its mission and

function, the space station is a large space structure with a very unique

operational environment. As such, it suffers the same drawbacks as other

large space structures. These are related to its large size, flexibility,

and the way it is built and deployed. The size and flexibility prevent it

from comprehensive ground measurement and test, which implies that pre-flight

knwoledge of the spacecraft dynamics will be far from precise. In-flight

system identification will enhance out knowledge on flight

dynamics but it cannot totally eliminate the model parameter

uncertainites. Structural flexibility implies infinite dimensionality;

hence, model truncation is inevitable. With current technology,

only a relatively small number of states can be handled in

control design and state estimation. Previous studies of control

of large space antennas, for instance, have concluded that

destabllization can occur when the parameters of a design model

deviate from those of the actual plant by a significant amount

[1,2]. In addition to model errors, dynamic disturbances of many

3

orders of magnitude greater than those of the conventional

spacecraft will be routine for space stations. Shuttle docking can

cause an instantaneous change of mass of more than 100% accompanied

by a high intensity shock load. Station assembly, payload

articulation, crew motion, launching and retrieving of satellites,

etc., will all contribute to disturbance and model parameter

variations. The adaptive control problems for space stations are

summarized in Fig. 1. Although fixed-gain robust control designs can

desensitize the system performance, it Is only effective to a limited

extent, i.e., for cases where parameter values deviate slightly from

their nominal values [3]. All these have motivated us to investigate

the feasibility of applying adaptive control techniques to space

stations to maintain the stability and pointing.

1.3 Literature Review

Indirect adaptive control was first proposed by Kalman [4] in

1958. The control task may be divided into two parts: a

prestructured controller and a recursive plant identification

scheme. The parameter estimates are used by the controller to

compute appropriate control actions. Feldbaum [5] called this dual

control because of the two steps Involved in finding the control. In

Ref. 6 Iserman et al. compared six on-line identification and

parameter estimation methods that can be used for indirect control.

Ljung [7,8] has proposed a general technique for analyzing the

convergence of discrete-time stochastic adaptive algorithms, yet the

problem of boundedness has not been resolved. More recently, Landau

[9] and Martin-Sanchez [10] have proven the stability of certain

ORIGINAL PAGE ISOF POOR QUALITY

II =15 i1Ml

2 5«'ill

_ a «• o _Si 551"I sss;s 1

issssi

iiiiiiifiill

0)

o

en0)uaaen

0)iHXIO

&

I

01

acd

0)»-c

bo

types of Indirect adaptive controllers. These results had been

extended by Johnstone [11] in 1979. Narendra and Valavani [12]

derived, in 1979, some indirect adaptive control laws by employing a

specific controller structure and the concept of positive realness

and showed that these laws are identical to those obtained in the case

of direct control. Goodwin [13] has utilized a projection algorithm to

obtain a class of globally convergent adaptive algorithms in 1980 and

established global convergence of a stochastic adaptive control

algorithm for discrete-time linear systems [14] in 1981.

Direct adaptive control was first designed using the performance

index minimization method proposed by Whitaker [15] of the MIT

Instrumentation Laboratory in 1961 and has since then been referred

to as the MIT design rule. The performance index used is the

integral square of the response error. An improved design rule with

respect to the speed of response had been proposed in 1963 by

Donalson et al. [16], who used a more general performance index than

that of Whitaker. Winsor [17] had also modified the MIT rule in 1968

to reduce the response sensitivity to the loop gain, at the expense

of additional instrumentation. Although some progress was made then,

none of the design rules mentioned so far are globally stable. From

then on, stability has become a major concern for subsequent studies.

The most common application of stability theory to direct MRAC

had been Lyapunov's second method. The adaptive rule is obtained by

selecting the design equations to satisfy conditions derived from

Lyapunov's second method. Butchart and Shackcloth [18] first

suggested the use of a quadratic Lyapunov function, which was

employed later in 1966 by Parks [19] to redesign *a system formerly

designed by the MIT rule. The use of a different Lyapunov function

by Phillipson [20] and Gilbart et al. [21] has resulted in the

introduction of feedforward loops that would improve the damping of

adaptive response. Unfortunately, all these algorithms are difficult

to realize in practice because of the requirement of measuring the

entire state vector, which is often Impossible.

Landau [22] was the first one to apply Popov's hyperstability

criterion [23] to multi-input multi-output continuous MRAC systems

subject to perfect model following conditions. He also used the same

technique to treat the discrete-time MRAC problems [24,25], as did

Bethoux et al. [26]. Anderson has given a lucid proof of Popov's

hyperstability criterion in Ref. 27. An important contribution was

made by Monopoli [28] (1974), who proposed an ingenious control

scheme for continuous single-input single-output systems involving an

auxiliary signal fed into the reference model and a corresponding

augmented error between the model and the plant outputs, so that the

use of pure differentiators in the algorithm can be avoided.

However, as pointed out in Ref. 29 (1978), the arguments given in Ref.

28 concerning stability are incomplete. Following the augmented

error signal concept, Narendra [30] (1978) and [31] (1980) and Morse [32]

(1978) and [33] (1980) succeeded in designing globally stable, asymptotic

output tracking algorithms for continuous single-input single-output

systems. Both Narendra and Morse have assumed that the relative

degrees of the plant transfer function are known. Besides, Morse's

algorithm is much too complex for use in practical applications. The

application of augmented error technique to discrete-time single-

input single-output systems was made by lonescu [34], Narendra [35]

and Suzuki [36]. Johnstone et al. [37] have extended Suzuki's

technique to solve some simple non-minimum phase problems by

optimizing an augmented optimization criterion. Goodwin [13] took a

different approach. Instead of relying upon the use of augmented

errors or auxiliary inputs, he used the projection theorem to

establish the global convergence of a class of adaptive control

algorithms for discrete-time deterministic linear multi-input multi-

output systems.

Narendra and Valavani have proved that the direct and indirect

control would arrive at the same result [38]. Using a typical error

model, they also found that when all the signals in the plant are

uniformly bounded, hyperstability and asymptotic hyperstability are

achieved under exactly the same conditions as stability and

asymptotic stability in the sense of Lyapunov [39].

Most stability proofs for direct model reference adaptive

control systems have been restricted to single-input single-output or

at best, multi-input single-output systems [40] (1975). Results

pertaining to direct MRAC for multi-input multi-output continuous

systems which do not satisfy the perfect model following conditions

are limited. Also, the assumption made by the above algorithms that

the relative degrees (difference between the number of poles and

zeros) of the plant are known is too restrictive from the engineering

point of view.

One particular adaptive control algorithm applied to multi-input

multi-output (MIMO) systems was proposed by Sobel et al. [41] (1979) and

[42] (1982). Using the Command Generator Tracker (CGT) law developed

by Broussard [43] and a direct Lyapunov stability approach, they

designed a direct MRAC algorithm that, without the need for parameter

identification, forced the error between the outputs of plant and

model (which need not be of the same order as the plant) to approach

zero. Like all other MIMO adaptive control algorithms, this one also

requires that the number of controls equals the number of outputs and

the plant input-output transfer function matrix is strictly positive

real for some feedback gain matrix.

As far as applications of adaptive control to large space

structures is concerned, direct control is superior to indirect

control. Since large space structures are infinite dimensional,

the identification of all or a large number of parameters of the

plant is clearly impossible or unfeasible* As described in Ref. 44,

the adaptive controller must then be based on a reduced-order model

(ROM) whose order is substantially lower than that of the plant.

However, when the adaptive controller operates in closed-loop with

the plant, it interacts with the unmodeled residual subsystems, this

may cause great difficulties or disastrous problems [45].

The literature which deals with the application of adaptive

control to large space structures is very limited. This is due t'o

the difficulties associated with LSS in both the model truncations

and parameter uncertainties.

Rohrs et al. [46] (1982) developed a method of analyzing

stability and robustness properties of a wide class of adaptive

control algorithms for systems that have unmodeled dynamics and

output disturbances. According to their investigation, none of the

algorithms they tested including those of the widely recognized

researchers are stable under these conditions.

Bar-Kana et al. [47] (1983) applied and extended the algorithm

proposed by Sobel et al. [42] to the control of large space

structural systems, in which they have treated the problems of

unmodeled dynamics and other model uncertainties. This work also

suffers from some drawbacks, e.g., it cannot handle rigid body modes

which always play an important role in large space sructural systems;

the design and analysis are specific to the control of a simply

supported beam while LSS are usually much more complex; the

sufficient conditions for stability are too restrictive, etc. All

these necessitate further investigation for the application of

adaptive control to large space structures in general, and to space

stations in particular.

1.4 Outline of This Report

In Chapter II, two space station configurations and their mass

properties are described. Finite-element, dynamic models for both the

two-panel and four-panel station configurations are developed in Chapter

III. In Chapter IV, the adaptive control problem is formulated. The

control structure is addressed in Chapter V. In Chapter VI, a direct

model reference adaptive control algorithm together with the plant

augmentation design is presented and two sets of sufficient

10

conditions for asymptotic stability of the system are derived. In

Chapter VII, extensive performance analyses through simulation are

discussed, and conclusions are summarized in Chapter VIII.

11

CHAPTER II

CONFIGURATIONS AND MASS PROPERTIES OF SPACE STATIONS

During the last few years, many space station configurations have

been proposed and studied. The configuration development is indeed an

evolutionary process, since there are so many factors that need to be

considered and assessed against various configuration concepts [48,49].

Two configurations have drawn particular attention — the NASA

Space Station Task Force Initial Operation Center (IOC) Baseline Configu-

ration and the Concept Development Group (CDG) Split-Module Planar Configu-

ration [49]. They are also referred to as the two-panel baseline

configuration (or 6 degree-of-freedom model) and four-panel planar

configuration (or 19 degree-of-freedom model), respectively, hereafter.

2.1 Two-Panel Baseline Configuration

Figure 2 shows the Task Force IOC Baseline Configuration which

was developed by the Space Station Task Force with the Jet Propulsion

Laboratory. The system dynamics of this configuration is dominated

by the two very large solar panels measuring 250 ft x 40 ft and

weighing 4000 Ibs each on the ground. It also has a 50 ft x 10 ft

radiator panel, a central bus structure consisting of a resource

module, habitat module, logistics module, laboratory module, berthing

truss, payloads, etc. The entire station weighs 134,000 Ibs. Note

that the lighter weight of this configuration compared with that of

the four-panel configuration is due to the fact that fewer modules

12

(M (Mt t

O O

( / > ( / > ( / )

(M (M

«F ?3 §

o

u

I fc

O u

t ten Ocsl IAB 0

> M

< <—t I—< I—4 I—I I-H -1

^ x x x x

| 1C R S IX— od i-4 od o*

a B B BX i

X

&MM

M>

O

I0)

01cc

Ir-l

2tc

13

were considered for this configuration rather than the structural

differences between the two concepts.

The moments of inertia for this configuration are Ixx «

8.75xl06 slug-ft2, Iyy - 1.58xl06 slug-ft2, and IZ2 - 8.60xl06

slug-ft2. Due to the asymmetric design, the products of inertia are

quite high, Ixy - -9.57X101* slug-ft2, Iyz - -4.89x10*' slug-ft

2, and

IX2 = 5.18x10** slug-ft2. With the selection of the reference

coordinates as shown in Fig. 2, the center of mass has a high bias of

X - 27 ft, Y - -2.3 ft, and Z - 5 ft.

Figure 3 shows a similar configuration with additional modules

and payloads attached. The 6 degree-of-freedom (DOF) dynamic model

that is developed in Chapter III and used extensively for feasibility

analysis is based on the mass properties of the configuration shown

In Fig. 2. As far as dynamic properties are concerned, the 6-DOF

model is closer to that illustrated in Fig. 4.

2.2 Four-Panel Planar Configuration [48,49]

Figure 5 shows a version of the CDG Split-Module Planar

Configuration. The basic difference between this configuration and

that of Fig. 2 is that this configuration consists of 4 smaller solar

panels (100 ft x 50 ft) and 4 larger radiator panels (70 ft x 20 ft)

and, in addition, this configuration is a dynamically balanced design

with structural symmetry. Since the solar panels are of much smaller

size and a more reasonable aspect ratio, the structural strength

improves and the fundamental modal frequencies increase.

The main structure of this configuration measures 280 ft in

length and it supports two resource modules, several pressurized

14

ORIGINAL PAGE CSOF POOR QUALITY

CO•c

CCo

COOu

u

*o

\bC

I0)c

0)co

01»-

15

V•c

(0c5s

h.OC

£4-1

O

GO0)(0O

O

00

I

0)00CO

PC

«»tu

16

ORIGINAL PAGE ESOF POOR QUALITY

oSt. I/OO CO»

£ §O <si

fc f o o'

g o o n

X .>- M

X I X i X i

i^3 "\ 3 °.vt pr? l/> «-J

Hco

be

I

nre

|

V

I

inQ>

be-

17

modules, a 30-ft service truss, and payloads. The pressurized

modules are sized 22 ft x 14 ft diameter determined by the space

shuttle payload bay size. The solar panels are hinged to rotate

about the axes parallel to roll (X) and pitch (Y) axes, respectively,

for solar inertial pointing. The radiators are also hinged for

articulation, and the core or the bus of the station is pointed to

the nadir direction. Again due to its large size and flexibility,

the .solar panels are the dominant factor for the flexible body

dynamics.

Referring to Fig. 5, Table 1 lists the dimensions and masses of

the major components. Using the body coordinates with origin placed

at the geometric center of the station, the center of mass is,

X - - 1.235 ftcm

Y - 0

Z - •= 0cm

The self moments of inertia of each component are computed using

the mass and dimension data shown in Table 1. Each of the components

falls in one of the three basic structures — a rectangular plate, a

rectangular cube, or a right cylinder. For simplicity, all the

component masses are assumed uniformly distributed throughout the

18

respective component structure. Table 2 shows the self moments of

Inertia for each component and Table 3 shows the component moments of

inertia with respect to the center of the reference frame which is

also the center of mass if we Ignore the small offset along the X-axis.

19

co•r4JCOM

00•H»nQ

O

iH

BR)

^p

o(Xu

«-< 0Iw

cu•-I COJ3 CO«5 5H S

•o(J

C -o•HCOJ3

§sa•HQ

4JJJOJB

cS

4J4=00 CO

• ft•« «oV i-J»

4Jj=00

•H4) CO

*34J*v4BO

B'O

•HCO 4JB 012 ,*.S"*Q

4JB

S

I

U

0 0 0 0 0 0 0 5 3 0o o o o o o o o . *o m o o o o o o ^c o r ^ o ^ r ^ f M o o o s

\o w» t-i en «r»

4Jt*t

o > n o o o o o o c oo f ^ - o o o o o o o aO O O o O O O O O n J

< N I - I O > O » ^ * N O « » > Oen CM in en m •«•

eg CD co co aQ Q Q O Q

O O ,» ^ ^ •» ^•r\ CM i-< t-i <-4 »-i F^

K K K K X K K

O O CM CM CM CM CM O ^0O f ^ C M C M C M C M C M C n c n*H CM

« 4Jh JS3 00«J -H

? */-N (4CM 4J •

/-*>-* M U

s^ CO ^s C•H 01 00 4J^s CO t-l B CO•* . a> 3 a* ••«-w * i-i-o a> a > f - 4 . c « e

*-» g O r+ ** 3 *•« - * - o X 3 3 - | j ; ._ , S * r O - O - O O W O i«> as >» o o ac so -He c o h a c z < ^ sco *< V O u oreu o u ^ ' w ' o ^ a i M

4J |4 eg eg «9 «j uV l C 0 3 t 4 t j O C O - H hCO ' 0 0 -H «^ >H > Vr - l - 0 C 9 U > A > > O O M J B

S , S £ ^ 2 2 ^ < S S

o •

^«k

enCMCM

CO

5(ft

4J•s>•H

£f4•4J£

«0^fc»

A

«o

CO00

r-tCO

«coCO

2rHCO4J

£

«

rii:osM

V

4J

B•H

•o•ot-lO

•H

2CO

CDh04J«

*(^•osM

•OB

COX

|4M

h

t-4O

IMO •

CO*J V

' fB t-l00 3"* "2

20

CM

0)i-l,0

•2M

o•H^J(0V4

60•Hti__j**H

g3iH«en)f\

°li,w

fe

o- . *W

n)•H4JM<U

M

<M

4J

ai£<Mf-l0)

CO

4J\Bou

CM4J

N toN T

MW £t-4CO

CM4j

^ toCO 60

M g1-4CO

CM4j

M |

(O 60M 3

t-4CO

4JC41B

so

*Ao»~4

MOOxin• .

CM

inOrH

K

CMr«O•

CM

"*0••4

KO00t-4•

m

0)1-4V

(804

t4

01flo

CO

"*0• ^

K

OCMmOx

4V\

0t^

KCMfxrx

r«»

l/\•••, O

f^^

K

Oc*>O•

P4

0ItO4J«

•H

i

A

^0_^

K«»fxCM

fx

^*

*0^^

K

OOxcnn

_.*

^0• ^

K

r*.CM

rx

*0V•H

19)UU

.

J

^•^

^0_^

M0vOOx

ro

_•*

^0••H

K

OOm00

^*^0. _j

K

sin••»

««

t-4• '3ifrOu2J3

^f*0

^4

KmOxCM

1-4

.

*0_^

K

Oxfxr»CM

.<S1*4

KOXr^rxCM

«

Mod

ule

«j«4J•Hi

*J* «J

^0 "*0•"^ _^

K K

r<- 1-4m rx«O 1-4

m oo

*J* •.•*

^0 **0^^ t^

K K

r» r-tm rs.<0 f-4

m QO

•* •*^0 ^0^J ^J^^ • •"*

K MI** r»m o-* 00• •CM <o

«0) f-l

" 1u•o •*

I 1t-« «H

-& 1

*y\Mo_J

K

sCM

m

ff\

"o••H

K

-*00CM

m

tn"of^

MxO •

§

«n

£P4-

4JU« s

Wl 4J9 M4J

2 -£ 2CO

«0«u ••H a.> .?it 3W C7*

CO H

BO

•H4J04J31§U

0•HJ54J

Lj

0«M

•oa>1•uK«

cu|4•)

i4Ja)

•H

"Ss• •o

••"•4

«B

a|4

41t-4O•

*MO

'0«0

1

21

en

<dPM

01goi01

u-i C0 5U 4-1OI (0

C 30) 60O -H

01 C•5 S

gCOa-

3o

01 0)C JS

o o«M

4-1

NN

M

£M

SM

44

1M9i-t

44

fM9

M

4J

*

M9

M

4Je4)

fe

O

X

001-1

VO

O

X

vO•ACM

i-l

O

X

CMOX

**

0)t-l

£

»*•t-4Q

M

0

K

Oeo

SO

O

X01-4oI-l

o

XoOxr*.

"•

wo44

•H•o

"

o

X|S

f^>H

CM

O

XoOxen

en

O

X

f^T-t

CM

*CO«

t-49

X01u9OaX

O

X

ovO

en

o

K

r*.

eo

o

K

f^M>

00

-

CO41i-t9

X

O44

hOM

4

0

X

•AOxCM

tH

O

K

Ox£

CM

O

X

1f»CM

(0

t-49

w

44•T»f\

9

*

O

Xf^ao

en

o

Xr>»00

en

O

X

CO«*CM

t-l9•o

•Osf^j>t0)

o

K

CM•A00

U>

O

K

CM

00

•A

O

K

O00

en

QJ)

•O

X

u•rt44

•*4MoJ

0

X

00^DoI-l

o

K00

O

t-4

O

X

^*oen

o>|4

944U

44M

41U

^4t)|

M

O

X

sOOxO

SO

O

X

00IA

Ox

O

K

xO

O

sO

M

. U

24J

M

e

&•*o.

•H90-a

o

X

sOCM

X

00

enen

o

X

Ox

t-4

§440)

CO

,_««MoH

22

CHAPTER III

DYNAMIC MODELS FOR SPACE STATIONS

The development of space station control technology requires

results of the following nature:

(1) First - order assessment of problems that will have

significant effects on the space station designs. In order

to guide the concept formulation and design, these types of

results must be generated at a high rate of return.

(2) Analysis of problems that involve multiple interactive

elements which require somewhat complex implementation.

Because of the complexity of the problem, more time will be

required for development and Implementation.

For the first purpose stated above, a 6-DOF finite-element

dynamic model is developed for the two-panel space station. Because

of its tractability and reasonable simulation turnaround time and

cost, it is used extensively to evaluate adaptive control problems

and performance. For the second purpose, a 19-DOF finite-element

dynamic model is developed for the four-panel space station.

However, the analysis in this report is, in general,

configuration Independent.

3.1 Finite-Element Model for the Two-Panel Station Configuration

3.1.1 Dynamic Variables, Coordinates, and Parameters

The 6-DOF finite-element model is shown in Fig. 6, in which only

plane motions are considered. The motions of interest are the

rotations about the X-axis which are tightly coupled with the

displacements along the Z-axls. Hence, this model has six degrees of

23

N

o

aJ-i

coo

0)

§PL.

9)

01

1

o>

o\C

NO

0)H

be

24

freedom — three linear displacements Zj, Z^ Z$ and three bending

angles 6j, 82, 63 of the central bus and the two outer tips of the

solar panels. The solar panels are-modeled as two uniform beams with

length L, linear mass density p, and flexural rigidity El. The bus

and modules are modeled as a rigid core body with mass M2 and moment

of inertia I2 located at the center of the structure.

3.1.2 The Stiffness Matrix

A finite-element technique is used to derive the stiffness and

mass matrices for the model [50]. To obtain the stiffness matrix by

using this technique, one starts by dividing the structure into a

finite number of elements, the properties of each element are then

determined. The properties of the entire structure are obtained by

superimposing those of the elements at the associated nodes. There

are two nodal points associated with each element, and two degrees of

freedom at each node if only transverse plane displacements are

considered. The deflected shape of the beam element may be described

by a set of cubic Hermitian polynomials, as follows, when unit

displacement is applied at the left end,

****(f)3(3.2)

25

The shape functions for unit displacement at the right end are,

(x).3(f)2-2/r3 (3.3)

(3.4)

The general shape expression is the superposition of these functions,

v (x) - * (x) (x) v + * (x) (x) 9 (3.5)

The stiffness coefficient associated with the beam flexure is

(L' JLEl (x) *£ (x) *V (x) dx « k^ (3.6)

For a uniform beam segment, the stiffness matrix becomes

"F "a

Fb

Ta

\

2EI

L3

"6 -6 3L 3L "

-6 6 -3L -3L

3L -3L 2L2 L2

3L -3L L2 2L2

V a

Vea

.6b.

(3.7)

where Ffl, Fb, Tfl, and Tfe are the nodal forces and torques at nodes a

and b, respectively, and vfl, vfe, 9fl, and 6^ are the corresponding

nodal displacements — translation and rotation. The stiffness of

the complete structure is obtained by adding the element stiffness

26

appropriately. For instance, the structural stiffness of node i at

which elements 1, m, and n are attached is

= k(l) + k(m) * k(n)ii ii Kii ii (3.8)

where the hat implies that all the variables are expressed in a

common global coordinate system, or they have been transformed to a

common system from their local systems.

Now we shall use Eqs. (3.7) and (3.8) to derive the stiffness

matrix for the 6-DOF model. Consider the uniform beam element in Fig. 7.

If the two nodal points taken are located at its ends, there will be

a total of four DOF — one translation and one rotation at each node.

Through the finite-element method the stiffness matrix K. is£\

~F1TlF2

_T2_

' KA

"Zj"

•l

z2_92_

. 2EIA

L3

6 3L -6 3L~"

3L 2L2 -3L L2

-6 -3L 6 -3L

3L L2 -3L 2L2

~zl"

el

Z2

_62_

(3.9)

where F^ and F2 are the forces, Tj and T2 are the torques applied at

the nodes. For a similar beam element (see Fig. 7), the stiffness

matrix K_ is

27

Z2 Z2

El, L 2 7 02>T El, L

Figure 7 Uniform Bean Elements

28

F2

T2

F3

T3_

•» V* KB

" Z2~

02

z3e3

0 2EIoL3

6 3L -6 3L

3L 2L2 -3L L2

-6 -3L 6 -3L

3L L2 -3L 2L2

Z2

62

Z3

.93

(3.10)

By using Eq. (3.8) to combine Eqs. (3.9) and (3.10), i.e., adding the

element stiffness at the joining point, the stiffness matrix K for

the combined uniform beam elements (Fig. 8) is obtained as

•F

K

2EI,3L

6

3L

-6

3L

0

0

3L -6 3L |1

2L2 -3L L2 1_ l_

r-3L | 12 0 ]

' |L2 ! 0 4L2 1- •*- JT0 I -6 -3L

1

0 | 3L L2

0

0

-6

-3L

6

-3L

0

0

3L

L2

-3L

2L2

(3.11)

29

Z3

El, L 2 £1. L

Figure 8 Conbined Uniform Beam Elements

30

3.1.3 The Consistent-Mass Matrix

The consistent-mass matrix is the mass matrix for the

distributed mass of the flexible structure. For a beam element of

length L, mass density p(x), the mass influence coefficient m^ can

be expressed as

CLm. . • IXJ Jn

p(x) *.(x) <|» .(x) dx • m.. (3.12)

where (x) and 'l'j(x) are the shape functions. The term "consistent"

signifies that this mass matrix is obtained using the same shape

functions t|>.(x) as those used for deriving the stiffness matrix. The

cubic Hermitian polynomials are generally used for straight beams.

Therefore, for the straight uniformly distributed beam element shown in

Fig. 7, the consistent-mass matrix M. is

FlTIF2

T2

MA

Zl

'9'l

z292

L

420

156 22L 54 -13L

22L 4L2 13L -3L2

54 -13L 156 -22L

-13L -3L2 -22L 4L2

Zl

'6*1

Z2

V2_

(3.13)

Similarly, the consistent-mass matrix Mg for the adjoining beam

element Is

31

» "

F2

T2

F3

* *

Z2

92

z3

PL420

156 22L

22L 4L'

54 -13L

13L -3L2

54 -13L 156 -22L

-13L -3L2 -22L 4L2

(3.14)

Hence, the combined consistent-mass matrix MQ for the 6-DOF model can

be obtained by using an approach similar to that for obtaining the

stiffness matrix as,

PL420

156

22L

54

-13L

0

0

22L

4L2

13L

-3L2

0

0

54

13L

r~ ~ •1 31211 0j_

i 54

i, -13L

-13L

-SL2

0

8L2

13L

-3L2

1 011

1 541

1 13LJ

156

-22L

0

0

-13L

-3L2

-22L

4L2

Zl

e'i

Z2

*e*2

*3

. \

(3.15)

32

3.1.4 The Lumped-Mass Matrix and System Mass Matrix

The consistent-mass matrix accounts for the effect of

distributed mass only, the effect of concentrated mass is accounted

for by the lumped-mass matrix Mp,

MD = diag (0, 0, M2, I2, 0, 0) (3.16)

The total system mass matrix is, then

M - Mc + MD (3.17)

3.1.5 Equations of Motion

The equations of motion for the 6-DOF model can then be written

as

M *Z*+ K Z - F « B u (3.18)

yp - C(a Zp + Zp) (3.19)

where

ZP ™ ^Zpl 6pl Zp2 9p2 Zp3 6p3^

9» Zo 80 Z-» 8->]

F - [FJ TJ F2 T2 F3 T3]T

u • M-dimensional plant control input vector

y_ - M-dimensional plant output vector

33

B « 6 x M control influence matrix

C » M x 6 measurement distribution matrix

a is the weighting factor of the position vs. rate measurement

3.1.6 Modal Coordinates and Modal Properties

To carry out the analysis of this dissertation, modal

coordinates are used. The modal model is obtained by setting F = 0

in Eq. (3.18) and solving the eigenvalue problem. Let <j> be the

normalized eigenvector matrix which is selected such that

*TM«J> - I (3.20)

*TK$ - A (3.21)

where A is the diagonal eigenvalue matrix. Let ti be the modal

amplitude vector, and Z • 4>n. Substitute this into Eq. (3.18) and

premultiply both sides by <J>T, one has the following dynamical

equation in modal form,

'n* + An - 4>TBup (3.22)

After adding damping terms, Eq. (3.22) becomes

n + diag (2C!»!»...2C6u6)n + diag(u>J o)|)na«|»TBup (3.23)

The corresponding damped dynamical equation in physical coordinates

can be obtained through transformation. Let D be the damping factor

matrix, one has

34

diag.-I (3.24)

Hence, the system equations of motion in physical and modal

coordinates are, respectively

and

MZp + DZp + KZp - Bup

yp - C (aZp + Zp)

diag-(2C1«o1,...,

C(a<|»n

diag

(3.25a)

(3.25b)

«J.TBup (3.26a)

(3.26b)

The modal properties of the 6-DOF model are obtained by using

the parameters given in Fig. 6. The modal frequencies are,

w2 -

to)_ s3

We -

0

0

0.04 Hz

0.0637 Hz

0.3885 Hz

- 0.3947 Hz

(3.27a)

and the mode shape matrix (eigenvector matrix) <fr is

35

.872E-1 .194E-1 -.127 -.961E-1 .178 .178

-.352E-3 -.157E-4 .720E-3 .719E-3 -.545E-2 -.549E-2

-.693E-3 .155E-1 .301E-2 -.360E-7 .151E-2 -.174E-5

* - -.352E-3 -.157E-4 .727E-8 -.450E-3 .126E-6 -.117E-3

-.886E-1 .116E-1 -.127 .961E-1 .179 -.117

-.352E-3 -.157E-4 -.720E-3 .719E-3 .546E-2 -.548E-2

(3.27b)

Figure 9 shows the mode shapes corresponding to the above mode

shape matrix. Of the six modes, there are two zero-frequency rigid

body rotational and translational modes, two first bending modes —

symmetric and antisymmetric, and two second bending modes.

3.2 Finite-Element Model for the Four-Panel Station Configuration

3.2.1 Dynamic Variables, Coordinates, and Parameters

Referring to Fig. 10, the main or backbone structure is modeled

as two flexible beams rigidly attached to the core body (the bus);

and the solar panels are also modeled as flexible beams with two

beams jointed together and attached to the ends of the main

structure. The two payloads, assumed rigid here, are hinge connected

to the core body to form a balanced structure. To keep the model to

a tractable size, the beams are assumed torsionally stiff, and hence,

only bending angles and the associated deflections are modeled here*

This model consists of 19 dynamic variables, 7 translations and

12 rotations, as indicated In Fig. 10. Since the beams are assumed

torsionally stiff, $2 (*6 represents the roll angles for the entire

length of the beams associated with the south (north) panels. For

36

CD

CO

O

4f\

Csl

Crt %

i3<oCM

O

5:•rtUi

§

O

2CD

O

•* DC OLU ^_ •go ~« O -a2 CO O

O

O

S

Wl

CM < Oiu B: •

o5

a-

Io

V

4J

c<*-!

a4)•H4J

0)

oa.r-l

CC

1

stic•Hb.

37

«V_ c«gt t

£ 3 t iuj o

§1

5a.d§

* 5ir\ iA

1/t§IA X X

"

">(<r> f« OO

irt

o

c

at

ou

cCC

(U

<eP.

t»-£

v

I

Io>

V

u.c

Ibe

38

the same reason, 6^ is the pitch angle for the entire main structure,

therefore, the following constraints apply:

(3.28)

The payload motions are modeled by the hinge angles, Ygx, Ygy»

Ygy, where in Fig. 10, Ygx, Y8y, Ygx, Yg are the corresponding

inertial attitude angles. The translations at the c.m. of the

payloads can be computed using the hinge angles.. Therefore, the

translation variables are Zj, Z2, Z3, Z4, Z5, Z6, Z7, and the

rotation variables are 8lt <f>2, 93» 8A» *4» e5» *6» 67» Y8x» Y8y' Y9x»

iand Ygy.

The model parameters are basically the flexural rigidity (El),

the length, and the mass density for the beam elements in the model;

the mass, moment of Inertia and length for the payloads and the core

station. The values for the mass- related parameters are computed

based on information discussed in Chapter II.

3.2.2 The Stiffness Matrix

First, the 19-DOF model is divided into three parts, the solar

panels — south, the solar panels — north, and the main structure.

The payloads will not be considered until later. The finite-element

technique used is the same as that for the 6-DOF model.

Consider Fig. 11, the two "south" panels are modeled as two

uniform beams, each 115 ft in length. Referring to Eq. (3.11),

one has . .

39

16

26

2(EI)

" 6

3Ls

-6

3Ls

0

0—

3Ls

2L2s

-3Ls

I2s

0

0

-6

-3Ls

12

0

.

-6

3Ls

3Ls

L28

0

/T24Ls

-3Ls

L28

0

0

-6

-3Ls

6

-3Ls

0

0

3Ls

L28

-3Ls

2L28_

(3.29)

Similarly, referring to Fig. 12, the stiffness matrix for the

north panels is obtained as

'56

66

2(EI)

6

3L' 8

-6

3L8

0

0„

3Ls

2L2s

-3Ls

L2s

0

0

-6

-3L8

12

0

-6

3L

3L

L28

0

24IT8

-3L8

L28

0-

0

6

-3L8

6

-3L8

0 "

0

3L8

L28

-3L8

2L28_

(3.30)

78

The elastic model for the main structure is shown in Fig. 13.

The main structure is also modeled as two flexible beams, but with

higher flexural rigidity than those of the solar panels. These beams

are uniform and have a length of 140 ft each. The stiffness matrix

for this structure is shown in the following equation,

40

«i»(El> (ED

Figure 11 Elastic Model for Solar Panels — South

(El) (ED '4Ls ; 4

Figure 12 Elastic Model for Solar Panels — North

Figure 13 Elastic Model for the Main Structure

42

"F2 "

T2*

F4

T4»

F6

.V

2(EI)g

Le

6 3L -6 3L 0 0 "e e

3L 2L2 -3L L2 0 0e e e e

-6 -3L 12 0 -6 3Le e

2 2 23L IT 0 4IT -3L L

e e e e e

0 0 -6 -3L 6 -3Le e

0 0 3L L2 -3L 2L2

e e e e

Z2

*2

Z4

*4

Z6

.V

(3.31)

Applying the same principle of Eq. (3.8), the stiffness matrices

of Eqs. (3.29), (3.30) and (3.31) can be combined to yield the system

stiffness matrix. Reorder the force and displacement vectors and the

corresponding rows and columns of Eq. (3.29) as follows,

T28

F.1

Tie

F3

TJ> **»38

F,2

2(EI)8

L3

4L2 3L L2 -3L L2 08 S 8 8 8

3L 6 3L 0 0 -6S S

2 2L 3L 2L 0 0 -3L8 8 8 8

-3L 0 0 6 -3L -68 8

2 7L 0 0 -3L 2L -3L

8 8 8 8

0 -6 -3L -6 3L 128 8

"e "

2

Z.19123

g3

z. 2_

(3.32)

The purpose of this reordering process is to move ^2% an^ ®2 to tlie

top for later use and F2 and Z2 to the bottom so that the "south"

panels can be combined with the main structure.

43

Reorder the rows and columns of Eq. (3.31) so that ?2 and T. , are

placed on the top and Fg and Zg are on the bottom,

F2

F4

.F6.

2(El)e

Le

6 3L -6 3L 0 0e e

T"""2 2 "*3L 2L -3L L 0 0

e e e e

-6 -3L 12 0 3L -6e e

3L L2 0 4L2 L2 -3Le e e e e

0 0 3L L2 2L2 -3Le e e e

0 0-6 -3L -3L 6e e

Z2

*2

ZA

.Z6.

(3.33)

Reorder Eq. (3.30) so that Fg and Zg sit on the top and Tgg and

8g at the bottom,

F6

F5

T50

F7

T7B

T t t_

2(EI)

L3

8

12 -6 -3L -6 3L 08 8

-6 6 3L 0 0 3L8 8

- 3 L 3 L 2 L 2 0 0 L 2

S 8 8 8

- 6 0 0 6 - 3 L - 3 L8 8

3L 0 0 -3L 2L2 L2

8 8 8 8

0 3L L2 -3L L2 4L2

8 6 8 8 8 _

>6

Z5

S

Z7

•7

_••_

(3.34)

44

Let

ORIGINAL PAGE 13Of POOR QUALITY

and 6 (3.35)

combine Eqs. (3.32), (3.33) and (3.34) one has

ILiJi 6n 3t^i 0 Q

Lg«i 3L i 2*-2<i ^ 0

3Lg» 0 0 f t i ' t-^1

L|» 0 0 3L£i 2l|n

0 -6n -3Lcn -6n 31. 1

0

3L,0 60 3L^ 0 0

2L^fl -3L,;) tjd 0 0 II

3L/ I2« 0 3L^ -eO I

tjd 0 4tJ( tj( -31,0 '

0 3LJ) uJ0 2Lj( -31,0

0 •«« -31 1 -3L.0 I 6flt|2n I

0

-3Lgi -to

0

0

L|O

Now we shall use the constraints of Eq. (3.28) and

Ls"

(3.36)

T26 (3.37)

to combine T6? and T2Q and rename it as T4e, and e& and &2 and rename

it as 64 and rearrange the rows and columns so that they appear

between F^ and T^ and between Z^ and , respectively. In addition,

we also exchange the orders of Tg^ and Fg, and ^g, and Zg. Thus if

we let F8, Z8, and Kg be the force vector, displacement vector, and

45

the stiffness matrix, respectively, Eq. (3.36) becomes

where

(3.38)

Fg = T19 F3 T39 F2

Z3 63 Z2 <fr2

TA9 TA(J F6

Z6 *6 Z5 65 Z?

F7 T79)J

(3.39)

(3.40)

and K_ is shown in Eq. (3.41).

60

31,0

0

0

-60

0

0

3Lso

0

0

0

0

0

0

0

3LS0

2L?0

0

0

-3LS0

0

0

4-.0

0

0

0

0

0

0

0

0

60

-31,0

-60

0

0

-3lso

0

0

0

0

0

0

0

0

0

-3LS0

21JO

31^0

0

0

ll.0

0

0

0

0

0

0

-60 0

. -3l$u 0

•60 0

31,0 0

120 «60 3le0

31.0 *4*

-60 -31^/J

0 0

3w* 400 0

0 0

0 0

0 0

0 0

0 0

0

0

0

0

-60

-3L.0

120

0

0

-60

31*0

0

0

0

D

31,0

&

-3L$0

4.a

0

0

2

a

0

0

3Lsa

L?o

-31,0

4.

0 0 0

0 0 0

0 0 0

0 0 0

3Le0 0 . 0

&S 0 ' 0

0 -60 3le0

0 0 0

«l|0 ~3l«0 40

-31^0 12O*60 -3Lj0

2 21^0 "31^0 2le0

0 -60 0

0 -3lsa 0

0 -60 0

0 31)0 0

0

0

0

0

0

0

0

3l,a

0-

-6a

0

60

3l,a

0

0

0

0

0

0

0

0

0

&

0

-3L,a

0

3Lsa

2^0

0

0

u

0

0

0

0

0

0

31,0

0

-60

0

0

0

. 6a

-3lsa

0

0

0

0

0

0

0

4--0

3lsa

0

0

0

3L,0

2

(3.41)

46

where a and 6 <•

A quick check of symmetry, Kg Is symmetric as it is supposed to be.

3.2.3 The Consistent-Mass Matrix

Consider Figs. 14, 15, and 16 which show the distributed mass

models for the south and north solar panels and the main structure,

respectively. By using the same finite-element technique, the

consistent-mass matrices for the component structures are,

Solar Panel South

16

'29

P Lm B 8

420

156 22L 54 -13L 0 0s s

2 222L 4L 13L -3L 0 08 8 8 8

54 13L 312 0 54 -13L8 8

-13L -3L2 0 8L2 13L -3L26 8 8 8 8

0 0 54 13L 156 -22L8 8

2 20 0 -13L -3IT -22L 4IT

8 8 8 8 _

2.1

• *

9.1

• •

Z,2~ »*

6,2»*

Z,3• •

e,3_

(3.42)

47

's -4

Figure 14 Distributed Mass Model for Solar Panels — South

.. z,e.

Figure 15 Distributed Mass Model for Solar Panels — North

for

b. Solar Panel — North

F5

T56

F,0

T69

F,7

T/78_

P Ls 8 8

420

156 22L 54 -13L 0 08 8

2 122L 4L 13L -3L 0 0

8 8 .8 8

54 13L 312 0 54 -13L8 8

-13L -3L2 0 8L2 13L -3L2

8 8 8 8 8

0 0 54 13L 156 -22L6 6

2 "J0 0 -13L -3I/ -22L 4IT

8 8 8 8_

'5..6 5

26

e6

Z,7

..8 7.

(3.43)

Main Structure

F02

T&

F4

T4*

F6

T,.6*_

P L« e e420

156 22L 54 -13L 0 0e e

2 222L 4L 13L -3I/ 0 0

e e e e

54 13L 312 0 54 -13L- C = - =-- -- -=- - - C

-13L -3L2 0 8L2 13L -3L2e e e e e

0 0 54 13L 156 -22Le e

2 20 0 -13L -3I/ -22L 4IT

e e e e_

Z.2

..

^2

V

*4

6••

•. 6_

(3.44)

Employing a similar approach for obtaining the stiffness matrix,

the following equation can be obtained:

F8 - M8C Z8(3.45)

50

whereORIGINAL PAGE 53OF POOR QUALITY

F T1Q F3 T38 F2 F4 T4Q

Z3 63 Z2 V2 Z4 84 *4 *Z6 *6 'Z5 *e*5 Z7 97)T

and the consistent-mass matrix Msc is shown in Eqs. (3.46) and

(3.47).

M5C=

l*s

.**0

0

5fe

0

0-

-13Lsa

0

0

0

0

0

0

0

as,44.

0

0

13Lsa

0

0

-34,

0

0

0

0

0

0

0

0

0

156a

-22lsa

Ma

0

0

13Lsa

0

0

0

0

0

0

0

0 Ml 0

0 Ulsa 0

-22M Ma 0

4 -»* o

-13l,a 312a.l566 Hl,J>

0 22let> 4L^b

0 Mb l3L«b

-3tja 0 0

0 -13leb 3l|b

0 0 0

0 0 0

0 0 . 0

0 0 0-

0 0 0

0 0 0

0

0

0

0

Mb

ULjb

3l2b

0

0

Mb

•BV

0

0

0

0

-Ulsa

-34,

13L,a

-34.

0

0

• o

IMJa

0

0

0

-IV

•-ilii

13Lsa

-34.

o o . o o

0 0 0 0

0 0 0 0

0 0 0 q

-Ul b 0 0 0

-3l/b 0 0 0

0 Mt> -I3L«b 0

0 0 0 -13lsa

ajb UM) -3l|b 0

UL,b lS6b»3IZ9 -22l«b S4a

-3i|i) -za^b ojo "

0 Ma 0 I56»

0 13L,a 0 22lsa

0 Ma 0 0

0 -LRsa 0 0

0

0

0

0

0

0

0

-34.

0

13Lsa

0

^<4«0

0

0

0

0

0

0

0

. 0

l3Lsa

0

Ma

0

0

0

156a

-221

0

0

0

0

0

0

0

0

-13Lsa

0

0

0

-22lsa

•Si

(3.46)

where a 420 and b

peLe420"

(3.47)

51

3.2.4 The Lumped-Mass Matrix and System Mass Matrix

Mgc accounts for the distributed mass for the flexible structure

but not the lumped mass associated with the rigid bodies. Let MSD be

the lumped-mass matrix for the station excluding the payloads, then

MSD = diag (0,0,0,0,0,0,M4,I4yy,I4xx,0,0,0,0,0,0) (3.48) '

where M4, I4xx, and I4yy are the mass and moments of inertia of the

core station defined in Fig. 10.

The total mass matrix, excluding payloads is,

Ms - Msc

The corresponding dynamic equation due to mass and inertia is

FS - Ms*z's (3.50)

3.2.5 Payload Dynamics and Hinge Torque Model

The dynamic model for the payloads (identified as bodies 8 and 9)

and the hinge coordinates are shown in Fig. 17.

To include the pay load dynamics and the dynamic interactions

between the payloads and the station, the following expressions are

obtained using the Lagrangian approach:

52

7

9X

PAYLOAD CONFIGURATION

m8' 'sxs' 'BYS

m9' *9XS' !9YS

78X " 78XHINGE ANGLE FOR "PAYLOAO 8" ABOUT X-AXIS

T8Y ** V " 64 " HINGE ANGLE FOR "PAYLOAD 8" ABOUT Y-AXIS

9XHINGE ANGLE FOR "PAYLOAD 9" ABOUT X-AXIS

9Y * 79Y " ^4 " HINGE ANGLE FOR "PAYLOAD 9" ABOUT Y-AXIS

Figure 17 Payload Dynamics and Hinge Model

53

FA - (M8+M9)Z4 + (M8L8-M9L9)e4 + M8L8bY8y-M9L9bY9y (3.51)

T49 + (M8L8-M9L9)Z4 - (I8y8+M8L§ + ys L )' (3.52)

+ M8L8aL8b + M8L8b 8

- (I8xs + I9xs>*4 - '

F.qs. (3.51), (3.52) and (3.53) are used to replace F4, 149, and

in Eq. (3.50).

The torques applied at the payload hinges are,

T9x - xs** + xs' x (3.55)

T8y = ~ M8L8bz*4 + (l8ys+M8L8aL8b+M8L8b)'6A + Sys S b Sy <

T9y - MgLgb' -K (igyg+MgLgaL L ) + ( I9yB+ lb 9y (3'57)

I t Iwhere Y8x, Y8y, Y9x» and Y9y are the hinge angles for payloads 8 and

9 about the X- and Y-axes.

The above equations are derived using the Lagranglan approach

with more general assumptions and then linearized for small angles.

The detailed derivation is shown in Appendix A.

3.2.6 . Equations of Motion

Let Fp " <T8x. T9x» T8y» T9y> and Zp " <Y8x, Yg,, Y8y. ) be

the payload forcing and displacement vectors, the corresponding

vectors for the system can be partitioned as follows,

54

F_ _8_

FP

and Z »Z

_ JL _Z

P

The system mass matrix becomes,

(3.58)

M = Mc + MD (3.59)

where

' C

MSC 15x4

°4xl5 °4x4

and

MSD+MSD ' MPSD

"PSD ! "PD

(3.60)

(3.61)

MSC is defined in Eq. (3.46) and MgD in Eq. (3.48), and Mgn, MpD,

MpSD are,

6x6

°3x6

, ,6x6

6x3 6x6

I8yS'fI9yS

6x3 °6x6

(3.62)

55

"PD

I8xS0

0

0

0

T9xS

0

0

0

0

2I8yS'hn8L8b

0

0

0

0

2I9yS4l°9L9b

(3.63)

MPSD °/ *4x6

0 0

0 0

"Vsb I8yS4m8L8aL8b4m8L8b2

°9L9b I9yS4m9L9aL9b4in9L9b

X8xSI9xS

0

0

°4x6(3.64)

The system stiffness matrix is

I 0,s I "15x41

04xl5| °4x4

where Kg is defined in Eq. (3.41),

The equation of motion is

(3.65)

MZ + KZ - F (3.66)

56

3.2.7 Modal Coordinates and Modal Properties

Let n(t), A, and 4> be the modal amplitude vector, eigenvalue

matrix, and normalized eigenvector matrix, respectively. Let Z(t) =

4>n(t), substitute this into Eq. (3.66) and premultlply Eq. (3.66) by

$ » then <|iTMi|» = I and <J> K<J> = A, one has the following dynamical

equation in modal form,

n + An = 4>TF (3.67)

where A = diag (o»| ..... (t>\g) . Adding damping terms, Eq. (3.67)

becomes,

"n* + diag (2C1a)1,...,2c19to19)f| + diag(u> ,... ,o) g)n - <t»TF (3.68)

The corresponding damped dynamical equation in physical coordinates

can be obtained through transformation. Let D be the damping factor

matrix, one has

D = (TT diag (2C1o)1,...,2i:iga)19)<|)~1 (3.69)

and the equation of motion becomes,

MZ + DZ + KZ - F . (3.70)

For the purpose of control, let B and C be the control influence

matrix and measurement distribution matrix, respectively, the system

equation in physical and modal coordinates are, respectively,

57

MZ + DZ + KZ " Bur

I yp - C (aZp + Zp)

(3.71)

(3.72)

and

n + diag

. y

+ diag (uj ..... u\9)r\ = <J>TBup (3.73)

(3.74)

To obtain the modal properties, i.e., to determine the

eigenvalues and eigenvectors, for the open-loop system, one can

either free the hinges for the payloads or clamp them. For the

latter case, a 15-DOF system results with 12 flexible modes and 3

rigid body modes. For the former case, however, a 19-DOF system

results since the payloads are considered rigid bodies and the hinges

are freed, it ends up with 4 additional rigid or zero frequency

modes. Since this does not yield additional information, only the

clamped-hinge case is considered in this dissertation.

The modal frequencies and mode shapes for the four-panel

configuration with clamped-hinge case are shown in Fig. 18. These

modes are divided into three groups. The first bending group

consists of 6 modes with frequencies ranging from 0.115 Hz to 0.302

Hz. These modes are formed with the first symmetric or antisymmetric

bending of the three major structures, i.e., the two solar panel

pairs and the main structure. The second bending group is caused by

58

c:•co

§

o

N§•o(-1

00

•H•o

ICOM•rlfc

(1)

«P.I(J

Ob-

01

OU-

03O>•HAJP0)&ouo.

\I

'

^~>

£^sUJ 2

ss

i°'^^B

^

3

CO•cc

g&

•T-l

d.

59

lf\

2o00.50)

CQ

oo&

•o0)3

eo

00

00

£8

S3

60

UJ „

5 3

CO<U1.

•o

•o•H00

01

C

I

00tH

(II

3

61

the second symmetric or the. antisymmetric bending of the three major

structures. The frequencies for this group are much higher than

those of the first group, ranging from 1.67 Hz to 2.34 Hz. The third

group consists of three rigid body modes with zero frequency.

The structural and mass parameters used for generating these

modes are shown in Fig. 10. The flexural rigidity (EI)g « 9.48xl06

lb-ft2 has been used for the solar panels and a value of an order of

magnitude higher has been used for the main structure.

3.3 Frequency Characterization of Space Station Dynamical Systems

With the availability of these space station models, the

frequency characteristics of the various dynamical systems in the

space station environment are identified as shown in Fig. 19.

For a nominal orbital altitude of 400 km, the orbital period is

92.61 minutes or 1.8x10"** Hz rate. For an altitude close to 400 km, the

orbital rate will be inside the shaded narrow region in Fig. 19. The

solar panel libration frequency for quasi-solar-inertial pointing

[51] will be twice the orbital rate, as shown in Fig. 19. A low

bandwidth attitude control system for the space station will have a

bandwidth in the range of 0.001 Hz to 0.005 Hz. The two-panel low

DOF model and the four-panel finite-element model are shown in Fig.

19 with their modeled frequencies identified by vertical lines. The

dashed regions extending the modeled modes represent the modal

spectra that are not Included in the models. The payload attitude

control systems for a range of applications will have bandwidth in a

range centered at 1 Hz. The core body Including the pressurized

modules should have structural frequencies above 9 Hz. The figure

62

tMo

IOz

o

fc•v.5

O

ejio

II

V.

reot-i

TO

O

e/:

QJuna

tnuJJCO

uTO

TO

5u<U£?cr2t

0)t-.

be

SW31SAS IVDIWVNAa

63

indicates that the spectral separations of the orbital rate, the

attitude controllers, and the low frequency modes of the station

structure are reasonable. However, the same cannot be said about the

structural modes and the payload controls. For instance, the payload

controller bandwidth falls between the modes of the first and the second

bending groups. This result strongly suggests that decoupling control

for the payload is required.

64

.CHAPTER IV

PROBLEM FORMULATION

The space station, or the controlled plant can be represented by

the following state space model:

xp(t) - Ap xp(t) + Bp up(t) (4.1)

yp(t) = Cp xp(t) (4.2)

where xp(t) is the Np-dimensional plant states, up(t) is the M-

dinensional plant control inputs, and y0(t) is the M-dimensional

plant outputs. Here it has been implicitly assumed that the number

of inputs equals the number of outputs. Physically, control inputs

are the forces and torques generated by actuators, such as thrusters,

proof masses, Control Moment Gyros, and momentum wheels. The outputs

are measurements such as linear and angular displacements and rates

measured by accelerometers, rate and integration gyros, etc. A , B ,

C are the state, control influence, and measurement distribution

matrices of appropriate dimensions. (Ap,Bp) is controllable and (Ap,

Cp) is observable.

A reference model that serves as a performance measure is

required. This model is chosen to be asymptotically

stable and can be represented by the following equations:

Bm

65

where (t) is the ^-dimensional model states, u^t) is the M-

dimensional model commands, and ym(t) is the M-dimensional model

outputs. Afg, Bm, Cm are matrices of appropriate dimensions.

Since the space station is infinitely dimensional while the

dimension of the reference model has to be reasonably small for

practical implementation, the following condition will be necessary

for any adaptive algorithms for LSS (large space structures) or space

stations:

Np » Nm (4.5)

Define the output error between the plant and the model as

ey(t) - ym(t) - yp(t) (4.6)

Since the reference model specifies the desired performance of the

plant (space station), the objective is then, without assuming the

complete knowledge of the plant, to design an adaptation mechanism to

generate a suitable plant control input u_(t), so that the plant

output tracks the model output asymptotically, i.e.,

lira ey(t) - 0 (4.7)

66

CHAPTER V

CONTROL ARCHITECTURE

5.1 Control Architecture for the Two-Panel Configuration

Referring to Fig. 6, the most rigid location on the station is

its core on which inertial sensors, accelerometers and actuators are

located. Control Moment Gyros (CMC's) are assumed and they are

effective only for antisymmetric modes; the symmetric modes are

controlled by the thrusters or proof masses. To gain controllability

and compensate for vibrations of the large flexible panel structure,

reaction wheels at the tips of the panels are postulated.

Accelerometers and a target set of vibration sensors for relative attitude

and rate measurements are also placed at the panel tips. Although the

panel tips are far from ideal for locating hardware components, the choice

is nil. For translational control, force actuators are required at

the bus.

With the above control architectural design, the control input

and output vectors are defined as follows:

u.

and

VVUP3

.Up4."ypl"yP2yP3

yP4_

a

S3

Tl

F2

T2

T3

a

com

cont

com

com

" aepl + *pl

azp2 + Zp2

06P2 * ®P2

a6P3

+ 9p3

control torque at left panel tip

control force at central bus

control torque at central bus

control torque at right panel tip

(5.1)

(5.2)

67

In order to apply adaptive control techniques to this 6-DOF

model, Eqs. (3.26a) and (3.26b), i.e., the plant equations, are

written in state space form. Let np be the modal amplitude vector,

and define the plant state vector x as,

P_

we have

0

aC<J>

(5.3)

_p_•

n_

the corresponding Ap, B_, and C matrices are

(5.4)

(5.5)

6x6 6x6

-co 0 1 -2? ,o), PI

B0

T(5.7)

68

j C*p] (5.8)

where <fr is the mode shape (eigenvector) matrix for the plant, u-^

and C k are the modal frequencies and damping ratios, respectively.

Rased on the control input vector u given in Eq. (5.1), the

control influence matrix B is given by

0 0 0 0

1 0 0 0

0 1 0 0(5.9)

0 0 1 0

0 0 0 0

0 0 0 1

Since the sensors and actuators are colocated, we have, in Eqs.

(5.7) and (5.8)

C - B1 (5.10)

5.2 Control Architecture for the Four-Panel Configuration

With a similar but more complicated control architectural design

than that used for the two-panel configuration, the control input and

output vectors for the four-panel configuration are defined as

follows:

69

u.

and

"v~UP2

UP3

V

UP5

UP6

Up7

UP8

UP9

Upl0

.""'I

~ypl~

yp2

yP3yP4p5

po

yp7

Po

yp9

ypioypii

S9

"

"T16

T36

F2

T2*

F4

T46

T4*

F6

T6<J>

T59_T79_

-

"Y-t

Y-t

Z-f

X-t

Z-f

Y-t

X-t

Z-f

X-t

Y-t

Y-t

aepl * 9pl"

°6p3 * 6p3•

aZp2 * Zp2

a*p2 * *p2•

°zp4 + 4*

00p4 + 9P4

°*p4 + *p4•

azp6 * Zp6

a*p6 * *p6

°9p5 + 9p5

aep7 * 9p7

Y-torque at left south panel tip

Y-torque at right south panel tip

Z-force at the root of south panel

X-torque (bending) at the root of south panel

Z-force at central bus

Y-torque (twisting) at central bus

X-torque (bending) at central bus

Z-force at the root of north panel

X-torque (bending) at the root of north panel

Y-torque at left north panel tip

Y-torque at right north panel tip

(5.11)

(5.12)

11 sets of sensors and actuators are used at 7 locations. The

problem becomes more involved now because of the more complicated

70

structure and the three-dimensional motion instead of plane motion

only.

Again, for the application of adaptive control, state-space

representations of Eqs. (3.73) and (3.74) are obtained. Let YJ

be the modal amplitude vector', and define the plant state vector x_

as,

n•

n(5.13)

we have

m

X **p

*

0

i •

I" '

> yp"

NN

N

0 -a) ,.p!5

iaC^ i Cd>

P , Pj

2

the corresponding Ap,

A •

P

-

o15x15

•t-u * 0

Pi

0

nP_• -n P _

NX

X

"^plS^plS

• " tp ~

V o+ u

n , Tn PP 9 0

p

(5~.14)

(5.15)

B_, and C matrices are

111

i

1 ?Pl0 * * - ( ! } . - *

p!5 |

I15x15

u , 0Plx

° V-2Cpl5Upl5

/C 1 £L\

71

B,

B

S- <V

(5.17)

(5.18)

where A , u ^, and C-^ are the eigenvector matrix, modal frequencies

and damping ratios, respectively, and the control influence matrix B

is

0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0

o o o o o o o o o o o

0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

B - 0 0 0 0 0 1 0 0 0 0 0 (5.19)

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0

o o o o o o o o o o o

0 0 0 0 0 0 0 0 0 1 0

o o o o o o o o o o o

0 0 0 0 0 0 0 0 0 0 1

Again, the sensors and actuators are colocated, hence

B

in Eqs. (5.17) and (5.18).

(5.20)

72

CHAPTER VI

ADAPTIVE CONTROL ALGORITHM

The equations of the plant (space station) and the reference

model are described in Eqs. (4.1)-(4.4), and are repeated below for

convenience:

plant ( xp(t) = Ap xp(t) + Bp up(t) (6.1)

( yp(t) = Cp xp(t) (6.2)

model ra • ui ui • iii ui • ~ '

(6.4)

The output error is

ev(t) - y_(t) - y-(t) (6.5)

The objective is to find up such that

lira ey(t) = 0 (6.6)

with the requirement that dimension N. » N,,, and A_, Bp, C_ are not

completely known.

The adaptive control algorithm under consideration here is an

extension of that developed in Ref. 42. Since the Command Generator

Tracker theory [43] formed the basis of that algorithm, it is

introduced first in the following.

73

6.1 The Command Generator Tracker Theory

The Command Generator Tracker (CGT) concept developed by

Broussard is a type of model reference control. What makes it

attractive is that it allows perfect model output tracking even

though the plant and the model are not of the same order. The basic

idea of CGT is to generate a plant input u (t) as a linear

combination of the model states x t), model inputs

output tracking error ey(t), i.e.,

, an(* the

up(t) » S2ixm(t) ey(t) (6.7)

so that the output tracking error asymptotically approaches zero.

The gain matrices Soi and Soo are referred to as the CGT gains, and

Ke is selected to stabilize (Ap-B KfiC ).

When yp(t) » ym(t) (i.e., perfect tracking occurs), the

corresponding plant state and control trajectories are called "ideal

trajectories" and are denoted as x*(t) and u£(t), respectively. When

um(t) is constant, xp(t) and up(t) are assumed to be linearly related

to the model command um and model state

following equations:

as shown in the

(t) sll S12

S21 S22

(6.8)

where Sjj, Sj2t $21 an(' ^22 are matrices with appropriate

dimensions. By definition, the ideal trajectory xp(t) is such that

"'Tor the more general case, refer to Ref . 54.

74

y*(t) = Cp XpXt) - Cm xm(t) = yn(t) (6.9)

and

xj(t) - Ap xj(t) + Bp uj(t) (6.10)

To find the CGT gains S21 and S22, we first substitute Eq. (6.8) into

Eq. (6.9). Thus,

Cp xj(t) ' Cp(SH *n(t> + S12 "m> = Cm xm (6-U)

Hence,

Cp sll ™ Cm (6.12)

Cp S12 • 0 (6.13)

Differentiating Eq. (6.8),

* k v * • *

(6.1A)

and substituting Eq. (6.8) into Eq. (6.10)

xp(t) " V8!! **<*) + S12 %> * Bp(s21 xm(t) + S22 %)

= (Ap Sn + Bp S21) ^(t) + (Ap S12 + Bp S22) um (6,15)

and comparing Eqs. (6.14) and (6.15), we have

75

Ap Sll + Bp S21

Bra 12 + Bp S22

(6.16)

(6.17)

Rewriting Eqs. (6.12), (6.13), (6.16) and (6.17) in matrix form, we

obtain

\ BP~Cp 0

sll S12

s12 s22^sa

SllAm

and then define

"ll n!2~

02i «22-\ BP~

.°P °.

-1

The resulting CGT equations become

12 "

521 -

522 -

(6.18)

(6.19)

(6.20a)

(6.20b)

(6.20c)

(6.20d)

The so-called perfect model following (PMF) conditions are a

special case of the CGT when the state vector is available and it is

assumed that x£(O - (t). Since x£(t) - S11xra(t) + S , the PMF

conditions imply that Sjj » I and S}2 - 0. Also, since

(6.21)

76

i.e.,

Bp(S21 x^t) + S22 um)

Bp S21> *m<t) + Bp S22 v^

A, Vt) + Bm u, (6'22)

From Eq. (6.22), It is found that

Bp S21 = A* - Ap (6.23.)

Bp S22 = B^ (6-23b)

If the CGT gains S2J and S22 which satisfy the PMF conditions

(Eq. (6.23)) exist, a valid PMF controller then becomes

up(t) = u*(t) + K(xm(t) - Xp(t)) (6.24)

where K is a stabilizing feedback gain.

Back to the general CGT, we define the state error as ex(t) =

x_(t) - xp(t) and seek a controller which guarantees that ex(t) •»• 0

as t * «. Because when xp(t-) - x*(t), we have Cp xp(t) - Cp x*(t),

hence

yp(t) A Cp xp(t) - Cp xp1 (t) A 0 (1) A ym(t) (6.25)

and that is exactly the desired result we require.

77

With the error defined as ex(t) » xp(t) - xp(t), the error

dynamics becomes

ex(t) - ApXp(t) + Vp(t) ' AP XP(t) ~ BP uP(t)

= Ap ex(t) + Bp[u* (t) - up(t)l (6.26)

Note that

ey(t) - ym(t) - yp(t) = Cp(xJ(t) - xp(t)) - Cp ex(t) (6.27)

Equation (6.26) will be used in the subsequent stability analysis.

The CGT concept stated above is, however, non-adaptive. The

purpose of adaptive control is to eliminate the need for a priori

knowledge of the plant that is required in CGT.

6.2 Direct Model Reference Adaptive Control

Based on the CGT concept, Sobel et al. [42] developed the

following adaptive control law:

" Ke(t) "y(t) + K»(t) **(t> + M*) Vt) (6.28)

or, let r ( t ) b e a 2 M + N m vector defined as

rT(t) - [eyT(t) (t) un

T(t)] (6.29)

78

and K(t) be the M x (2M+Nm) adaptive gain matrix defined as

K(t ) = [Ke(t) ^(t) Kjt)] (6.30)

Then

up(t) = K(t) r(t) (6.31)

where K( t ) is a combination of two types of gains, i.e.,

K(t) = Kp(t) + Kx(t) (6.32)

and K_(t) is the direct gain, Kj(t) is the integral gain defined as

follows:

Kp(t) - ey(t) rT(t)T (6.33)

KT(t) = ey(t) rT(t)T (6.34)

with

Kx(0) - KIO (6.35)

where T and T are the (2M+Nm) x (ZM+J ,) gain weighting matrices. KIO

is the initial integral gain. Note that u_(t) is highly nonlinear

and its values are, in part, proportional to the cube of the output

error ey(t) eyT(t) ey(t).

The stability conditions of the adaptive controller are

established via the Lyapunov direct method by considering a positive

definite function given by

V(ex»KI> = e x ( t ) P ex^> * TrfSCKj-T-kKj-c)^ 1 ] (6.36)

79 '

where

P is a N x Np positive definite symmetric matrix

K is a MX (aM+N, dummy gain matrix

S is a M x M nonsingular matrix

t**

Note that dummy gain matrix K does not appear in the control*-w *v ** ***

algorithm. It can be partitioned as K = [K , K, K ] so that

• K r(t) - Ke Cp ex(t) + x t) + um (6.37)

where K , K and K are, like K, dummy gains.

Introducing the control algorithm into the error equation given

by Eq. (6.26), using Eqs. (6.31) to (6.33) and recalling from Eq. (6.8)

that u*(t) = S01 x (t) + S_9 u , gives:p 21 m // m

ex(t) - Ap ex(t) + Bp[S2i

- Kx(t)r(t) - Cp ex(t) rT(t) 7r(t)J (6.38)

The time dependence of the variables is omitted in the sequel for

brevity. Thus the adaptive system is described by

S22um ~ KIr

and

K! - CpexrTT (6.40)

80

For the positive definite function given in Eq. (6.36), its time

derivative is given by ,

Substituting Eqs. (6.39) and (6.40) into Eq. (6.41), we have

V = exTP[Apex + BpS21xm + BpS22Ura - BpKTr - BpCpexr

TTr]

BPS22um ~ BpKIr "

2 exT Cp

T ST S(KZ - K)r

CpTBp

TP)exrTTr

- 2 e

T T T2 ex Cp S S(KT - K)r

- 2 exT[Cp

T ST S - PBpll^r - 2 exT Cp

T ST S K r

+ 2 P

Choosing C such that CpT ST S - P B , Eq. (6.42) becomes

V - exT(PAp + Ap

TP)ex - 2 exTPBp(S

TS)-1 BpT P ex r

T T r

- 2 exT Cp

T ST S K r + 2 exT PBp(S2ixm + 823%) (6.43)

81

Substituting -Eq. (6.37) into Eq. (6.43), we obtain

V = exT[P(Ap - BpKeCp) + (Ap - BpKeCp)

TP]ex

- 2 exTPBp(S

TS)~1BpT P ex r

T T r

+ 2 exT PBp[(S21-Kx)xm + (S22 - K^uJ (6.44)

f*+ f*4

with the choice 1^=8^ and KU = S22, Eq. (6.44) reduces to

V - exTlP(Ap - BpKeCp) + (Ap - BpKeCp)

TP]ex

- 2 exTPBp(S

TS)~1BpT P ex r

T T r (6.45)

Let Q - - P(Ap - BpKeCp) - (Ap - BpKeCp) P (6.46)

Eq. (6.45) becomes

Q ex - 2 exT P Bp(s

TS)-1 BpT P ex r

T T r (6.47)

If T is chosen to be positive semidefinite, the second term in

Eq. (6.47) will be negative semidefinite in ex. Then we choose P~

such that for some K£, Q is positive definite. Consequently, V is

negative definite in ex, and V is a Lyapunov function for establish-

ing the asymptotic stability of the zero state of Eqs. (6.39) and

(6.40).

82

To summarize, a sufficient condition for asymptotic stability is

(1) T is positive definite

(2) T is positive semidefinite

(3) P Bp = CpT(STS)

(4) P is chosen such that P(Ap-Bp KC Cp) + (Ap-Bp Kg Cp)TP

^

is negative definite for some K .

Under the above conditions, the plant output will asymptotically

track the model output. Furthermore, since the derivative of V is

negative semidefinite in the augmented state [ex(t), Kj(t)], the

adaptive gains will be bounded.

It should be noted that conditions (3) and (4) together are

equivalent to requiring that the plant transfer matrix

~ • iZ(s) = Cp(sI-Ap + Bp Ke Cp)""

1 Bp be strictly positive real for someX*

feedback gain matrix Kg. For the definition of positive realness and

strictly positive realness of matrices, see Appendix B.

6.3 Instability Problem Caused by Rigid Body Modes

It is well-known that the zero frequency rigid body modes are

unstable modes. Simulation results show that this adaptive control

algorithm fails to stabilize these modes and yield stable states or

outputs. These problems may be verified analytically. They are

treated as critical cases of stability problems for autonomous

differential equations developed in Ref. 52. Let

x = Ax + g(x) (6.48)

83

be the given differential equation, where Ax represents the linear

part and g(x) the nonlinear part. The real parts of the eigenvalues

of A are assumed to be nonpositive. The critical case refers to the

situation where some of the eigenvalues have zero real parts. If the

matrix A has a double zero eigenvalue and if the reduced equation can

be written in the form

(6.49)

(6.50)

(where g is at least of second order, Y and 6 are positive integers),

then we have the following sufficient conditions for instability due

to Lyapunov [53],

The equilibrium is unstable, if one of the following conditions

is satisfied:

(1) y even;

(2) Y odd, a>0;

(3) Y odd, a<0, 6 even, Y > 5 + 1. b>0;

(A) Y odd, a<0, 5 odd, Y > 26 + 2;

(5) Y odd, a<0, 6 odd, Y - 26 + 1, b2+4(6+l)Y > 0;

(6) the equation for 012 contains only the term MCOJ,^)*

To apply the above criteria to our case, the system equations

are rewritten in the form of Eqs. (6.49) and (6.50) by defining

-<vAx

m

(6.51)

(6.52)

Then

ey ' cm*m ~ CPXP " Jx

since

(6.53)

m (6.54)

ey

xm

urn

(6.55)

Hence

rT Tr - e,,T Ty ey *y xm itn um iB

ey Txm x, + C (constant) (6-56)

Therefore the system equations (6.1) and (6.3) can be rewritten as,

85

AX

•xm

•X

P

s

A 0ro

0 AP

AX +

B um m

B Jx (xTJT ¥ Jx + x T T X + C)p ey m xtn m

0

B K_ rP I

(6.57)

TKI- ey r T (6.58)

As stated in Chapter VII, in the present study, we concentrate

on the space station attitude hold only, i.e., u,,, • 0. In this

special case, the corresponding coj's are xpi (modal amplitudes) and

i»2*8 are Xpi (nodal amplitude rates), respectively. For a certain

mode, its corresponding block in matrix A is

0 1

[i 0Hence for rigid body modes, it becomes \ n n \ which is exactly the

form represented by Eqs. (6.49) and (6.50). Taking the 6-DOF model

as an example, it is found through tedious expansion that Y • 3, and

a < 0; hence, the possibilities of satisfying condition 1 or 2 are

excluded. One of the remaining conditions may still be satisfied

although the expansion will be extremely tedious and is not done

here. Note that the above conditions are sufficient conditions;

86

therefore, the equilibrium state of the system may still be unstable

even though none of them are satisfied.

If um is equal to some constant instead of zero, the analysis of

stability will be different. Since the term B_JxC in Eq. (6.57) is

linear in x_, it should be added to A . This changes the

corresponding matrix A in Eq. (6.48) and its eigenvalues. The zero

frequency modes would disappear, and the stability of the system will

be entirely determined by the eigenvalues of matrix A. If any of

them has a positive real part, instability of the system can be

concluded immediately.

6.4 Plant Augmentation

To solve this unstable rigid body modes problem, a method

referred to as plant augmentation is proposed. The plant

augmentation is accomplished by Introducing an inner control loop in

the plant.

Consider the equation of motion (Eq. (3.18) or (3.66)) before

the damping term is added, ,

MZp + KZp - Bup (6.59)

After the inner loop is introduced, the above equation becomes

MZp + KZp - Bup - KIL Zp (6.60)

where KIL is the inner loop control gain matrix. By rewriting Eq,

(6.60) as follows,

87

MZp + (K + KIL)Zp - Bup (6.61)

one can see that the modal characteristics of the plant have been

altered due to Kj . By choosing the values and structure of KJL» the

rigid body modes will no longer have zero frequencies. As a result

of this plant characteristic change, a stable adaptive control system

can be realized. It Is important to note that to design such an

Inner loop, one does not require accurate knowledge of the plant.

This is because the Inner loop controller can be made very robust by

choosing the loop only at the location where the controllability.is

the highest for the rigid body modes. Furthermore, the exact values

of the augmented rigid mode frequencies are not important and what is

important is that they are different from zero. Looking from another

point of view, the stability of the adaptive system has been improved

by the highly robust inner control loop.

Taking the two-panel configuration as an example, the inner loop

gain KJL is chosen to have the following form:

KIL - diag(0, 0, KZ2, K92, 0, 0) (6.62)

This selection is based on the fact that the rigid body modes are

largely determined by the core body of the space station. To

determine KZ2» we refer to the following block diagram:

88

Since the transfer function H can be written as

H (6.63)

Z2

the natural frequency <oz2 for the rigid body translational mode can

then be estimated as,

~ KZ2Z2 (6.64)

Similarly, the natural frequency 0)92 or t*le rigid body rotational

mode is

(6.65)

Hence, the selection of 2 an^ (092 determines the values of KZ2 and

K62.

Extending the above approach to the four-panel configuration is

straightforward. KIL is now of the form:

KIL » diag(0, 0, 0, 0, 0, 0, KZ4, , 0, 0, 0, 0, 0, 0)

(6.66)

89

Including the effects of payloads, the natural frequencies of

the rigid body modes are estimated as follows,

r K

^ V

24 - (6.67)

r K94V ^yy+W+V '9 +I8ys"'"I9ys

(6.68)

~ / *= J i7~Ti\ 4xx 8xs 9xs

(6.69)

Again the selection of (*>24f U04 an^ u*4 determines the values of

K04,-and.K^4, respectively.

With the inner loop introduced, the space station adaptive

control system block diagram is shown in Fig. 20.

6.5 Sufficient Conditions for Global Asymptotic Stability

After solving the problem of zero frequency rigid body modes via

plant augmentation, we need to find sufficient conditions that will

make the space station adaptive control system globally

asymptotically stable. Referring to Section 6.2, we have to select a

positive definite P satisfying PBp - CpT(STS), and for which

~ ~ T ~Q - - P(Ap-Bp Ke Cp)-(Ap-Bp KeCp)

TP is positive definite for some Kfi.

90

O 1^~

8>§ i

tc(t

Uo

01U05S*V.

o14U

o

G-n

g•H4Ja4Jv.0)u«a

CO

oCM

60

_l

91

Before deriving the sufficient conditions for globally

asymptotic stability, we consider first the characteristic equation

of a symmetric matrix for determining its eigenvalues.

Let W be a symmetric matrix having the following partitioned

form:

Let A be an eigenvalue of W. Then

(6.70)

(6.71)

where [Vj V2^ *8 an eigenvector of W corresponding to X, i.e.,

A1V1 * A3V2 " X vi (6>72)

A3V1 * A2V2 " X V2 (6.73)

From Eq. (6.73)

A3 Vl " (X X " A2} V2

Hence

(XI - A2)v2 (6.75)

92

Substituting Eq. (6.75) into Eq. (6.72), we have

(XI

(XI (XI - A2)v2 (6.76)

i.e.,

[A3 - (XI - (XI - A2)]v2 - 0 (6.77)

Define the matrix inside the brackets in Eq. (6.77) as Afi.e.,

A = A - (XI - (XI - A2) (6.78)

Since A is a diagonal matrix, in order to have a nontrivial solution

v?, at least one element of A must be zero.

Expanding Eq. (6.78), we have

A - X2A~X - (AL+A2) + (A3"1A1A2 - (6.79)

To find the first set of sufficient conditions, let

I al

ol I

TS*S

K - K, K,e 1 1

(6.80)

(6.81)

(6.82)

93

then

PB" I al"

al I- P -

:s

" I al"

al I

0

* TrT9 CL p J

T TC

T T»V(6.83)

and the condition PB - C T(STS) Is satisfied.

Since P is required to be positive definite, all of its

eigenvalues must be positive. Referring to Eqs. (6.70) and (6.80),

the corresponding A., A» and A_ here are

A2 - I

A, - ol

(6.84)

(6.85)

(6.86)

In view of Eq. (6.79), we have

or

A - X2I - 2X1 -»• (I - o2!)

(6.87)

(6.88)

94

Hence a typical pair of eigenvalues are found by

A2 - 2X + (1 - a2) « 0 (6.89)

The roots of Eq. (6.89) are given by

(6.90)

Note that a > 0, hence

A, - 1 + a > 0 (6.91)

For X 2 - l - a > 0 , w e require

o < 1 (6.92)

Referring to Eq. (5.6) or (5.16), we define

A -

».* 0. *\

0 Np

(6.93)

and assume the sane damping for all nodes,

(6.94)

95

Then the matrix Ap can be written as

0 I

-A -2?A1/2(6.95)

Substituting P, A , Bp, C_ and K into the equation for Q,

*«* /s*

Q * -P(Ap-BpKeCp)-(Ap-BpKeCp)TP

I al

al I

0 I

0 I

-A -25A1/2 T T ] j

-A -2CA1/2

L PT TC

1

', [•=*, %])I al

al I

I al

al I

0 I

-A -2CA1/2 T T Tc Ki

T T Tc Ki Kic*P.

o i

-A -2?A1/2

0

*c\\ctf +pIcTk,ti

TI al

al I

I al

al I

T TK, K,C«J>

T T TC K

I al

al I

96

9 T T T<fr AC Kj KjC*

1 / 2 T T T1/^-a* XC Kj KjC*

T T T 1 / 2 T T T•A-a<J> *C K/K.C* OI-2CA ' -* C K. K.C*

p l l p P 1 1 P „

0 T T T-aA-cr<)> XC K, K.C<J>

P I I P

1 / 2 T T TI-2aU -«<(> C K, K,C4>

P l i p

fr TCTK1TK.C(J)

P l i p

1 / 2 T T T1' -+ C K. K.C(|)

T T T 1 / 7 T T T*C K, K.C+ -I+2acAi/ *+a* C K. K.C*

p l l p p l l p

T T T 1 / 2 T T TA+a<J) C K. K.C* -OI+2CA ' +4> C K, K.C*

p l l p p l l p .

9 T T T<|> XC K/K.C*P I I P

1/2 T T T1' C K. K.C+P I I P

A+a* TCTK.TK.C+p l l p

1 / 2 T T T*7*** C K. K.C*

P I I P .

1/22oA A-I+2o£A

A-H-2a?A1/2 -2aI+4?A1/2T T T

* PC K i K i c * p

2aA 1/2 T TT 0

T^T

OK.

0

(6.96)

0P.

97

The second term in Eq. (6.96) is apparently positive semidefinite.

Hence in order to make Q positive definite, the first term must be

positive definite. Let

1/22aA , A-I+2a?A

A-I+2acA1/2 -2aI+4cA1/2(6.97)

referring to Eq. (6.70), the corresponding Aj, A2 and Aj here are

2aA

1/2

- A-I+20CA1/2

(6.98)

(6.99)

(6.100)

Substituting them into Eq. (6.79), we have

1/2 —1 1/7 —11/<4) - X(A-I+2o?A 7 )

(A-H-2acA1/2)"1(2aA) (- - (A-H-2ocA1/2) (6.101)

In order that (A-n-latA1/2)"1 exists,

|A-H-2ocA1/2| * 0 (6.102)

i.e., w -l+2aea) * 0 , for i -.1, ... N (6.103)

98

I.e., a * for i « 1, ..., N (6.104)

Expanding Eq. (6.101), we have

A.» 2 - X

~2au -20+4CU, 0

(6.105)

I.e., the characteristic equations are,

X2-2 " 2 ~to -H-2acu ID -H-2acu-0

for 1-1, ..., N. (6.106)

or

X -(

for 1-1, ..., Np (6.107)

Note that for the quadratic equation:

aX + bX + C = 0 (6.108)

99

the roots are,

(6.uo)

Hence, in order to have A > o and X > 0 we must have

b < 0 (6.111)

ac > 0 (6.112)

Referring to Eq. (6.107), the conditions for positive Xj's are then,

- o(l-wj) > 0 , for 1 - 1,..., N ' (6.113)

l-4oCa)1-(2-4a2-4a2c2)u)1

2-4a(;u)13-m)1

4<0 , for i - 1, .... N (6.114)

To summarize, the first set of sufficient conditions for

globally asymptotic stability is given by

T is positive definite

T is positive semideflnlte

a < 1 (6.115)

- o(l-Wl2) > 0 (6.117)

l-4ocw1-(2-4a2-4a2c2)a»1

2-4a5(1»13+(oi* < 0 (6.118)

for i » 1, ..., U.

100

To find the second set of sufficient conditions, we select

P *BI ctl

al I

STS - I

(6.119)

(6.120)

(6.121)

Then

PB -

BI ol

ol I, — I

0

T T4> C

I P -

a

T T"d<{> C

P

T T* C

. P

(6.122)

and the condition PBp = CpT(STS) is satisfied.

Since P is required to be positive definite, we have, first of

all,

B > 0 (6.123)

and the eigenvalues of P must be positive. Referring to Eq. (6.70),

the corresponding Aj, A£ and A.J here are

A, « 61

A2 *

ctl

(6.124)

(6.125)

(6.126)

101

Substituting them into Eq. (6.79), It becomes

^ " — A (6.127)

or

A - X2I - (8+1)1 + (6-a2)I

Hence, a typical pair of eigenvalues are determined by

(6.128)

X2 - (8+l)X + (B-a2) - 0 (6.129)

Referring to Eqs. (6.111) and (6.112), the conditions for positive

A's are

and

B > -1 (automatically satisfied)

8 >

(6.130)

(6.131)

Substituting P, A^, B_, C_ and Kg into the equation for Q, we have

Q - - P(Ap-BpKeCp) - (Ap-BpKeCp)TP

61 al

al I

0

T T T* 1/2 T T T'

102

T T T0 -A-a<fr C K, K,C<{.p l l p

1/2 T T T*' *• i f> v v

61 al

al I

2 T T T 1/2 TTT-aA-ct <fr C K. K.C* Bl-2acA ' -a* C K . 'K .C*p l l p p l l p

TTT 1 /2 T T T-A-o* XC K j K j C * OI-25A1' -* ^C^ jKjC*

T T T. C K. K.C«J)p l i p

T T T** C K, K,C<t>P l i p

TCTK.TK.C* aI-2;A1/2-4>p " "1 ^l^pj

T T T 1 / 2 T T ' T* *C K. K.C* -BH-2acA1/<£+o<|. LC K. K. C*p l l p p l l p

T T T 1 / 2 T T TVK/K.afr -OI+2CA ' +* ^/K.C*p l l p p l l p

2 T T T

Vc VT T T

C K. K,C4>P I I P

T T TLC K. K.C*p l i p

TCTK,TK1C«|»p l i p

1/2 T T T1/z+* ^V/K.C*p 1 1 p j

A-BI+2acA1/2-l-2o<fr

T T TC K. K,C*

P l i pT TC^

P I rp J

103

2aA A-BI+2acA1/2

-2oI+4cA1/2+2

T T4 V 0

P

o 4. TcTL p J

T"1

K T

. 1

C* 0p

0 C<f>p_

(6.132)

Again the second term in Eq. (6.132) is apparently positive

semidefinite. Hence in order to make Q positive definite, the first

term must be positive definite. Let

2aA

A-8l+2acA

1/2

1/2

referring to Eq. (6.70), the corresponding

(6.133)

and A here are

- 2oA

- - 2aI+4cA1/2

(6.134)

(6.135)

(6.136)

104

Substituting them into Eq. (6.79), we have

A - X2(A-0H-2ocA1/2)"1-X(A-BH-2acA1/2)~1(2aA-2aI+4cA1/2)

-1 1/71(2aA)(-2oH-4?A ' )1/7' (6.137)

In order that (A-8H-2OCA1' 2)-1 exists, we must have

|A-BH-2ocA1/z| * o

i.e., u> -8 + 2a£<o * 0 for i - 1, ..., N1 i p (6.138)

i.e., a8-o)

2Coi, for i - 1, ..., N (6.139)

Expanding Eq. (6.137), we have

A - * *

r i o iu ™B+2oC(i)

•v

o x i2u ~8+2a(uNp • Hj^

-

r i o i2 °

X

*2ou 2-2a+4;w 0

X>.

Xv

2

2ouHp2 ^

(6.140)

105

Thus, the characteristic equations are,

2 2 2 2- 2au> -2a+4eu 2au> (-2a+4cu).)-(w. -B+2acw )1 % f c 1 X * 1 X X X r tx - . x+ • . =o

2 2 2to -8+2aeu) u -8+2aC<j) u

for 1 - 1, .... Np (6.141)

i.e.,

for i - 1 Np (6.142)

Referring to Eqs. (6.111) and (6.112), the conditions for positive

A^'s are then,

L-to ) > 0, for 1-1, ..., Np (6.143)

e2-4aBCa>1-(2S-4a2-4a2C2)a)1

2 - totu^+u^ < 0,

for 1-1, ..., Np (6.144)

106

In summary, the second set of sufficient conditions for globally

asymptotic stability is given by

T is positive definite

T is positive semidefinite

6 > a2 (6.145)

B-OJ 2

" * 253- <6-146)

2C<o1'- ad-uj2) > 0 (6.147)

B2 - 4a8Ca>1 - (28-4o2-4o2c2)a)i

2 - 4ac<oi3+<o1

4 < 0 (6.148)

for i = 1 Np

As we compare the above two sets of sufficient conditions, it is

apparent that the second set gives us more freedom for selecting the

system parameters.

107

CHAPTER VII

PERFORMANCE ANALYSIS AND PRACTICAL CONSIDERATIONS

The purpose of this chapter is to investigate the dynamic

responses of the space stations under the severe disturbances as the

adaptive controller described above is applied without assuming the

complete knowledge of the system parameters. In addition, from the

point of view of practical implementation, means of reducing the

control efforts and their effects on the performance of the system

are studied.

Crew motion, reboost, and vehicle docking are the major

disturbance sources. They will also cause changes of mass

property. Crew motion will shift the center of mass, reboost

will result in gradual mass reduction, and vehicle docking will

spontaneously increase mass and inertia of the system. From the

point of view of time-varying effect and the level of disturbances,

space shuttle docking is by far the most significant source of

disturbance. Since most of the cases studied here are

related to shuttle docking, the docking characteristics and

devices are described first in the following sections.

The simulation programs are written In Advanced Continuous

Simulation Language (ACSL). The program and numerical results of the

simulation of adaptive control during shuttle docking for the 19-DOF

four-panel space station are listed in Appendices D and E,

respectively.

108

7.1 Shuttle Reaction Control Subsystem Residual Rates

The shuttle Reaction Control Subsystem (RCS) consists of two

major parts, the primary (PRCS) and the vernier (VRCS) subsystems.

There are a total of 44 thrusters, 38 of them are associated with the

PRCS, each has a nominal thrust level of 870 Ibs; and the other 6 are

associated with the VRCS with a thrust level of 24 Ibs each. Phase

plane control laws are employed to determine when actuations are

needed and jet select logics are used to determine what thrusters are

to turn on. The states of the system are estimated by a two-stage

state estimator with a dual cycle time of 80 ms and 160 ins.

PRCS is normally employed for AV change, attitude maneuvers, and

coarse attitude control; and the VRCS is for fine attitude control.

Since shuttle docking requires maneuvers, PRCS roust be used. Due to

the high thrust level of the PRCS, and with more than one jet used at

the same time to maintain attitude and approach rate while

maneuvering, large residual rates result. The best achievable

(minimum) residual rates, i.e., rates obtained under ideal

conditions, are AV « 0.05 ft/sec and Au = 0.20 deg/sec. However,

these minimum rates are difficult to realize under nominal

operational conditions and much higher rates are expected. These

expected rates are on the order of AV - 0.50 ft/sec and Au - 1.00

deg/sec. Figure 21 shows the shuttle control system block diagram

and residual rates.

For the purpose of performance analysis, the following

assumptions are made regarding the shuttle and space station docking:

109

o °5o: —'o oLL. r>-

oo O

-> 00§§fc r: ot SR 8 3

•O

e u "

5> 3

1aCD

1

o^ «jjt o

8 5o n

5 I

0)4JCO>>CO

•§v:

I

§•rt4JO

V.

<M

V

9bC

0.•

UJ

110

(1) Throughout the docking period, the space station attitude

control system will maintain operational on attitude hold

mode*

(2) Just prior to the contact, the shuttle RCS is set at

passive mode, i.e., no thrusters are allowed to fire.

(3) Once contact is made, latching is assumed, i.e., no

separation is allowed.

7.2 Design of Shuttle Docking Devices

Shuttle hard docking is a rather idealized condition. Under

this condition, the shuttle momentum is transferred to the space

station for a short period of time, At. At the end of At, the

station and the shuttle are latched together as one integrated body.

The initial momentum of the shuttle is determined by the shuttle

mass, ML » 7.81 x 103 slugs (2.52 x 105 Ibs) and inertia, I_ » 7.54 xO D

106 slug-ft2, and the shuttle residual rate AV and Au> (see Fig. 21).

The final velocities are, of course, determined by the combined system

mass and inertia.

The concept and design of a shuttle docking device which can

simulate both hard and soft docking is shown In Fig. 22. The space

station and shuttle are considered as two separate bodies coupled by

a set of angular and rectilinear springs and dampers. Let Mg and Ig

be the shuttle mass and inertia, and M2 and 12 the mass and inertia

of the station. The values of the spring constants and damping

factors can be computed using the following equations:

111

oW

CO

o

01o1-1

0)o60

o

(U

s

(j,p, t/>

S Jf1

LU

gCO

OQ.O > n\°"

$ CL*

bf-

03

•c

c.01U

ItMCvl

01I-s•HPL.

112

DA" 2cAMi + i ) . 0 - 2 )A A A\12 + lg/

n I M., M \

M M

DL

where K , D , to , £ are the spring constant, damping factor, naturalA A A A

frequency and damping ratio for the set of rotational spring and damper,

respectively. Similarly, VL , D , ID , £ are for the set of rectilinearLi Li Li Li

spring and damper. The detailed derivation of Eqs. (7.1) - (7.4) is

given in Appendix C.

With this design, shuttle hard docking can be simulated by using

extremely stiff springs and dampers while for soft docking, much

weaker springs and dampers are employed*

7.3 Performance of Adaptive Control on the Two-Panel Space Station

As stated in Chapter III, the 6-DOP two-panel space station is

used extensively to evaluate adaptive control problems and

performance because of the associated reasonable simulation

turnaround time and cost. These results provide valuable guidance to

the understanding of the performance of space station adaptive

control systems. .

113

7.3.1 Augmented Plant Modal Properties

Following the approach described in Section 6.4, the following inner-

loop control gains are chosen:

K_ 0

wz 45662 ft-lb/rad

K = 4464 Ib/ftLtZ.

This plant augmentation has caused changes of modal properties from

those shown in Eq. (3.27) of the unaugmented plant. The modal frequencies

and mode shape matrix for this augmented plant are,

V 0.01163 Hz

and

to 2 = 0.039 Hz

a) 3 - 0.0656 Hz

iop4 - 0.1684 Hz

u)p5 - 0.3892 Hz

(»>„<; - 0.3947 Hz

-.921E-1 .128

(7.5)

-.922E-1 .144E-1 .178 .178

.382E-3 -.704E-3 .705E-3 -.264E-3 -.544E-2 -.549E-2

.382E-9 .177E-3 .641E-8 -.158E-1 .185E-2 .226E-5

.332E-3 -.745E-8 -.465E-3 -.959E-9 .135E-6 -.117E-3

.921E-1 .128 .922E-1 .144E-1 .178 -.177

.382E-3 .704E-3 .705E-3 .264E-3 .546E-2 -.548E-2

(7.6)

The corresponding mode shapes are plotted in Fig. 23. As can be

seen, the four lower frequency modes have changed substantially, and

most importantly, the two evolved rigid body modes no longer have

zero frequencies.

114

o >; 5 °S o t "

S I 3"

._ LUC CO

LU p ~

8iS

o

o

IS

9)cCM

-8fi«/» LU

"• ^ °°

I S 1 3S o Lu *

al3'

vO

b0>ao

cd

S P S S*• 2 g

ill?

4J

CO^H&,t)

0!l-i

6C

115

With the nodal dampings assumed to be ? k • 0.5% for all modes,

the A_, B , and C matrices in Eqs. (5.6), (5.7) and (5.8) can be

readily determined.

7.3.2 The Selection of the Reference Model

To evaluate the performance of the adaptive controller, the

reference model is selected to have lower order, significantly

different model parameters, and high damping. It consists of 4 modes

(corresponding to the 4 low frequency modes of the plant) or 8 states

x,,,, 4 inputs um, and 4 outputs yn which are defined as follows,

mm

m

(7.7)

um

umlum2u'm3

(7.8)

m

" yml"ym2ym3

.ym4.

"a6mlQZm2O9m2

.°9m3

*!-!+ *«2

* %2

*6m3.

(7.9)

the corresponding system matrices A^, and C^ are

»

°4x4

-2,mK.

^

X4x4

(0

"-2? .tom4 m4

(7.10)

116

B -m

0

T,

C*m]

(7.11)

(7.12)

where B and C are shown in Eqs. (5.9) and (5.10), respectively. The

modal frequencies for the reference model are,

Um2

Um3

"mA

0.02 Hz

0.03 Hz

0.04 Hz

0.06 Hz

(7.13)

The modal dampings are t, , = 0.707 for all modes. The position to ratelUK.

measurement weighting factor a - 0.2 and the gain weighting matrices

T - T - diag (2.5 x 109, 2.5 x 109, 2.5 x 1011, 2.5 x 109, 1000,

1000, 1000, 1000, 1000, 1000, 1000, 1000, 400, 400, 400, 400) are

used.

7.3.3 Adaptive Regulator Control

7.3.3.1 Controller Performance with High Initial Transient

The purpose here is to evaluate the convergence property of the

adaptive controller for the attitude hold and vibration suppression

under very large Initial transient conditions. The initial conditions

for the plant are:

117

Zpl - - 3.699 ft Zpl = - 0.877 ft/sec

8 j o 0.860 deg 6 j = 0.336 deg/sec

0.035 ft/sec(7.14)

Zp2 - 0.345 ft Zp2 = 0.035 ft/sec

6p2 » 0.937 deg 9p2 - 0.037 deg/sec

Zp3 = 4.071 ft Zp3 - 1.045 ft/sec

8p3 = 0.723 deg 6p3 = 0.387 deg/sec

These conditions were taken 10 seconds after the shuttle docked to

the space station with the shuttle initial approaching rates of 0.2

deg/sec and 0.05 ft/sec. The corresponding values in the modal

coordinates are obtained through the following transformation,

(7.15)

(7.16)

The initial conditions for the reference model are

• 0.9 npi

• 0.9 v

for i-1, ...,4.

The simulation results for this case are shown in Figs. 24-29.

Figure 24 shows the outputs of the plant and the model. The model

outputs damp out quickly because of its high damping, and the plant

The remaining figures are at the end of this report.

118

outputs track them asymptotically and converge within 100 seconds

from the transient starts. The same behavior is observed in Figs. 25

and 26 for the plant and model physical states. In Fig. 25, Z^

follows Z2m better than Zj_ to Zjra or Zj- to Z m because a force

actuator is employed at the central bus; thus, at this position,

linear displacement can be controlled more effectively. Figure 27

indicates that the four lower frequency modes of the plant also

closely follow the corresponding modes of the model although mode 2

damps out at a slower pace. Mode 1, the rigid body rotational mode,

is apparently the dominant mode of the system. The two high

frequency modes shown in Fig. 28 also converge to zero within 100

seconds. The required adaptive control inputs, u ., are plotted in

Fig. 29. The demand on bus control torque is quite high, almost

3,000 ft-lb under these high initial transient conditions.

7.3.3.2 Controller Performance with High Initial Transient andMeasurement Noise

The measurement noises of the sensors are assumed to be zero-

mean gaussian white processes. The level of the noises are taken to

be two orders of magnitude lower than those of the peak outputs. Under

these assumptions, the measurement uncertainties for the

accelerometers are 0.012 inch and for the gyros are 20.63 sec. The

qualities for the sensors in existence today are much better than

these. For Instance, the accuracy of the gyro used on High Energy

Astronomy Observatory - 1 (HEAO-1) is 0.5 sec".

The plant and model outputs are shown in Fig. 30. Apparently,

the measurement noises have no significant effects on the high rate

119

of convergence and stability of the system although y 3 has some

noticeable fluctuations throughout the time history. Figure 31 shows

the adaptive control inputs. The bus control force u 2 fluctuates

highly during the first 25 seconds which is quite different from that

of the case without measurement noises. After the initial transient,

all the control Inputs are associated with sustaining or even

increasing fluctuations. Control energy is wasted by reacting to

noises after the steady state is reached. One way to solve this

problem is to employ a threshold at the actuator input. Control is

applied to the system only when the input exceeds the threshold

levels. Nevertheless, controller robustness is observed even with a

high degree of measurement noises applied to the system.

7.3.A Adaptive Control During Shuttle Docking

The following simulations are designed to test the controller

performance and stability using shuttle docking dynamics. To

simulate these cases, a docking disturbance term B u is added to the

right-hand side of Eq. (3.18), where

B d-• o

0100

.0

0'00100

•••m (7.17)

and Fj is the docking force, T^ is the docking torque applied to the

space station. F<j and T<j are determined by the following equations:

120

Pd - DL (^shuttle - Zp2> + KL ^shuttle ~ Zp2> (7.18)

Td " DA (^shuttle - V> + KA shuttle ' 8p2) (7-19)

and the equations of motion of the shuttle are characterized by

'shuttle • - Fd/Ms (7.20)

Shuttle = - Td/][s (7-21)

where Mg is the mass and Ig is the moment of inertia of the shuttle*

The shuttle residual rates (rates prior to docking) are:

shuttle <°> " °'05 ft/sec (7.22)

Shuttle (0) " °'2 de8/8ec (7.23)

7.3.4.1 Shuttle Hard Docking

The control objective here is to stabilize the space station so that

it returns to its prior docking condition after docking occurs. Thus

all of the initial conditions for the plant and the model are set to

zero. For regulator control, the input command u to the model is

zero. Since there are no model disturbances employed under the

"unscheduled event," the reference model stays at its quiescent state

throughout the simulation period. Thus the plant, while under the

influence of the docking disturbances, is commanded to follow the zero

output.

121

The following docking parameters are used in this case:

DL - 2.313 x 103 Ib/ft/sec

KL - 1.028 x 103 Ib/ft

_ (7.24)DA - 1.86 x 10' ft-lb/rad/sec

KA - 8.25 x 107 ft-lb/rad

the corresponding damping ratios and natural frequencies are

linear: £L - 0.707(7.25)

(D = 0.1 Hz

angular: £A - 0.707(7.26)

u>A - 1.0 Hz

This case is termed "simulated hard docking" because the springs

and dampers used are extremely stiff. The simulation results are

plotted in Figs. 32-39. Figure 32 shows that all of the plant

outputs converge to zero within 100 seconds after docking begins.

The results here are surprisingly good since, in addition to the high

docking disturbances and the parameter and truncation errors, we also

deal with a sudden increase of plant mass and inertia by more than

100Z. The same performance is observed for the plant and model

physical states in Figs. 33 and 34. In Fig. 35, all but mode 2 are

well damped. Mode 2 shows a very lightly damped oscillation,

however, since the amplitude of this mode is very small and it

122

presents no noticeable effects on any of the physical outputs. At

higher amplitude, the damping is also higher, the oscillation will be

decayed at a faster rate and it will pose no real problem to the

system. The two high frequency modes in Fig. 36 also show good

convergence rates. Figure 37 illustrates the time history of shuttle

angular position and rate. It is not surprising to note that they

appear almost exactly the same as the central bus angular position

and rate (Figs. 34(b) and (d)) because after the hard docking, the

shuttle and the station are supposed to combine and become one

body. Figure 38 indicates that the peak of the docking torque is

63,158 ft-lb.

To achieve the above performance, a peak torque as high as 7500

ft-lb has to be generated by the bus torque actuator (0 3) as shown

In Fig. 39. This is extremely high and presents an implementation

problem. Of course, hard docking will not be a realistic docking

option due to its high transient loads to the space station* Under

soft docking conditions, the torque should be much less.

7.3.4.2 Shuttle Soft Docking

The conditions for the shuttle soft docking simulation are the

same as those of shuttle hard docking except that much weaker springs

and dampers are employed here. Specifically, the following docking

Interface parameters are used:

123

DL = 693.8 Ib/ft/sec

KL - 92.49 Ib/ft

DA - 5.57 x 10A ft-lb/rad/sec

KA - 742 ft-lb/rad

the corresponding damping ratios and natural frequencies are

linear: £L = 0.707(7.28)

I). B- »» «•> "

Lt

angular: CA = 0.707(7.29)

0. m- n nnt »i_

Because of the very low system natural frequencies yielded under

soft docking, it will take a much longer time for the space station

to reach its quiescent state. Hence, the simulation time of 400

seconds is used in this case. The simulation results are shown in

Figs. 40-49. Referring to Fig. 40, all plant outputs except y 2

converge slower than those of the hard docking case, especially Vp3- In

Figs. 41 and 42, Zpl, Zp3 and 0p2 also show a significantly slower

convergence rate. The same behavior is observed for modes 1, 2, 3

and 6 in Figs. 43 and 44. In contrast to the hard docking case as

expected, the shuttle angular position and rate as shown in Fig. 45

have experienced high excursions. However, with the adaptive control

system on the space station, the angular position and rate of the central

bus have deviated very little from their nominal values (Figs. 42 (b) and

(d)). Figure 46 indicates that the peak of the docking torque is 190 ft-lb,

124

substantially lower than the 63,158 ft-lb of the hard docking — a

factor of 332.

What makes the soft docking a desirable* docking option is, in

addition to the reduced shock load, that the demand of control

efforts drops drastically. For instance, the peak of u 3 drops to 300

ft-lb from 7,500 ft-lb of hard docking (Fig. 47). The comparison of

relative panel tip displacement and acceleration by employing

adaptive control vs. low gain bus control are shown in Figs. 48 and

49, respectively. The dynamic load and panel deflection are markedly

reduced by using adaptive control. For example, with the adaptive

control, tne peak panel deflection drops to 0.41 ft. from 6.6 ft.

7.3.4.3 Shuttle Hard Docking with Actuator Saturation

One way to relieve the high actuation demand on the control

hardware is to employ actuator saturation through gain limiting. - To

study the effect of actuator saturation, shuttle hard docking is

again employed here (for soft docking will take too long to

simulate). The following limits for the control inputs are used:

max I u , - 50 ft-lbPi

max I u j - 12 Ibs(7.30)

.b

max I u , I - 50 ft-lb

max I u , I - 1000 ft-lbP3

125

Figures 50-54 indicate that the system performance has degraded

compared with those without saturation (Figs. 32-36), as expected.

The peaks of the responses are higher and it takes longer time

periods for them to converge. It is also seen that the responses are

more jittering due to the bang-bang effect. Larger angular excursion

of the shuttle is also observed in Fig. 55. The docking force and

torque remain unchanged (Fig. 56). Figure 57 shows that the control

inputs Upi and u_^ have not yet totally stayed within their linear

operation region at the end of 150 sec.

As the gain limit becomes more severe (one half the values shown

in Eq. (7.30)), the system performance degrades further as indicated in

Fig. 58. Though it is believed that the outputs will still converge,

it will take a much longer time than the above cases. Moreover, only

u 2 stayed within the linear operation during the simulation period

(Fig. 59).

Regardless of the severe actuation saturations applied, the

results show no sign of threatening the system stability.

7.3.4.4 Shuttle Hard Docking with Model Switching and DisturbanceModeling

Intuitively it is true that the control effort can be reduced if

after the shuttle docking contact is made with the space station, one

uses a new reference model In which the shuttle mass and inertia are

Incorporated and a simulated disturbance similar to the docking

disturbance is Injected. The plant outputs will now follow the new

model transient instead of the zero model outputs. The reason for

the control inputs to be smaller is because of the expected smaller output

126

errors. This has motivated us to study the effect of model switching

and disturbance modeling.

Since the plant is assumed to be poorly known, after

incorporating the shuttle mass properties, the mode shapes and modal

frequencies of the A modes of the model are deliberately selected

with an error up to 20%. The disturbance force and torque inputs to

the reference model are taken to be 2.25 sec-pulse of 173.78 Ibs and

0.225 sec-pulse of 116953 ft-lb amplitude, respectively.

The simulation results are shown in Figs. 60-65. The plant

outputs follow the reference model outputs reasonably well. By

comparing Figs. 60-6A with Figs. 32-36, it is found that the

convergence rates are about the same for the two cases. As far as

the peak control inputs are concerned, u 3 drops significantly from

7500 ft-lb to 2880 ft-lb, and up2 drops from 120 Ibs to 75 Ibs as

shown in Fig. 65. However, upl and up rise from 230 ft-lb to about

800 ft-lb. These results indicate that the concept of model

switching is more involved than one may think. More study in the

area of peak control effort reduction will be required. In general,

one should not expect to reduce all the control efforts, but only the

critical ones.

7.4 Performance of Adaptive Control on the Four-Panel Space Station

The purpose of this section is to demonstrate the performance of

adaptive control on the much more complex 19-DOF four-panel space

station model.

127

7.4.1 Augmented Plant Modal Properties

Plant augmentation has altered the modal properties from those

of the original plant. The new modal frequencies and mode shapes are

shown in Fig. 66. The three evolved rigid body modes no longer have

zero frequencies, and the evolved modes 1 and 2 become pure rotation

about the X and Y axes, respectively. Note that the frequencies .of the

modes in the first bending group are also pushed higher while those

of the modes in the. second bending group remain unchanged due to the

fact that the inner-loop controller is a low-bandwidth system.

With the modal dampings assumed to be Cp^ - 0.5% for all modes,

the Ap, Bp and Cp matrices in Eqs. (5.16), (5.17) and (5.18) can be

readily determined.

7.4.2 The Selection of the Reference Model

Again, to evaluate the performance of the adaptive controller on

the four-panel space station, the reference model is selected to be a

lower order system with high damping and significantly different

parameters from those of the plant. It consists of 9 modes

(corresponding to the rigid body modes and the modes in the first

bending group of the plant) or 18 states *„,, 11 inputs u,,, and 11

outputs ym which are defined as follows

x (7-31)nm

128

u.ra

"ml

Um2

"ra3

Utn4

Um5

Ura6

Ura7

An8

"m9

"mlO

"rail

(7.32)

a6ml

aera3

azm2

°*m2

azm4

a8tn4

Zm6

a9m5

a8m7

m2

m4

*m6

(7.33)

129

The corresponding system matrices Am, Bm and Cm are,

m

°9x9

""m9

, .ml ml (7.34)

Bm

m

C - I act C<J>m l m m l

(7.35)

(7.36)

where B and C are shown in Eqs. (5.19) and (5.20), respectively. To

show the breadth of the controller performance, the modal frequencies

are selected to have a 40% error and mode shapes a 30% error. The

high modal damping ratios C^ • 0.707 for all modes and position to

rate measurement weighting factor a = 0.2 are employed.

7.4.3 Adaptive Regulator Control with High Initial Transient

The purpose here is to evaluate the convergence property of the

adaptive controller for the attitude hold and vibration suppression

under very large initial transient conditions.

130

The initial conditions for the plant are:

Zpl - - 1.649 ft Zpl - 0.283 ft/sec

9pl o 0.845 deg 6pl - - 0.179 deg/sec

Zp3 m 1.617 ft Zp3 - - 0.284 ft/sec

ep3 * 0.830 deg 83 = - 0.180 deg/sec

Zp2 - - 0.004 ft Zp2 - 0.002 ft/sec•

<frp2 " ~ 0.004 deg $ 2 " 0.017 deg/sec

Zp4 - - 0.001 ft Z 4 = 0.0002 ft/sec(7.37)

6p4 B 0.722 deg 6p4 - - 0.029 deg/sec

<frp4 = 0.012 deg £p4 = - 0.035 deg/sec

Zp6 - 0.004 ft Zp6 - - 0.001 ft/sec

*p6 " ~ O'003 de8 *p6 " 0.017 deg/sec

Zp5 -- 1.618 ft Zp5 - 0.283 ft/sec

6p5 » 0.830 deg 6p5 - - 0.180 deg/sec

Zp7 - 1.649 ft Zp7 » - 0.284 ft/sec

6p7 = 0.846 deg 6p7 - - 0.179 deg/sec

These dynamical conditions were taken 10 seconds after the shuttle

docked to the space station with the following Initial approaching

rates:

^shuttle - 0.05 ft/sec

Shuttle - °-2 deg/sec (7.38)

^shuttle " °'2 deg/sec

131

The corresponding initial values in the modal coordinates are

obtained through the following transformation,

_ _ A—I rjip - 4>P zp(7.39)

_ , 1 nn =s m I*p 9p P

The initial conditions for the reference model are,

"mi " °'8 V(7.40)

°*8 ipi

for i = 1, ..., 9.

The gain weighting matrices T = T •= diag (2.5 x 108, 2.5 x 108,

2.5 x 106, 2.5 x 106, 2.5 x 106, 2.5 x 109, 2.5 x 108, 2.5 x 106,

2.5 x 106, 2,5 x 108, 2.5 x 108, 100, 100, 100, 100, 100, 100, 100,

100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 400, 400, 400,

400, 400, 400, 400, 400, 400, 400, 400) are used.

The adaptive system simulation for the four-panel configuration

is Implemented in a fashion similar to that for the two-panel

configuration except that the dimension and complexity are much

greater and the execution time and cost are high. Because of this,

relatively fewer cases have been studied here. However, the results

are very encouraging as shown in Figs. 67-73. The simulation period

is 75 seconds. Figure 67 indicates that the plant outputs closely

track the model outputs; and with the exception of yp4, ypy and

132

all outputs converge within 75 seconds. Figures 68 and 69 also show

excellent physical state responses. The three bending angles $2» $4»• . .

*6 and their rates $2. "!>4» 4>6 converge slower than other states and

rates. The modal responses are shown in Figs. 70-72. All except

mode 5 show relatively high damping rates. Mode 2, the rigid Y-.

rotational mode, strongly dominates the system dynamics and has a

very high rate of damping. This mode is excited due to the fact that

the simulation assumes a huge shuttle angular momentum about the

pitch axis. The demand for control efforts shown in Fig. 73 is

substantially lower than that required for the two-panel

configuration. The peak of control torque is 400 ft-lb at the

central bus and 350 ft-lb at the panel tips as compared with 3,000

ft-lb and 1,000 ft-lb, respectively, for the two-panel configuration.

This is because the four-panel configuration is much more stiff and

massive.

7.4.4 Adaptive Control During Shuttle Hard Docking

Unlike the hard docking case for the two-panel configuration, it

is assumed-here that the residual angular momenta of the shuttle are,

about its roll and pitch axes. The docking disturbance term B u is

then defined as

133

~0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0~

0

0

0

0

0

0

0

1

0

0

0

0

0

0_

l~Fd~ud = Td

l_pd_(7.41)

where Fj is the docking force, T<j is the docking torque about the

pitch axis (Y-axis), and P<j is the docking torque about the roll axis

(X-axis). Again the shuttle is assumed to dock with the space station

at the central bus (the core). Fd, Td and Pj are determined by the

following equations:

Fd " DF (zshuttle ~

Td - DT (Oghuttle ~

Pd - Dp (4>8nuttle ~

KF <zshuttle

KT <8shuttle

Kp (*shuttle

(7.42)

(7.43)

(7.44)

134

and the equations of motion of the shuttle are characterized by

'"'shuttle '- VMs (7-45)

'"shuttle - - Vie (7.46)

Shuttle " - V1* (7-47)

where Mg = 7820 slugs is the mass; Ie - 7.54 x 106 slug-ft2 is the

ft 2moment of Inertia about the pitch axis; and IA ° 1*0 x 10° slug-ft

is the moment of inertia about the roll axis of the shuttle.

The shuttle residual rates (rates prior to docking) are:

'shuttle (°> " °-05 ft/sec (7.48)

^shuttle (°> - °-2 deg/sec (7.49)

^shuttle (°> = °'2 deg/sec (7.50)

Again all of the initial conditions for the plant and the model

are set to zero, and since there are no reference model disturbances,

the reference model stays at its quiescent state throughout the1

simulation period. Thus the plant is commanded to follow the zero

output at the presence of docking disturbances.

The docking parameters used and the corresponding damping ratios

and natural frequencies are listed as follows:

135

linear: Dp = 3.06 x 103 Ib/ft/sec

KF = 1.36 x 103 Ib/ft

(7.51)- 0.707

= 0.1 Hz

angular: DT - 1.46 x 107 ft-lb/rad/sec

(pitch) KT - 6.48 x 107 ft-lb/rad(7.52)

CT - 0.707

<OT = 1.0 Hz

angular:. Dp - 7.08 x 106 ft-lb/rad/sec

(roll) Kp - 3.15 x 107 ft-lb/rad

(7.53)CP - 0.707

o)p - 1.0 Hz

The gain weighting matrices are T - T - diag (2.5 x 106, 2.5 x 106,

2.5 x 106, 2.5 x 106, 2.5 x 106, 2.5 x 108, 2.5 x 108, 2.5 x 106,

2.5 x 106, 2.5 x 106, 2.5 x 106, 1000, 1000, 1000, 1000, 1000, 1000,

1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000,

1000, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400).

The simulation results are shown in Figs. 74-82.

Figure 74 shows that all of the plant outputs converge to

equilibrium state within 300 seconds after docking begins.

The same performance is observed for the plant states and their

rates in Figs. 75 and 76. In Figs. 77-79, all but mode 5 are well damped.

However, the amplitude of mode 5 is very small and it is believed

136

that it will converge after some longer period of time. Mode 2

strongly dominates the system dynamics due to the huge shuttle

angular momentum applied about the pitch axis. Due to the higher

structural stiffness, the required control efforts (Fig. 80) drop

drastically compared with those in the hard docking case for the two-

panel configuration while the docking force and torque maintain

unchanged (see Figs. 38 and 82). The linear and angular positions of

the shuttle shown in Fig. 81 are practically the same as those of the

station central hus (Figs. 75(d), (j) and (n)), as expected.

137

CHAPTER VIII

CONCLUSIONS

The feature of a large space deployable structure Is its complex

flexible dynamics. Flexible dynamics are characterized by extremely

high system dimensions and parameter uncertainties. Model truncation

plays an important role in spacecraft control due to the limited

computer capability and related hardware available today or in the

near future. Control systems that can adequately deal with truncated

dynamics and model parameter errors are necessary for large space

structural systems. Space stations, among all large space structural

systems, have stringent operational requirements and present a unique

challenge for control engineers and researchers. For space

stations, in addition to the parameter uncertainties and

truncation errors, the control system has also to deal with

the growth, time-varying dynamics, and high-intensity environmental

disturbances. Adaptive control provides a potential solution to

these problems. A direct model reference adaptive control

algorithm for the control of space stations is investigated.

This algorithm along with the proposed inner-loop plant

augmentation technique (for the unstable rigid body dynamics)

form a potentially robust control system for space stations. Two

sufficient conditions have been derived to assure the globally

asymptotic stability. Extensive control simulations and analyses

have been conducted for two space station configurations with

emphasis on generic properties and practical implementation issues.

138

The adaptive system developed here has exhibited high

performance and robustness. . However, in common with all other

adaptive control algorithms, this one is also nonlinear, complex, and

high gain. The demand on control effort, especially during stringent

high disturbance operations, is so high that it has exceeded the

capability of the realistic hardware. To cope with this problem, a

number of solutions have been proposed and investigated. These

solutions are gain limiting, reference model switching, disturbance

modeling, and disturbance load reduction (e.g., soft space shuttle

docking). With these methods integrated into the controller, the

required hardware capability has been drastically reduced yet

stability and robust performance of the system are still observed.

Further research in this area is required and fruitful results are

expected.

Specific conclusions are summarized as follows:

(1) The study results show promising potential applica-

tion of adaptive control techniques to space

stations.

(2) The proposed inner-loop plant augmentation method as

part of the adaptive system has improved the system

convergence significantly and stabilized the rigid

body modes.

(3) High rates of convergence and robustness have been

observed throughout the simulated cases.

139

Specifically,

(i) The system is robust a) in the presence of unmodeled

dynamics — model truncation, b) with poorly known

plant dynamics, and c) in the event of instant change

of system mass property by more than 100%.

(ii) It shows a good convergence property even under severe

dynamic conditions including a) high initial elastic

deformation and initial attitude errors, b) strong

shuttle docking disturbances and dynamic interactions.

(4) Shuttle hard docking is an example of the harsh space

station operational environment. The high gain requirement

associated with the adaptive controller will far exceed

hardware limitations. Two methods of reducing the control

demand have been investigated. Gain limitation can be

applied to set a practical limit to the control effort and

maintain stability of the system at the expense of higher

transient and longer settling time. Model switching

together with disturbance modeling provides a means for

output error reduction and hence, the reduced control

demand. However, since our knowledge about the plant is

incomplete, tuning through simulation is required to

achieve good results.

(5) It is believed that a combination of load reduction (e.g.,

shuttle soft docking), gain limiting, model switching, and

disturbance modeling will result in satisfactory system

performance with realistic hardware implementation.

140

ORIGINAL PAGE 5SQF. POOR QUALSTY

CM

01'0"idA

B

II"

T3(0(-1

CM

B

IICM

• E

00 I

"ooT

tol-c

en coo. e

8 8

it n

00 I

•T"

osoIMA

Ot'O- "5V

.•»..co

• CD

C. ECD CD

B B

II II

sr src. E

•oR

CNiC

CO

CM• CD

'+

B

II

CO

as'o-

00

BJ'"l

Cc

«c{-I5c

o

(U

rep-o

i-l 0?C *J

1J p

C 4->

8 <§cn

be£

an

1-1bt

1

cre

141

«MCME

CMaK

CM

"Jbz"»*

» -

a -'a tii tan orbdZZ

c

3 tttt C

1-1 V,U- C§ I

pu1

rcc

o-oi 00%

toi

0 TO

(0

Ml- fO r

o •-'k> CE4J Cc no wC H

oa

Ie;

•o

CM

<u9

<D

O

• II 031

«oo.dC2

142

ORIGINAL P&QS ISOF POOR QUALITY

be01•c

ts

00 r-

*>'<• *ro

o01(A

a>•c

"ifcloro-

01 b-

c/tccc

C

t>c

co

0>

reo-Io

o ^«•- re

c—I Co -•W JJ*j rec uc o

•si

OB'I

•01

M'f-

8*

bCrn

007 •01 «o r 00 I-

bC01•o

cnD.

00 I

•oi

I

a•a£"C

ec

> e1-1 re4J i-Ha a,

I !

«M

0>

5c•H(L

143

oo •§-

01_ T:

8'or

O'OI

o.X

OJ

r 1

c

c

0)c(Cao

a-at at-"VdX

KOV.

ccr.

«- 1«* r

031 031

» 7.X^

H'I

*?

eoi- att-

mt- «-oi-

4J ItC -cO Oc r

$

.*

c.n

01i-be

•ctC

cc

144

vC

0.'

O

cc

C

CJ

cr.0)

re Ki cc e.

0 <-~U-l (t

•c

1 *

ot;

c(C

1

4-1 Ure c1-1 a>be 5-<I> Q)

Of Up-

1-1 bC

a xn•c i

oc

4)t-lsbe

I'D Bfl

145

R^

K—'

B*-« "

e"b

9

JC

14-114-

^-^

0)

5-cH

i— iCWi4-1Co

t_*(0

c

i—icIJ4-1Cs

\^r

C.•rJt-

iH01c(C0-

4-1£.be•H0!

^-\Xi™H1

4-1U_

^^>

0>3a-u

5

o4J<e

t>c

cc

01

(00-

o

t-o

i-H O)C 4JU 34J ac cO M

^

n

8%^ •

«rb

9b

1C'b

'Bo •

4-'CccC. /-s

c ^B- r-(

i-< 4J0) «-C v--«P- 0)

3J 1 BV** W^

U-> t->01 C*5 H

*•

^^

C.3

<I"S

(0

i— i****

ai04^

Cft.

i— 1Cb4-1

g

C

2PC

• •es'a=

o4V

bCV

0)

a(0

a>

I

O>->4-1C

0)

C-03

I

146

cc

CMD.

«M6

oooWA

+8* CM-.' C-

CMC.

N: ..oiiCM.a

wo oo 'b

Ot'O-

orb

eiiCME

9 -0- to

8

reu

• O • CD

CD CD

(0

be

Cc

a)cc_

Ic

a/a

z

ev

3tr.(0

J!

•01 as't o-'o . at a-' TMA

i • <]^

8 8

cS

C.

0)O•<->CO O-i rbe -c0) C

tf ccOJ 4-1

•H «4J i-la a.C0

5 !

0)

be

147

ORIGINAL PA©E SSPOOR QUAUTY

•cIt

_~8s • • o

•- {*•» n« Q. E'O . CD CD

e eii ii

flji-

"oPi

cO

nrij

0)c0-

§

u. c

T3Pre

tc•HIt

C4J

«

c -co cp re<L 4J

•H re& are5 !

01p5c

PRECEDING PAGE BLANK NOT FSUlip

149

co

CM

Oo-(0 c

o

0.c«&o

«0 I,*?

•g•ct-l

tcoKCcCA

dOZZ

71 o

*ot oat-

f.

3j:w:

C•rlP

C

c

ce5

co

09

CD

H

n

•H «

•t"III

001 001

150

ttO

CD

cc

3be

OCJ

0)c<ca-o

bC

(JC

0)

co

a;4-1

a

o»-o

« 0

CC

tc reC 4J•H O

ou4-1

O

0)

or

<B

Vp

bC

151

co

Co

a;cfC0-

I

o

ttGCO

O

0)(D

•C

c

u to •*•

3

V.

3

O

•H (C4J fHc. o-n

•5 !inen

be

152

o

be

c

•co

n't

o.Io

bC•c

u

c•cl-l5a;

09a>to§aceQJ

C*

1

c/:

ff

oM

O

id

vP3bC

(CT3O

CO

Ue3er0)

be

153

o

bl01•o

.ctc

i O

t-.3bC

IQ)

I

c

t-O

.o

£

bC0)

ce<D

SC

0)

jj

V.

co0>

•ocCO

§be -H

r IW 0-

o

V

<e*3

bC1-1fe.

154

o

JC.«HI

«eu3bC

oCJ

0)0)

«0-

c

be

u&

a!

0)O

bC

I

3

V,

c

§81

•cCC

a;u

bec

uai

>OM4001

be

155

o

co''

o>o

£B*

C07

Ou(0

ec

fNC.

Cc

- c.•HE-

8* ^-• oi

C(C

-- 0-

be

01

H

3 >

<c

5:

c

<U

CM

I

O

oU-i

?&•ct-l<0

5 24J

CB C

8%

C-•H

c- 2l-b

« 2

at3cr

•5 «

0>8 S•- v

(-1c

8« H

•-* tHOt-i

*- £'* O

a:

ff

0)

bC

a4-1

a

Ot*

o a>o >•H

0) 4J

> §•'•H 034-1 "QC. <«c

156

ORIGINAL PAGE S3OF POOR QUAUTY

CM CMe a

cO

iJttp

cu

•*

S>

E-5b

3

4J

> e*H CO

157

tea*9

u0)

CMC.

C • N

"To

aN:

c

6C•HU-iCoc

a,ctcG.

C

o

&oV.

be

oI*u

j0)

aa

•»

0)

bC

KC

c.IT

cx

<U4-1CO4Jw:

re

C

tcc

t-i E-

2 -

•cC(C

et-o BO. «•«-

158

ORIGINAL PAGE S3OF POOR QUALITY

a;•c

tMe.

O0)

be

•*• •£. {VI

s .«

t .tviC.

MOZl

MV1 «-.. at o- ,*? dOZi'

aii-

097-

«9'0

0)•c

1C

et-e M-O

•S 'sc01

rtro

<D

§<t

bC

c

0)crea.o

oc

ow:

I

ce

oav,

a;4->it4J

fl) V.

(0

c

C 4J•H C

'

01•oc

•cctc

4) 4J

5 SCD

B

011dd

159

ORIGINAL PAGE SSOf POOR QUALITY

1

CMO. ^=

K

ei-o

V 01•c

ot-e tit- OfO- rio-

01•c

o

(0

5t

cc

acID0-

c

uǤOV.

0)

V.0!

0) Cr-1 C4J C.4-1 09s aX OiCO

s ITJ.. . .*

01

£ 1coU n

c•H tC4J f-lC. D-CO

< I

PI

01

be

160

0)•cc

W0 Oil •''*" 8*'°"

0)•c

cc

tol-lbC

o

crea.

I

bC

Ow.

3

c/:

IN£

I>

•H4-1aca<

sf

0)3be

0)0)tn

Oc.tc01a:

C

».

u

^^1-tsc

161

o

(Ck-3

U0)ce O

4)•c

£1C

a;c1Ca.

I

wo a; ~a

c•H

*uǤ

oV.

0)4-1C6

•C**s

01

9

CC

3

w:

P

O

•c

ct

o

COoa.

tc<

0) 4->> 4J•^ 34J fc. cr.cc

a>P

oo t - on -

162

c

I4-1

14-1CO

V3

no-o

uc1=

uo

•H

uo

o

01

ut-io

oc

uǤ

CO

oc

c

C0

te0)yi*O

btC

•H U

a ca

sbt

163

a;o

p% C

-T i:C *

05

(C

aw-

CV.iJCct;a•HH

a1

creo-

o

c.3

I

£

I

CD- 0 - 0 1

! « &

&B 9•*

5 £i

•*-•

0>

te

! 9&

cc

e

o>c<00-

o

ttc

oo

OW

0)t-J4J4J9

w:

P

c

501

c.c

t-to

o

a;

c«c

fr <tC8•C I< I

be

164

Cocj

(C

c•H(Cc

CMa

CMa

CO

oaa

be4J

Ia1

CJ

f-l

"In

C-ce

f-4C

c.H

O

I-4J

g

a<e

'III

CM

at- »-o

Irt

2

5

!

CMO.

N

COO.

N

•H4JCOh«a

oc•a-cuM

bC

C(Ca.

a)f-4

165

ICO

eec•H

«

I

uVV.

o01CO

CC(UwoD-09

•HA!U

Cc

top01

0)u

a•HH

0)>

CL(0

U0)<eu0)CO

CM

4J 0)

J Scr. e.4) O> >

a)a

be

166

O>CCOa.i

<•»• o

O

(Cw;i-o4Jtc34JU

bo

00 t

UA

u eno «C =•O 4Jp =CB C

.e -oe« cCC

beC 4J•H e

ovt.4JCC

I-

4-1

OC_J

814J tH0. <4-t

CO C

cin

2S•rtb-

167

CNc.

• N

u<uce

8* ^.7 4J

<N

JP

CMc.

CUcCCCL

ic

ccV.

CC3

<

X

btC

ycO

cc.K

o;ucc4Jv.

CCCO

ac«

e-oi

a-01

o-fli

00?

C.M

ouiJ

o

0)>

«e5

O

•cce

CO

Cc

CO

tic•H

C

be•Hb.

168

0!

COOuIo

000 WO-HZ1

be<U•c

o;

CD

CMa

CD

ooo

00 I CB'I-

be

e" «>b

Vic

c

tfi

ce4Jy

K<u

9cn

oaK

t-i ce^ co oO -JC *J

ce•c wI- C

or

1

i-l CU CO

«i fi

2 '4J Ce o9 *"*

CO

•H beC^ tt»4

CO C

dIJ oo-o eo-i-dCi

be

169

-a-o.

X(

8%

fl

"id. OJ'O- wi-

00 »•

oo V

<rc«aio

c

<tw:

c4-1ce

be

a,'CB

§c.Ka<

•c T;t- oCTJ SL

0)

«:be

a1

1"C

4JCCD

S '4J CC O

0) £

•H bC

01w.be

«f->(>.

170

Oic«

OuIo

co

V.

(09*J V.(J u< aJ= c4J C.

bC

II-0- 0»'0r

w

C

ore 01 o-

0)

1

TO

0)

4J9

(A

be

cCD

CJ

01

cro>

t- bC

<? £

2 !

? §,5 S«O> I-> 9•H bC4-1 <H

« e

ino>b

be

171

OJ

<cc.o

tt'o oi'0 oo -o ore

yVV,

tc<v

w

«o->

W

•OSM'

VI-<4J

. JJS

05

/•seg

co

(0tr.-

O4J

2uu

•e

oa(0

0)f-lJ_l

Ibe•HId

*J Cc oa r*ft) lj

> 3

C-CD

cc«£

*

oca Of-0. 00 I-§

•n

bC•Hpu

172

0)cB)O.

O

o

3cr

CO

(-!

o

8'0

bO

uoc

bC

U

80)3cr

'«ttT-

B?

0)U

(0

0)

4J

cr.beCI-1

Co

«•p<\cin

bC

•cc

U

£

o

tc

ec

173

001 000 001

a/crea-

io

tev.

cJJ

re

o

t:c

tdH

00 :

c.•c cl-> Mreff -sa; i-

r-l J-l4J C

ti 9

co at

C.(C

4J Cc oo **C Wrew t*5 &

(0•c<

Co

o>14

be

174

ORIGINAL PAGE ISPOOR QUALITY

co

«eI*3

tCc/:

O

uo0)to

I-O

2ua

3c.

uT5C

•cc

MCOX

0)

?

oIrf

o

a<o•o

ocm

c(C

c

U-ic

0)

(0CL,

i

bC

175

V• a•- o

cl-lco

(0

sm

o

0)CCCfl-

O'Qi 0*8 a or

f- jo

ee s^0-

VI j M

£ o-bc P

IN -°

Oft- 00»! ?

5

a1

9-a-wo

<s

. _wn

2 £c r

c c

«

c.(C

9 C£ CCO -rt

c »-*- =Vi KS -HO u-

CO

CO

U-l

£

0!C

1

176

c1-1•Ho>

COl-i

tN

CN

8II

u00'I

u

I94-109i-lO

ff•H

U

a>•O

Uo

cc

aCB

ca4J

g.

01•O5 I•O

(0

(jCOX

0)1-14J1J

f.inb£C•HVi

s

cCOiHeu

1co

•»i4nJ

CO

3

•H<4-l

I

01

COfr,

ih

3 o^C ^4

01

bt

177

btc

(M

CM

•N

CM

N

00 f.

"flpl.

oo •«.*? wzz00'"

ufljw

CMC.

2 9.

•»?

oot~

"Sri-

T3O

a>uc

•c«c

a;•cr

be

aiCAC

c-te

i- c/;UU i—•H (t» CC/i C

encK

0;•CO

CM Ml

•oN

ott-

sV

1C

cre

H tscS -Ho «*.

; Oo c;

c o>o cc «

> i5 *I £

>C

V

be

178

ORIGINAL PAGE ISOF POOR QUALITY be

m•oo

be

ca i-

CO'l-

or 0-

O<u

CME

• ^•d O-• CD

.2 £

m

bCcu

o

UCTO

t-;

If.1-1O

•cCO

O

5c/:

•cO

bC

O

&-E

0)

sw;be

ci-HO

CO

C.CO

u:l«:CC.K

S

re4-1tr.

ccc

ces:

0.'•co

•cc

cre

CO

bC1-<<4-i

c

I

P

I-o

UJ

2bC

179

01•co

00 I

81

O2:o

D.X

001

oo i

0)oc

U

•X•*-<

c

tc•I—

f.o4-1•rJ

3cr

C

4J

C'tccc.ff.a

rec

:* 1-10,

be "cc o

vC

dl

£•Hfe

•t

ax

•J'l

-co

I- •

ri-

I

"lao-ai- ooj-

• •I-

(-1

3:

01

c1-1w

c

O

01

(0

c(0

eo

co

0)

(0CuIo

180

be

00 I

0)

I

Oi

I<uucCO

(0

Cre

I- 001-

0)•c

btc

soccaso

•co

cCC

oe

V

i

oa•ctice

.3

CO

tc

I

d-£

§

P ^C t.r-l Oo u

TOd.

U 2(-CC

14-1

0)l-l

181

t:c

<D

£f I

CMC.

Ic.f'H

I-cH

8 -CD V-'

ZdP

Q)•CO

01CJCref!l-l34Jcei->C

•cCO

bei-jo

a;•co

occ

a

ct-l4-1

J

01>

00 :

£4J

O

a x-s•H rf)H

"" 0) *4-<c ^

.f * s° 4J O-

9 "

0)« s

CJj4JcO

e r,«* a

i- c.CO CO3: -c

1-1 I4J I4J

J §CA 1-1

4J

C U•H ri- beC £

O

Cdn

I

«-c

inso01

be

182

N

~

O "> 3

01

c

cO

(Cw

EC

c

a/reo-i

! oo

Ol-cbet-i•c0)ec

•c0)

w

cu-

er.

t-41aot-c0-

CO•c

<c

•c0)u

0)

i

0»M

tic•Hfr.

183

c.

uc

•c c

1 «* i•cooa'cr.•o<v

1-1c

vCvC

3

184

I?

C\J

/ tjj

/ I/ er >t

O2;

NDCi— iI-H

&

0II

3~

KOi•cOIT

>,•cO(C

•Hbt•K•c0)

t-J0>b:

£c•H^J

§

vCvC

flj(j9bC

•<-!b.

O ••«3

185

CMQ.

CM

oai

aa-a «•«-«•«• OU

ZdA

co

CClJ3

C

0)C(C&.t-cb.

^ CCO iJ1-1 -4-1 C.C Uo =O C

CM

8% • N . N!

•- CM* D.* N

O

" a

CM

N

8

n

e§-f-

ai

a«c

vC

01

bC

a-cC

SCtt

tit

186

3C

u

<re.

euin&

>\

.oft-

•c -o<c <e

DC

8».-e- .-e-•d*

4 +

eti

187

oat

0)

£

§a

\cai

Etc».

188

CMa

N

vrJF

Cc

c

Vcd-I

ou.

•TO 01V

av.cctfica

V.

teu

aN)

"III "•'•••d.l

I

oCOf-i

bea>

«

•co

CD

'c. e-ce•c i

oc\cVi->be

•1

189

ocOJ

"111WO-

"°d9Z "'dli

a> t

"art

•co;

o

in

00 t

inE

ocsC

01P3

be

190

ORIGINAL PADS 53Cf. POOR QUAUTV

oso

t>0V

"O

•OOi

§

•ibC

OB'I Oit 'tsi

s0.'

be•H(fc

bea>

^ «>

ma

o

"'•

191

a/•c

CM

,- -e-

tsiC.

-6-

dZd*"'

alb'

bt

CO t.

00'»•

•cOi

OCJ

ocvC

OC01•o

a•e-

.1?

192

n't

ooi

CNJ

fIN:c.

8

o•<uK

dozz

00 t-

00 t-

HdtZ.00 T-

UOJ(ft

8%

«c

Jiii

Kd

U0)03

cn.sf

aca-

oo -a- «•••"Jiu

oo r

"Jri

Co

c[*.

c(-14JCo

o4J

*be

0)>

e.te

a-vC

ac,w

cc.

a;4-CC

<co

a.

-ccw

cCO

193

8 «ecu

•a *" **~s

HG9Z

«0 . 00 t-1.01- dQ9Z

00 t.

(n't-u

a»b'

o01tc

0•c

.CD

tffl-

•ca,

ot;

B-8 OyO- Oii-

81d'

O.• N:

B O•d 0)

(0

4JHi >n•d' ^^

^3

e>C

a\c<D»-

bCi-id.

09-1 01'0 •O7!-

194

ORIGINAL PASS S3OF POOR QUALJ7Y

01 0MOV1

tr o-

8%<*•

01ccbe

Ot 0-

wt-"Jba CfO-

CJ<L

tc<uX

"Jba

o» .

»•»•

0)5C

C0

<U

"fci

be

bC

ITlC.

0»'0

195

CJG,IT.

41•c

tM

• •e-

fs!c.

.-e-

001

t:i

vCE

•-e-

HQZd

00't

ouCO

bo0)•c

a;3CTJ4JCo

avC

bei->EL

MOWOB»-

I.

196

cf-f

t

oo

SBa,i

cu-i

I

3be

oV>

Cc.<t.0)

rec

oPC

ai•cc

•oe

01 4-1> ci-t (0

o. a<u

TJ i<( i

«

bo

•*•

197

oo -atMX

os-o-

001 00 t

a1

6

001-

o

r 1ao-g oo i-

rl •' .»? sat"19-

cC

be

Ccc.teOetu-

c —U K

i-< C<U £

«C C.D- rI C

§

IOu(0-1

bb

c.(C

0)

be

bf

1-1-cCa'

CC

<D

i•cce

<e

198

ORIGINAL PAGE 53OF POOR QUALITY

O.K

(V•CO

or-a

era"

8*•d '

Cl•oo

wo- or a-

too- irt-

Oft so-a

or a no

oro

01 iRl

•c<D

C

I

0)

OC

V

O

tfO- M-0-

f>H-

199

«t Oft Ml) OS'l-«•"• OtdX

>- "Cft O•«* r

al

cc

I(-1

I

C.1

v.coc.K

re

1

o

K4

a*

8%*•

_*•ft4

nd

i-lr-t

01•aor

x^.c

4-1Couho±J

ecr-l3beO

OK

0)>•H4JO.to5CM

U

tcc

•H•cea;

cc

•cco00)w:

^e<oi-H0-

!

be

200

or o •YU 01•«. oz o-

•c01

o

CM

0!

K•fHb.

O>t- "O

201

.=

~ O.•d =

o ot

QC

£ f•C 4J

0) OCO to

Q) O

§B:

c <fcM £ iH4J 4J O)e cc AJ «o

O (0 ft«

a at• -C• -w

I"I- . «•*•tcfl

" - o 7ld' K gCO

C 3O O

s a•d S

• (0d ^x

4JOO

pe:

at at

"!C ft-

ft C 3•d H O

4J CO

O U-it) O

•d

• O

* ^

U-cOu

cRa.

O <U

4J C.C Co •--o

o4Jto

»-lsbe0)

0)

'enr-

be

I01

o.

II

202

ORIGINAL PAGE ISOF POOR QUALITY

Oo

OS'Z

TJ -0

e » Vd -H '

o•

\ca

3

00 f

« gu 5t a-

s4J *

oca •c

OJ

e

c

i-« 2' o>u

0)u

^H XI•- O 1-1

C toO 3O ee

tm-

£cC•

be

203

x^be-c

y<£-j*

•He -c* c

<U«^x

B•d 0)

^5*8» S'-r£

r^I," C5 ^d 4J

c0

« u•4

• •

o^

5 7

\•5 y^ r% \^o ^^

z — ^ Jjg-i ^0 /-s ^

* <~-_•U ^4 ^0 1 Si

! * i!•^ "*j• . ^— wre a

" |S5- .i- "?

«»^ ^d- ^ «_. c-c

ft" ^1 1 ' 'k-i 4J *•*«* c *

3 5n•^

^*

5 *O-•d 3

X"N

• ^O u »> «'r JQ'I- .,_«*• »'••B; i , #•• rr«n

^X

(Uj: 1-14J (U

e ^_S S « 2K ^ U-. rH

ad =

^s

8«_J^

ode o'di MO o'o'i- o <n°09

\;x

« ,3 i4 M-t

iJ ^X

B 0) i-l* 9 H

crH «H

_ C DHi H Cd- eo

^ a.c

^ ^ ft 4_> *J- e p

0 0o z

nd ..

•co

co

f!f-0)p5

a

^^

for-T*-

204

ORIGINAL PAGE SSOF POOR QUAUTY

•CD

+

OCD

O

II

Ct:

a;c«0a-ila3

be

O«§•O

0!

•ri

•W

8%«4*

•T

a

•*

"N

AJ

M-lx^

CMa

• N:+Cs|c.

s:8

nCOOu

>>.

^^0y~s

S-*4JM-l

•**

CM

+

CME

B

n

*E>>

«£

occ•H

D

1-1O

JJcO

CJ

a>-i

4J

•<

l~-

CO4J

D-*J

C

1•Cc(C

4J

cei-4Ou

11

9•Hb.

205

\co.

• N:\c

vDC.

N:

oca

T:ai

oCJ

in

OfO

i-t(X.

206

ORIGINAL PAGE ?3OF. POOR QUALITY

•c<U

cCJ

207

oat

CM

^F

CS'o.

00 I-

oat ao r

8%•ri'

K

o

CCI-3tt

c

cto

3O(*.

&c•H

CJ

£•c(C

1Ca< t->

(Ca05ca

001-

AJ3

be

3 .HC 0)

r-t O

2 *

I «

cto

4J D.a« i

5 '

01P3

208

Nl

o

c.<D

00 I-

d9ZB'O

•Ca;

N!

0)

ec

"da ort-

209

ORIGINAL PAGE !3Of POOR QUALITY

CD

•oOl3C.

o

••r

be0)•o

incx

o>

210

be

-8

•e-

esc.

-e-

•ca>001 Oft

W9doft. aoV

dMBfl- 0§>-

oo» ocr «rr. art.!•"• dU

DOS

IVM~-be

211

CMO.

> N

•3 £CO

*» so01If.

t- E* »N

(0

l-l-

c

c

cCJ

01c

I3

beC

oo

•ca

I

ff•H(-

I

a03

vO

be

oc.

014-1K

0) *J1-1 tr.

ccu

CO

Qu

O

•cK

212

oa;

O.• NJ

dQ9Za»'t

T!0)

cu

00 I-

2?

u01m

i~^

f .J

bt•Hb-

fl-

213

01'0-

•cflj

co

u0)<nbCII)

•O

o»t "Jfci "'

o0)(0

0)•c

aiP

214

CMa

a• •e-

•c

c

o

be1-1b-

•1?

215

ax

aK

8*•*'

o•- s:

'°- .I?"

81•!*• r"

0*_•- -c,. °

ao>-

eo V

IdX rt.

iti o«

"i*o-*r- •*

c

3U

o

0)

rec-bcb.

bo

3

W

bO

1-114

£

I

are

(CuK

OC.ce

re

1

TJ

(C

•o•HbC1-1c*

O

•o

bC1-1b.

216

ORIGSNAIOF POOR QUALITY

Oi

o

T3O

co

9bC

O<J

0)c

QMI

bCc

rtI

9

V.

be

co

aa)

4)

9bC

a;ff.ccc.

•c

a9O

C

bC•H•c0)ec

a>•ao

•c. c

0) 4J> c

•H «0

G,

I

217

r*.c.

X

"''MX 8r'8'

81

r^01

o

oca

ait 8-0-

ooa

xCO

0)

o

'it

ft

2?

ro

•c

c

ou

ocr^

<uJj5:•t-ib.

218

B°-

ri • c

o

-co

" - 81'

r «- o

co

c

§o

0!c

3Od.

3

V.

W

O

I0)

ft

aTO

Cfio

o.c.tB01

o1

•ca'ee•coo01ce

cC8

<3C

219

01'• SD'O

8%••*•

81

«f -go

0)1

X

~t

oc

r-

0>w

5c•HPL.

rt

r v•co

220

ORIGINAL°F

001

£be I

4-1U-l

H

4J 4-1C 3C Oo w:

CM

8 _P-•d 3 .

bC

»!««s3 C ^

: S g fH 5 «

C -Q)»-• f. <->4J 4J 0"C CC JJ «c « e-

a

§

TO1-

bt

cc0

01c1C

Ou

lJo

PL.

U

a•g(0

* eeCA 4-1

3abp

4J U

0 OiCJ >

•H01 4-1> a

•H CO4J 5

a <a

coc

3be

221

bo

-r* ^/

0, §

c

2 afr

9dn 001- oat oai

•cc

cc

ooc

I •*-*•i c

a• «•i cd

- £_r oS'<• p ^^

4Jc v

• u *•4

ina

! 3?|i

i •^•^••* tn

bC

°

222

ORIG5WAI PAGE ISOF POOR QUALITY

a ... i*d* § o^

* S-81 O § 1*• H o J-

o a;». .e IHAJ 4J Q>C CO •*-> «U « P-

oo,

•3 SB

C I-C Ct: z

n*"" "*

<*4 7"

• JSi• VM

* « 2 S

^ 4J 4JC k>o oo z

I O.* 9

#? or*00"

T!0)

O

C00

bC•H(*.

223

co

o

8*••*•

C

CJ

a/

Iijo

3oo c0 5

•c uU i-1

5 gCO

N!

ara so'a ,nHEZ «•'•• I' "f

aDCC t1-1 e

CCi-l 0)o cu ^•u ,-:o a,

ec

ai£5c

•rH

(x.

224

o

rt

JC

T

a.

iuoH

U-l

I

01creo-u

«•*"'"

a -< 2o1

oc

boc•H

*oo

MY 81••!•

C•H

*u

ooc

01I—I4J4J

w:

^•HP

OU

a)

art

ecQ)MSbe

•c(C

a>u

be

ucc

225

APPENDIX A

DEVELOPMENT OF HINGED PAYLOAD DYNAMICS USINGLAGRANGIAN APPROACH FOR FOUR-PANEL CONFIGURATION

PAPER)

Lagrange's equation:

dt (A.I)

Starting from taking position vectors for points A, B and C

PA " z/ «A—A 4 —A

- 2 8a

8a B 8bthen

V. - Z. e—A 4 —A

V_ - Z, e. + L_—B 4 —A 8a

226

Similarly,

Z4 *A * L9a

—c

Z4 + L8a 8b 2 Z L 8a

2 2 4 L f i -A

- 2 Z4 L8b

Similarly,

C°8 Y8Y * 2 L8a6 V CO8

v;: - v • v-E -E

Z4 9b Y' 2 Z4 L9a

2 24 L9b Y9Y COS Y9Y * 2 L9a L9b 64 Y9Y Cos Y9

227

Hence,

T - £ "4 'Zl + I "8 VC + I "9 VE + I '4YY 6'J I 'SYS

1 * 2 ' 1 * 2 1 * 2 1 * 2* " X Y * 2 XAXX *4 * T X8XS Y8X * 2 J9XS Y 9X"2 9YS

»*2 2 *2 2 *2 2 * * 9

4 + L 8 b ( e 4 ^ 8 Y >

- 2 - 2 y cos y

. 2 L 8 a L 8 b 6 4 C08 8Y*2 2 *2

L9b ( e*4+SY )2 + 2 Z 4 L 9 a e *

2 Z 4 L 9 b

C 0 8 Y 9YJ * 2 X4YY 6

«J

228

V V - 0

.'. L » T - V - T

There are 7 independent variables: Z,, 6., TTgy» *ov» *A»i i

Y8X' Y9X' one e<Juati°n *or each of them. The generalized forces are:

o m If

similarly

36

" T8X8X

9X

t8Y

Shv If3Y9yk

-9Y 19Y

229

Equation for Z,:

i.e.

ddt

m . Z . <4 4

*

" m8Z4 ~ ffl8

• •

Lfio6/. C08 6A ~ BfiLfiK ^i«oa 4 4 o oo or

•« 64) cos <84

* »9Z4 + »9L9aeA cos 64 + n>9L9b (yjy + 64> cos (64

Expand it, we have,

»8Z4 * tt8L8a64 CO8 64 e 8in

B8L8b C0fl (64 * T8Y) * °8L8b

cos

cos

" ffl9L9b 8in (Y9Y * e4} " F4 (A'2)

230

Equation for 6,:

i.e.,

__

dt m8L8aB*4 + ffl8L8b (6*4 CO8

- m8Z4L8b COS (64 m8L8aL8bY8Yc°81f8Y

C08 Y 8Y B9L9b

n9Z4L9a C08 94 * B9Z4L9b COS (64

m9L9aV9Y C°8 Y9Y '* 2 n9L9aL9b64 COS

8Y8

B8Z4L8a64 8in

B9Z4L9a64- ine4

»8Z4L8b in (V

8in ( f l 4 4 Y 9Y ) J 146

231

Expand it, we have,

m L2 e' + m L2 6 * n. L2 y1 C0*

Cos

m8L83L8bY8Y sin Y8Y + 2 COS

2 m8L8aL8bV8Y sin Y8Y * m

m9Z4L9a cos COS

COS Y •9Y

COS Y9Y ' 2 m9L9aV AY9Y sin Y 9Y

(A'3)

Equation for Y

i.e.,

^dt

3L \ 3L<M rt«t

01

18Y

cos

8YS

m8L8aL8b\ <Y8Y + V sinY8Yj 18Y

232

Expand it, we have,

+ m8L8bY8Y ~m8ZAL8b COS Cos Y 8Y

I8YS64 B8L8.L8b84 8Y (A.4)

Equa t ion f o r Y I

i.e.

9Y'

d f 3L \ 3Ldt I . / 3Y 9Y

'9Y

d_dt m9L9b

• •

9Y} + m 9 Z A L 9 b C O S

9YS

Sin

- m9L9aL9b»4 (SY + %) 8 i n Y9YJ 19Y

Expand it, we have,

COS COS

9Y6A sin Y 9Y

(A.5)

233

After linearization, Eqs. (A.2), (A.3), (A.4), and (A.5) become:

Equation for Z,:

9Y

Equation for 8,:

SL9 ' -eV Z4 * (m8L8 + m9L9 + J4YY * *8YS + J9Ys) °4

( 2 \ "m8L8b * m8L8aL8b * ^YSVSY

+ fm«L' t + m^L« Lni + I,99b + m9L9aL9b + X9YS )7 9Y

Equation for Y J,v:

" m8L8bZ4 * (m8L8b * m8L8aL8b * J8Ys) 64 * (m8L8b * I8Ys) Y8Y " T8Y

Equation for YQV:

** y 9 \ **°9L9bZ4 * (ID9L9b * n9L9aL9b * X9YS/ 64 * KL9b * 19Ys)Y9Y * T9Y

234

The equations for $4, t8X» Y 9X are:

Equation for $ ,:

i.e.,

riL.

dt

i.e.,

(14XX * X8XS * I9XS) I8XSY8X + I9YSY 9X

Equation for

i.e.

- T8X

i.e. ,

+ T v* « TX8XST8X 8X

235

Equation f o r Y « :

d 3L 9L19X

_dt 9XS (*4 *-»' 9X

X9XS*4 * X9XSY9X * T9X

236

APPENDIX B

DEFINITION OF POSITIVE REALNESS AND STRICTLY POSITIVE

REALNESS OF MATRICES [55]

Definition B.I

An m x m matrix H(s) of real rational functions is positive

real if

(1) All elements of H(s) are analytic in the open right half

plane Re[s] > 0 (i.e., they do not have poles with positive

real parts).

(2) The eventual poles of any element of H(s) on the axis Re[s]

« 0 are distinct, and the associated residual matrix of

H(s) is positive semidefinite Hermltian.

(3) The matrix H(jo))+HT(-ju>) is a positive semidefinite

Hermitian for all real values of u> which are. not a pole of

any element of H(s).

Definition B.2

An m x m matrix H(s) of real rational functions is strictly

positive real if

(1) All elements of H(s) are analytic in the closed right half

plane Re[s] > 0 (i.e., they do not have poles with non-

negative real parts).

(2) The matrix H(ju)+HT(-j<«>) is a positive definite Hermitian

for all real <i>.

237

APPENDIX C

DERIVATION OF FORMULAS FOR CALCULATING THE

SPRING CONSTANTS AND DAMPING FACTORS OF DOCKING DEVICE

Consider the angular springs and dampers first. Referring to

the following figure, the moment of inertia I2 of the core body of

the space station is used to represent the space station and I

represents the shuttle

*A fa

the equations of motion can be written as

I262 T2

I2e8> DA(e8-e2) + .KA.(e8-e2) - TS

(C.I)

(C.2)

Assume that docking occurs at time t - 0, and 02(0) » 8g(0) - 0 (this

will not affect the values of KA and DA). Take Laplace Transforms,

Eqs. (C.I) and (C.2) become

(I2sz + DAs ••• KA)82(8) - (DA8+KA)68(8) - T2(s)

(Iss2 * DA8 + KA)6s(s> ~ (I>A8+KA>e2<8> - Tg(s)

(C.3)

(C.4)

238

From Eq. (C.4)

(D.s + K.)9 (s)6 (s) - —A? —- + Tsv _ 2 . _ ... _ 2

Tg(8)

I S + D.8 + K. I 8 + D.S + K.s A A s A A

(C.5)

Substituting Eq. (C.5) into Eq. (C.3), we have,

(D .

- - 62(s) = T2(s)<DAS+KA)

(I882+DA8-HCA)

TS(S) (C.6)

i.e.,

(I,s2+D.s+K.) (I s2+DAs+K.)e (s) - (D.s+KA)26,(8)Z A A s A A Z A A 2

T2(s) Ts(8) (C.7)

For the purpose of obtaining the characteristics of the system, the

right-hand side of Eq. (C.7) is set to zero. Then we have

[I2I8sZ + (I2+I8)DAs + (I2+I8)KA]8

2 = 0 (C.8)

for s 4 0 ('.' s2 - 0 Implies two rigid modes at the origin)

I2I8s2 + (I2+I8)DAs (C.9)

239

or

Vs' " ' s

Hence >

and

For the linear springs and dampers, K^ and DL are obtained as follows

by using the same approach

where M2 is the mass of the core body of the space station and Ms is

the mass of the shuttle.

240

ORIGINAL PAGE ISOf POOR QUALITY

APPENDIX D

PROGRAM LISTING FOR THE SIMULATION OF ADAPTIVE CONTROL DURINGSHUTTLE HARD DOCKING TO FOUR-PANEL SPACE STATION

INITIAL

1 PROGRAM23 '4 :

5:

6 :

7:

8 :

9 =

10:

11 :

12:

13:

14:

IS:

16:

17 =

IS:

19:

20:

21:

22 =

23:

24:

25 =26:

27:

28:

29 =30 :3132:

33:

34:

35:

36:

37:

38:

39 =

40:

41:

42:

43:

44:

45:

46:

47:

48:

49.SO:

Si >

52:

53<

54:

55:

56:

57:

58:

59

APPLICATION OF ADAPTIVE CONTROL ON SPACE STATION (IS DOF)

CREATED OCT 1984 —BY C.H.C.IH

== INITIAL ==

TYPE AND DIMENSION OF VARIABLES

,ZPDO(15),ZPDD(1S>

AM ( 1 8 , 1 8 ) , BM ( 18 , 1 1 ) ,CM ( 1 1 , 18 )XP<30) ,XPD(30>,XPO(30>,XM<18>,XMD(i8>,XMO<18)B(15,ii>,C(ii,i5),BPF(i5,ii),CPF(il,lS),BMF(7,H>,CMF(U,7>YP(ll) ,YM(ii),UP(il),UM(il)ETA(15),ETAO(iS),ETAD(iS> ,ETADO( IS) ,ETADD( 15)ETAS<9) >ETASD<9)>ETASO<9),ETASDO(9)EVAL(iS),EVEC(i5>lS),EyECT(15,15),EVECI(iS,iS)EVECS (15,9), EVECST (9,15), EVECSB (15,9)TA(40,40),TB(40,40),TAS(40),TBS(40),R(40>,RT(1DAMPFC(15),DAMP(15,15),ZETA(9),DAM(9]KI(11,40),KP(11,40),KID(11,40),KIO(15DUMY4(1,40) .DIJMY5(i .40) .DUMY6(il) . MT i

INTEGERARRAYARRAYARRAYARRAYARRAYARRAYARRAYARRAYARRAYARRAYARRAYARRAYARRAYARRAYARRAYARRAYARRAYARRAY

CONSTANT N=1S

CONSTANT N2=30CONSTANT M=il

CONSTANT L=9

CONSTANT L2=18CONSTANT UhCONSTANT TFINAL»100.0CINTERVAL CINT°0.2

CONSTANTCONSTANTCONSTANTCONSTANTCONSTANTCONSTANTCONSTANTCONSTANTCONSTANT

»'NUMBER OF PHYSICAL COORDINATES''(ALSO NUMBER OF MODAL COORDINATES)'

$'NUMBER OF PLANT STATES'*'NUMBER OF PLANT INPUTS AND MODEL INPUTS''(ALSO NUMBER OF PLANT OUTPUTS AND MODEL'' OUTPUTS)

t'NUMBER OF THE MODES RETAINED(TO FORM'THE MODEL)

*'NUMBER OF MODEL STATES'S'MODEL INPUT'f'TIME TO STOP'«'COMMUNICATION INTERVAL'

* DEFINE THE PHYSICAL PARAMETERS OF THE SPACE STATION »'.*<**«**************«*«***************«*«****«******«**«'

G=32.174ZETA=9*0.707EIS-9475776.LS-115.LE-140.RHOS-.541RHOE-1.048M4-4165.35M8=994.72

'GRAVITATIONAL ACCELERATION''DAMPING RATIOS OF THE REFERENCE MODEL'

241

60 CONSTANT6.1 CONSTANT62 CONSTANT63 CONSTANT64 : CONSTANT65 . CONSTANT66 CONSTANT67: CONSTANT60= CONSTANT69; CONSTANT70: CONSTANT71= CONSTANT72 .CONSTANT73:

74:

7576: CONST ANT77= CONSTANT7D -CONSTANT79: CONSTANT80 : CONSTANT81: CONSTANT82. CONSTANT83:

84:

85:

86:

87:

88: 30.89: 40.90:

91 :

92:

93-94:

VS :

96: 50.97: 60.98 .99:

100:

101:

102= 61.103: 62.104:

105:

106:

107:

108:

109:

110: 63.

ill- 65.112:

113 =

114:

115:

116.117 =

118:

M9«994.72I4XX«3 .B69C+6I4YY-1 .343E+6I8XS=2.437E+419X5=2. 437E+4I8YS=S . 637E+4I9YS=5.637E+4L8A=7.L8P==li.L9A=7.L9B=ii.FAC=10 .PI«3. 14159265LB=LBA+L8BL9-L9A+L9BEIE=FAC*EISTAS=5*2.5E*6,2«2TBrJ=S*2.5E+6,2*2DAKPrC=15*O.OOE»ALPMA-0.2NSTPl=i200NSTP2=SOTSU=5.0DTRCC=PI/180.0Q=M-»-L2+MDO 40 II-i.NDO 30 J=1,NK1(II,J)-0.

.CONTINUE.CONTINUEKi(7,7)«28184.K 1(8,8) "339324.Ki<9,9)=244308.DO 60 JI-1,MDO 50 J-i,QKIO<II,J>-0.

.CONTINUE

.CONTINUE

DO 62 11=1, NDO 61 J=l,3Bi(II,J)«0 .

.CONTINUE

.CONTINUEB1(7,1>-1.Bl(8,2)=l.B1<9,3)«1 .DO 65 11=1, NDO 63 J-l.HB(II,J)-0.

.CONTINUE

.CONTINUEB(2,1>«1.6(4,2)*!.B(5,3)«l-B(6,4)*l.B(7,S)»i.B(8,6>»1 .B<9,7)«1

.5E+8,4«2.5E-*6, 18*1000., 11*400.. SE+0,4*2.5E+6,1Q*1000. ,11*400.'MODAL DAMPING RATIOS OF THE PLANT

242

119 =120 =

123:

123:

124:

125.126. 66.127: 68.128:

129 =130 =131 =

132.133:

134:

135.136:

137.133 =139.140 = '141.'142.'143 =144= CONSTANT145 . CONSTANT146 .CONSTANT147 . CONSTANT148 . CONSTANT149: CONSTANT150 CONSTANT151. CONSTANT152= CONSTANT153.154:

155.156.157.158.1S9.160.

B< 10 ,8)«i .B(ii,9)-l.

B(15,'ll)-i.DO 68 II~1,MDO 66 J=1,NC(II,J)=0.

.CONTINUE

. CONTINUECd^)**!.C(2,4)=l .C<3,5)=1.C(4,6)ol.C(5,7>»1.C(6,8)oi.C (7,9)«1 .C(8, 10)«1 .C(9,il)»l .C( 10 ,13)«1 .C( 11 ,15)™1 .

#X4ttA4yX$X44&X($&X4444X44444X).X4XXV4#44&'4¥KXc444iV $4V#&4* DEFINE THE DOCKING DISTURBANCE PARAMETERS

ZDAM=3.06E+3 S'SOFT DOCKING LINEAR DAMPING COEFF'ZSTI-1 .3S97E+3 f'SOFT DOCKING LINEAR SPRING CONST'RDAMT=1 .4S93E+7*'SOFT DOCKING ANGULAR DAMPING COEFF'RDAMP-7.078E+6RSTIT=6.4845E£+7$'SOFT DOCKING ANGULAR SPRING CONST'RGTIP=3 . 14SE+7MSI!UT=251600. $'MASS OF THE SHUTTLE'ISNUTT=7.54E+6 S'MOHENT OF INERTIA OF THE SHUTTLE'ISHUTP-i.OE+6

* CALCULATES M AND K MATRICES, THE EIGENVALUES AND* EIGENVECTORS OF THE OPEN LOOP SYSTEM, FORM THE* DAMPING MATRIX IN MODAL COORDINATES, ASSEMBLE AP* BP AND CP MATRICES OF THE PLANT

****

KA '

*'*'*'t '

K& '

161 = PROCEDURAL (MASS, STIFF, EVAL.EWEC, DAMP, FREQ, AP ,BP ,CP,BD=. . .162.163.1*4.165=166.167.168 <169.170.171.172.173= 69.174.175.176 =

EIS,EIE,RHOS,RHOE,LS,LE,M4,M8,M9,I4XX,I4YY,I8XS,I9XSI8YS,I9YS,L8A,L9A,L8B,L9B,L8,L9,DAMPFC,B1)

CALL READMK (MASS, STIFF, EIS, FIE, RHOS.RHDE.LS ,LE,M4 , MS,M9,T4XX,T4Yt,r8XS,I9XS,inYS>I9YS,LBA,L?A,L8B,L9B,LB,L9>

CALL MADD(STIFF,K1, STIFF, N,N)CALL OPLOOP( MASS, STIFF, EVAL.EVEC)DO 69 XX-l.NSCR1(II)-ABS(EVAL(ID)SCR2(II>-SQRT(SCR1(ID)FREQ(II)=SCR2(II)/(2.*PI)

.CONTINUE:CALL MPRINT(HASS,N,N,12,1SH MASS MATRIX)CALL MPRINT(STIFF,N,N,17,17H STIFFNESS MATRIX)CALL MPRINT(EVAL,i,N,19,19H EIGENVALUES (U**3) >

* • •

243

177: CALL nPRINT(EVEC,N,N,20,20H MODAL MATRIX (EVEO)173: CALL MPRINT(FREQ,1,N,23,23H MODAL FREQUENCIES (HZ))179: DO 80 II=1,N100: DO 70 J-l.N181= W2<II,J>«0.0182: 70..CONTINUE183: U2(II,n>«ABS(EVAL(II»184: 80..CONTINUE105: CALL MPRINT(U2,N,N,43,. . .186: 43H GENERALIZED STIFFNESS MATRIX OF PLANT <U2))107: CALL MTRANS(EVEC,EVECT,N,N>1B!3: CALL MMULT<EVECT,HASS,MT,N,N,N>189: CALL MMULT(MT,EVEC,HTT,N,N,N)1^0: CALL MPRINT<HTT,N,N,4,4H MTT)191: DO 90 XI-i-.N192. DO 90 J«i,N193. DAMP(II,J>eO.O194: 90..CONTINUE195= DO 95 11=1,N196.- DAMP (11,11) -2 . OfcDAMPFC (II) *SQRT < U2 (11,11))197= 93..CONTINUE190: CALL MCOPY(EVEC,EVECI,N,N>199: CALL JNVERS(EVECI,N)200: CALL «PRINT(DAMP,N,N,S,5H DAMP)201: DO 110 11=1,N202: DO 110 J=1,N203. A P ( I I , J > « 0 .204: 110 . .CONTINUE205: DO 120 11=1,N206: DO 120 J-i,N207: A P ( I I , N > J ) = 0 .208= I F ( I I . E Q . J ) A P ( Z I , N + J > « 1 .209> 120..CONTINUE210; DO 130 II»i,N211: DO 130 J«=1,N212- AP(N*II , J )»-1 .*U2<II , J )213: 130. .CONTINUE214: DO 140 II-l.N215: DO 140 J=l ,N216- AP(N-«- I I ,N-»-J )« - l .»DAMP(I I , J )217: 1 4 0 . . C O N T I N U E218: CALL MMULT(EVECT,Bi,BDF,N,N,3)219= CALL MMULT(EVECT,B,BPF,N,N,M)220: CALL MMULT(C,EVEC,CPF,M,N,N>221: DO 143 11=1,N222: DO 142 J-1,3223: B D ( I I , J ) = 0 .224. BD(N-HI , J ) -BDF(I I , J )2SS: 142..CONTINUE226. 143..CONTINUE227< 00 145 II-i,N228. DO 144 J-l.M229: B P ( I I , J ) - = 0 . 0230: BP(N-HI , J ) -BPF(I I , J )231' 144. .CONTINUE232: 145..CONTINUE233: DO 148 II-1,M

244

234. BO 147 J = = i , N235: CPUI,J)=ALPHA*CPF<II,J>236; C P < I I , N + J > « C P F ( I I , J )237: 147..CONTINUE239: 148..CONTINUE237:

24tl :END * 'END OF PROCEDURAL'241:

242: ' *«)(-.»:243;' * ASSEMBLE AM.BM.CM MATRICES OF THE REFERENCE MODEL *'244 : ' #X*******************»******#****#************#******* '245:

2-16 : PROCEDURAL. < AM, DM ,CM,EVECS,EVECST, DAM, U2M=7ETA,EVEC,U2 ,6,0, ALPHA)247: DO ISO II=i,L24f!. DO ISO J-1,L249: U 2 M ( I I , J ) « 0 .250.- 150. .CONTINUE251: DO 152 I I= i ,6252: W 2 M ( I I , I I ) = W 2 < 6 + I I , 6 + I I ) * 0 . 6253. 1 5 2 . . C O N T I N U E254; DO 153 11=1,3255: U 2 M < 6+II ,6- i 11 > = U 2 < 12+11, i2+I I )* l , 4256: 153 . .CONTINUE257: DO 160 11=1,L250: DO 155 J=i ,L259: D A M ( I I , J > = 0 . 0260: 155 . .CONTINUE261: D A M ( I I , I I > = 2 . 0*ZETA< II > * S ( 3 R T < U 2 M < II ,11) >£62= 160..CONTINUE263: DO 170 11 = 1,L264: DO 170 J=1,L265: A M ( I I , J ) « 0 .266: 170..CONTINUE267: DO ISO II«1,L268: BO 180 J=i ,L269: A M < I I , L * J > = 0 .270- I F < I I . E Q . J ) A M ( I I , L * J ) = 1 .271: 1 8 0 . . C O N T I N U E272= DO 190 11=1,L273; DO 190 J»1,L274: A M ( L - H I , J ) = - 1 . * W 2 M < I I , J )275: 1 9 0 . . C O N T I N U E276: DO 200 11=1,L277: DO 200 J=1,L278= A M ( L + I I , L - « J > = - 1 . * D A M U I , J >279: 200..CONTINUE280: 00 205 11=1,N281: DO 205 J«l,9282: EVECSBai , J>=EVEC(I I ,6«J )203: 205..CONTINUE284: 00 212 J-l.L285: EVECS(1,J)=EVECSD(1,J)*0.7286: EVECS<2,J)=EVECSB(2,J)*0.7287. EVECS(3,J>-EVECSB<3>J)*1.3288: EVnCS<4,J ) -EVECSB(4 ,J )*1 .3289: EVECS(S,J)=EVECSB(5,J)*1.0290= EVECS(6,J)=EVECSB(6,J)*0.7291= EVECS(7 ,J )=EVECSB(7 ,J>*1 .0292 EVECSC8,J)=EVECSB(8,J>*1.0

245

?93:

294.295:

296 =277 =298:

£99:

300: 212.301 =302:

303 =304:

305:

306:

307.308: 215.309 =310.311:

312 =

313: 220.314:

315:END316 =

317:'

310: '

319:'

320:

321=CONSTANT322:CONSTANT323:CONSTANT324 = CONSTANT325:CONSTANT326:CONSTANT327.CONSTANT328:CONSTANT329:CONSTANT330.CONSTANT331:CONSTANT332.CONSTANT333:CONSTANT334=CONSTANT335iCONSTANT336-CONSTANT337:CONSTANT338:CONSTANT339.CONSTANT340:CONSTANT341.CONSTANT342.CONSTANT343.CONSTANT344:CONSTANT345 > CONSTANT346=CONSTANT347.CONSTANT348.CONSTANT349:CONSTANT

EVECS<9, J>«=EVECSB<9,J>*1 . 0EVECS<10,J>=EVECSB<10,J>*1.0EVECCC 1 1 , J)=EVECSB(i 1 , J)*l .3EVECS<12 , J>=EVECSB<i2 , J>*0 .7EVECS(13,J>=EVECS8U3,J>»0.7EVECS<14 , J>=EVECSB( i4 , J>*1 .3EVECS(15,J)=EVECSB(15,J)*1.3

.CONTINUECALL MTRANS<EVECS,EVECST,N,L>CALL MHULT<EVECST,B,BMF,L,N,M>CALL MMULT(C,EVECS,CMF,H,N,L)DO 215 II»1,LDO 215 J=1,HBM(II,J>-0.BM<L+II,J)«BMFUI,J>.CONTINUEDO 220 II-i.MDO 220 J«i,LC«(II,J)=ALPHA*CMFCII,J>CM<II,L+J)»CMF(II,J>.CONTINUE

»'END OP PROCEDURAL'

SET THE INITIAL CONDITIONS IN PHYSICAL COORDINATES

Z10«0.T i O « 0 .230=0.T30-0.Z20=0.P20=0.240«0.T40«0.P40-0.260«0P60-0.ZSO=0.T50-0.270=0.T70-0.Z1DO-0.T1DO-0.Z3DO-0.T3DO-0.Z2DO-0.P2DO«0.Z4DO=0.T4DO-0.P4DO-0.26DO=0.P6DO*0.Z5DO=0 .TSDO-0.Z7DO-0.

246

350: CONSTANT351 =352 =353.354:

353 =356'

357:

356:

359 =360:

361:

362:

363.364:

367-366:

369:

370:

371 =372:

373:

374:

375 =376:

377:

378:

379:

330:

381 .-CONSTANT382: CONSTANT383 : CONSTANT384; CONSTANT38S. CONSTANT386 'CONSTANT307.308 >389:

390 =371:

392='393.'394. '

T7DO-0.ZPO(i)=Z10ZPO<2)*T10»DTRCCZPO<3)*Z30ZPO(4)«T30*DTRCCZPO<5)=Z20ZPO<6)»P20*DTRCCZPO<7>"Z40ZPO(8)»T40*DTRCCZPO<9)=P40*DTRCCZP<K10)-Z60ZPO(l l)eP60*DTRCCZPOU2)=Z50ZPO(13)=T50*OTRCCZPOU4)«Z70ZPO(1S)«T70«TRCCZPDO(i)-ZiDOZPOO(2>»TiDO*DTRCCZPDO<3)»Z3DOZPDO<4)*T3DO»OTRCCZPDO(5)«=Z2DOZPDO(6)«P2DO*DTRCCZPDO(7)=Z4DOZPDO<B)sT4DO*DTRCCZPDO(9)=P4DO*DTRCCZ P D O ( i O ) = Z 6 D OZPDO ( i 1)"P6DO*DTRCCZPDO<12)-Z5DOZPDO(13)«TSDO*DTRCCZPDO(14)«Z7DOZPPO(15)«T7DO*DTRCCDGHUi-0.2SHUi»0.DSHU2-0.2SHU2=0.ZOSHUOcO.05ZSHUO-0.DSHUTO«DSHUi*DTRCCSHUTO«SHU1*DTRCCDSHUPO-DGHU2*DTRCCSHUPO«SHU2*DTRCC

* FIND THE INITIAL CONDITIONS IN MODAL COORDINATES *'

**:»*******************************«**#***«»#***«*****'395.396:PROCC»URAL(XPO,XMO»£yECI,ZPO,ZPDO)397: CALL MWMULT(EVECI,ZPO,ETAO,N,N>398. CALL MVMULT(EVECI,ZPDO,ETADO,N,N>399. DO 250 II»1,N400. XPO(II)-ETAO(II)401. XPO(N+II) -ETADO<II)402. 250..CONTINUE403. DO 258 II-1,L404. ETASO<II)«0.9*ETAO(6-fII)405. ETASDO(II)-0.9*ETADO(6*II)406: 258..CONTINUE407. DO 280 II-i.L

247

408: XMO(II)-ETASO(II>407: XMO<L+II>=ETASDO<II>410; 200..CONTINUE411. CALL MPRINTCXPO,1,N2,4,4H X P O )413: CALL MPRINT(XMO,1,L2,4,4H XMO)413;414:END f'END OF PROCEDURAL'415:

416 '417.' * DEFINE THE SCALING MATRICES TA AND TB418: '419 =420:PROCCDURAL<TA,TB»TAS,TBS>421: DO 270 11=1,Q422: DO 270 J-i,Q423: T A ( I I , J > - 0 . 0424: 270..CONTINUE425: DO 300 II»1,Q426: . T A ( I I , I I ) = T A S ( I I )427= 3 0 0 . . C O N T I N U E420: DO 310 11-1,0429: DO 310 J-i,Q430= T B ( I I , J ) = 0 . 0431. 310..CONTINUE432: DO 320 11=1,Q433= TB(II , I I )»TBS(II)434.- 320. .CONTINUE435 =436:END t'CND OF PROCEDURAL'437:

438:

439:END440:

441:'«»3.*.:=o«.»=...>=»»» END OF INITIAL442 =443.444:

445:

446.447: •mmmmaemmmmmm*m*mmmmmama~mmmm DYNAMIC ••448.449:DYNAMIC450= TERMT(T.CT.TFINAL)451: T E R M T ( X P ( 1 ) . C T . 1 . 0 E - H O >452: T E R M T ( X P ( 2 ) . C T . i . O E * 1 0 >453.PROCEDURAL < NSTP-T,TSU,NSTP1,NSTP2)454. JF(T.GT.TSU) CO TO 325455: NSTP-NSTPi456< CO TO 327457 . 325.. NSTP«NSTP2458 > 327..CONTINUE459>END t'END OF PROCEDURAL'460:

461 : •mmmmmm*mmmm*mmmmmmmmm,mm*,m DERIVATIVE m462:

4t3=DERIVATIVE464.

248

465 : ' ****x**X*XXX>**XXX*X*****XXXX**XXX**Xt«X***X**XX*:**«»**** -464;' * CALCULATE THE SOFT DOCKING DISTURBANCE FORCE & TOROUC *'467: ' ' .**x*X*««**«x**X«****XX**X>M««**XXX«*ttX*X****««xXX«***X««4'468 :469 PROCEDURAL (FDOCK ,TQ0CKT,TQDCKP,FDDOCK ,DDSHUT,DI>EHUP ,ZDDSHU= . . .470 : RPAMT,RDAMP,ZDAM,DSHUT,DSHUP,ZDSHU,ZPD,RSTIT, . . .471 = R STIP , ZSTI , SHUT , SHIIP ,ZSHU , ZP , ISHUTT , I5HUTP , MSHUT ,C)472 : TQDCKT=RDAMT* ( DSHUT-ZPD < 8 >> +RSTIT* < SHUT-ZP <8 > )473: TRDCKP=RDAMP*<DSHUP-ZPD<9>>+R3TIP*<SHUP-ZP<9>>474. FDOCK=ZDAM*<ZDSHU-ZPD<7> >+ZDTI*<ZSHU-ZP <7) >475^ DDSMUT=-(TQDCKT/ISHUTT>476= DDSHUP«-<TQDCKP/ISHUTP>477= ZDD3HUo-< FDOCK/ <HSHUT/G>>^78: FDDOCKU>»FDOCK479: FDDOCK(2)«TQDCKT400: FDDOCK(3>-TQDCKP481:

4B2:£ND *'END OF PROCEDURAL'483:

484: ' **X***»*X***»********S********««************xyx***»*xy'485:' *DEFINE THE INTEGRAL CAIN KI AND PROPORTIONAL GAIN KP*'486 : ' **XX***X*XX*»*XX*X***XXXXX*#*X*X*****X**XXXX**XX****X* '487.

489: DO 330 II-1,«490: EYS<II)-491= 330. .CONTINUE492= DO 340 II-i.M493:494: 340. .CONTINUE495: DO 350 11=1, L2496=497: 350. .CONTINUE498: DO 360 II-1,M499= R(M+L2-HI>-UM(II)500: 360.. CONTINUE501. DO 365 11=1, M502: EY(II,1)=EYS(1I>503: 365. .CONTINUE504: CALL VTRANSCR,RT,Q)505= CALL MMULT(RT,TA,DUMY4,i,Q,Q)506: CALL MMULT<RT,TB,DUMY5,i,Q,Q>507= CALL MHULT<EY,DUMY4,KID,M,i,Q)508= CALL MMULT(EY,DUMYS,KP,M,i,Q)509. KI«INTVC(KID,KIO)510.511. END «'END OF PROCEDURAL'512:

513 >'514.' * FIND THE CONTROL UP FOR THE PLANT *'515 > ' . ******«******«**********************«»«******:!(***$****'516.517 : PROCEDURAL (UP-KI ,KP,R )518. CALL MVHULT(KI,R,DUMY6,H,Q>519. CALL MUMULT(KP,R,DUMY7,H,Q>520. CALL VADD(DUNY6,DUHY7,Uf ,M>521:

SS2 END t'tHD OF PROCEDURAL'

249

523:

534:' »*«*«**«*************««************«**************X***'525 i ' * INTEGRATE THE EQUATIONS OF THE PLANT AND THE MODEL *'526 ' XX*XXXXX*«XX*XX****X****X*S*XX«X*XX**XXXXXX*X*XX*X*XXX'527 =52O: CALL MVMULT<AP,XP,»UMY8,N2,N2>529= CALL MVMULT<BP,UP,DUMY9)N2,M>530.- CALL MVMULT(BD,FDDOCK,DUMY12,N2,3>531: CALL VADD<DUMY8,DUMY9,DUMY13,N2>532= CALL VADD<DUMY13,DUMY12,XPD,N2)533: XP«INTYC(XPD,XPO>534= CALL MVMULT(CP,XP,YP,M,N2>535= CALL MVMULT<AM,XM,DUMY10,L2,L2>536: CALL MVMULT<BM,UM,DUMYii,L2,H>537: CALL VADD<DUHY10,DU«Yii,XMD,L2>538: XM*=INTVC<XHD,XMO>539= CALL MVMULT<CM,XM,YH,M,L2>540: DSIIUT«INTEG<D1)SHUT,DSHUTO)541: DSHUP«INTEG<DDSHUP,DSHUPO>542: SHUT=INTEC(DSHUT,SHUTO>543: SHUP»INTEG(DSHUP,SHUPO)544• ZDSHU=INTEG(ZDDSHU>ZDSHUO>545: ZSHU=INTEG<ZDSHU,ZSHUO>

547: ' x**XX**X«***X**X8X*'xx*S*X*XXXXXXXX«*XXX:i:XX**X**«*x***X'548:' * OBTAIN RESULTS IN PHYSICAL COORDINATES *'

549:' *»*»*#**»******»#*****»***x***»***********«»:s:»:!i;ar*****'550 :

551=PROCEDURAL<ZP,ZPD,ZPDD,ZM,ZMD=XP,XPD,XM.EVEC)552: DO 370 I I - i ,N553: E T A < I I > « X P ( I I )554: ETAD(II)=XP(N«II)5E5: ETADD(II)-XPD<N+II)556: 370..CONTINUE557= CALL MUMULTCEVEC.ETA.ZP.N.N)558: CALL MVMULT<EVEC,ETAD,ZPD,N,N)559. CALL HVMULTCEVEC^TADD.ZPDD.N.N)560: DO 300 II-l.L561. ETAS(XI)»Xn(IZ>562: ETASD(II)-Xh(L+II)S63: 380..CONTINUE564= CALL. MVMULT(FyECS,ETAS,ZM,N,L)565: CALL MVMULKEWECSjETASO.ZMD.N.L)566:

567:END *'END OF PROCEDURAL'56S:

569:

570 =END571:

572.573. '»«««m«««««o«»««»»=««= END OF DERIVATIVE «•«•»•»••«—••«««•»••»•574 <575 > ' «*t****»«**S«**«S*X****»***********«S****X«*«**«***«S*'576.' * CHANGE RADIANS TO DEGREES *'577 > ' o**X*************X*****«****t*****S**************iM*«'578 =579. Z1P-ZPU)580. T1P-ZP(2)/I>TRCC581= Z3P-ZP(3)

250

581? = T3P=ZP<4)/BTRCC583: Z2P=ZP(S>584: P2P=ZPC6>/DTRCC585: Z4P=ZP<7>586: T4P=ZP(8>/BTRCC507: P4P=ZP(9>/BTRCC588: Z6P=ZP<10)589: P6P=ZPC11>/BTRCC590: ZSP=ZP(12>591= T5P=ZPU3>/BTRCC592: Z7P=ZP<14>593 T7P=ZP(1S)/DTRCC594: Z1DP»ZPD<1>595: TiI)P»ZPD(2)/DTRCC596: Z3DP*ZPD<3>597= T3BP-ZPD<4)/DTRCC590: Z2I)P«ZPD(S)599: P2DP=ZPD(6)/BTRCC6 0 0 = Z4DP=ZPD<7>601; T4DP=ZPD(8)/DTRCC602- P4DP=ZP»(9)/DTRCC603: Z60P=ZPD(10)604: P6DP»ZPD(ii)/DTRCC6 0 5 = ZSDP=ZrB(12)606 T5DP=ZPD(13)/DTRCC607= Z7DP»ZPD(14)608= T7DP-ZPD(15)/DTRCC609; Z1M-ZMC1)6 1 0 = T1«=ZM(2)/DTRCC611= Z3M=ZM(3>612 T3M=-ZM<4)/DTRCC613= Z2M=Z«(S)614= P2M=ZM(6)/DTRCC615. Z4rt=ZM(7)616 < T4M=ZH(8)/DTRCC617. P4M«ZM(9)/DTRCC618= Z6M>ZH(10>619= P6M»ZM(li>/I>TRCC620= Z5M=ZM(12)621= TSH=ZM(13)/DTRCC622= Z7M=ZH<14)623= T7H=ZM<15)/DTRCC624= Z1DM«ZMD<1>625= T1DM"=ZMD(2)/BTRCC626= Z3DM=ZHD<3>627: T3DH-ZMD(4)/»TRCC

629: P2DM-ZMD<6)/DTRCC630 > Z4DH=ZMD(7)631> T4DM=ZMD(Q)/DTRCC632= P4DM-ZMD<9)/BTRCC633 > Z6DM=ZMD(10)634: P6DM«ZHD(il>/BTRCC635. Z5DM«ZMD<12)636: T5DM«ZHD(13>/BTRCC637; Z7BM>ZHB(14>638; T7DM«ZND(1S)/BTRCC639:

251

640;641= BSHANT=DSHUT/DTRCC642: SHANT=SHUT/DTRCC643= DSHANP-DSHUP/DTRCC644. SHANP=SHUP/DTRCC645= XP15=XP(1)646: XP14«XP(2>647: XP13=XP(3)64Q. XP12=XP<4>649= XPil=XP(5)650: XPlfl«XP(6>651: XP9=XP<7)632: XP8»XP(S)653= XP7»XP<9>654: XP6-XP(10)655: XP5*XP(11>656= XP4«XP<12>657= XP3«XP(13)658: XP2-XPU4)659: XP1=XP(15>660: • XH9«XM(1)661. XHB=XH<2)662: XM7«XM(3>663: XM6«=XM(4)664: XHS»XM(5)665. XM4=XM(6)666: XM3"XM(7)667: XM2*XM(B>668: XM1«XM(9)669 YPi«YP(i)670= YP2-YP<2>671: YP3=YP(3)672= YP4«YP(4)673= YPS=YP(S)674: YP6«YP(6>675= YP7=YP(7)676= YP8«YP(8)677= YP9»YP(9)678= YPIO-YP(IO)679: YPil«YP(ll)680: YMl-YMU)681= YM2*YM(2)682• YM3-YM(3)6B3. Y«4=YH(4)684: YMS«YM(5)685. YM6-YH(6)686= YM7«YM(7)687= YMB=YM(8)688: YM9-YM(9)689. YM10=YHC10>690> YMii»YM(l l )691. UPl-UP(l)692. UP2-UP(2)693> UP3=UP(3>694= UP4«UP<4>695. UPS-UP(S)696.- UP6»UP(6)

252

697;698697:

700.701 =702 =7 0 3 = E N D704 =70S:'—==-«706 =707 =70S:

709= '««««.«710:

7 l i ; T E R M I N A L712:

713='714: '

715:'

716 =717 =718:

719:

720:

721 =

722 =723 =724:

725:

726 =727 =728.

729 =730 >

UP7«UP<7>UP8«UP(8)UP9«=UP<9)UP10-UPUO)U P i i * U P ( i l )

END OF DYNAMIC

TERMINAL ==

#!M*****»*>M***»i************#*»********»*************'* PRINT SYSTEM PARAMETERS *'

CALL MPRINTCEVECT,N,N,34, . . .34H TRANSPOSE OF MODAL MATRIX (EVECT) )

CALL MPRINT(EVCCI,N,N,32,. . .32H INVERSE OF MODAL MATRIX <EVECI»

CALL MPRINT(EVECS,N,L,3i, . . .31H TRUNCATED MODAL MATRIX <EVECS>>

CALL MPRINT(DAMP,N,N,3S, . . .3SH DAMPING MATRIX OF THE PLANT (DAMP))

CALL MPRINT(DAM,L,L,34, . . .34H DAMPING MATRIX OF THE MODEL (DAM))

CALL MPRINT(U2,N,N,43, . . .43H GENERALIZED STIFFNESS MATRIX OF PLANT (U.'.'M

CALL MPRINT<U2M,L,L,44, . . .44H GENERALIZED STIFFNESS MATRIX OF HOUCL (U2tt»

,N2,N2,10,iOH MATRIX AP>,N2,M,10,10H MATRIX BP ),M,N2,10,10H MATRIX CP ),L2>L2>10,10H MATRIX AM),L2,M,10,10H MATRIX BM>,M,L2,10,10H MATRIX CM),Q,Q,iO,iOH MATRIX TA)

,1.0, iOH MATRIX TB)

731:

732 =733:734:

735:736.737:

738 =739.740:

741:

742:743:

744 = END745.

747.740:749 =750: END

CALL MPRINT<APCALL MPRINTCBPCALL MPRINT(CPCALL MPRINT(AMCALL MPRINT(BMCALL MPRINT<CMCALL MPRINTCTACALL MPRINT(TB

«'END OF PROCRi

END OF TERMINAL

253

1: SUBROUTINE READMK(MASS,STIFF,EIS,EIE,RHOS,RHOE,LS,LE,M4,2 *M8,M7,I4XX, I4YY,IQXS,I9XS,IBYS,19YS,LBA,L9A,LBB,L9B,3: $L8,L9>4; REAL MASS(i5,iS),STIFF<i5,lS),MC(15,iS),MD(15,i5)5; REAL I4XX.I4YY,IQXS,I9XS,IBYS,I9YS,L8A,LBB,L9A,L9B,L8,L9(,-• REAL ALPHA, BETA, A, B,EIS,EIE,RHOS,RHOE,LS,LE,M4,M8,M97 ALPHA-2.*EIS/(LS**3>8= BETA*2.*EIE/(LE**3>9: A=RHOS*LS/420.

10: B«RHOE*LE/420.11: DO 10 1=1,1512: DO 10 J=i,1513: STIFF(I,J>=0.14= 10 CONTINUE15= STIFF(i,i)=6.*ALPHA16= STIFF(1,2)«3.*LS»ALPHA17 STIFF(i,S>=-6.*ALPHA18: STIFr<i,8)=3.«LS*ALPHA19= STIFF(2,2)=2.*<LS**2)*ALPHA20: STIFF<2,5>— 3.*LS*ALPHA21= STIFF<2,8)»(LS**2>*ALPHA22= STIFF(3,3)=6.*ALPHA23= STIFF(3,4)=-3.»LS«ALPHA24: STIFF<3,5)=-6.*ALPHA25= STIFF<3,8>— 3.*US*ALPHA26= STIFF(4,4)=2.*<LS**2)*ALPHA27. STIFF(4,5)=3.*LS*ALPHA28: STIFF(4,8)=(LS**2)*ALPHA29.- STIFFS,5>-12.*ALPHA+6.*BETA30= STIFF(S,6)=3.*LE*BETA31: STIFF(S,7>«-6.«£CTA32: STIFF(S,9)=3.*LE*BETA33- STIFF<6>6>"2.*(LE**2)*E<ETA34= CTIFF(6,7)«=-3.»LE*BETA35. STIFF(6,9)=<LE**2)*BETA36= STIFF<7,7)-12.*BETA37. STIFF(7,10)»-6.»BETA38= STIFF<7,il)«3.*LE*BETA39: STIFF(8,8)=0.*(LS**2)*ALPHA40: STIFF( 8,i2)-3.*l.S*ALPHA41-- STIFF(8,13)«<LS**2)*ALPHA42= STIFF (8,14 >— 3 . *LS*ALPHA43= STIFF(8,15)=(LS**2)*ALPHA44- STIFF(9,9)=4.»(LE**2)*BETA45. STIFF(9,10)«-3.*LEfBETA46: STIFF(9,1J)-(LE**2)*BETA47 = STIFF <10,10 >»12.*ALPHA*6. »BETA48- STIFF(10,11)«-3.»LE*BETA49= STIFF(10,12>«-6.tALPHASO- STIFF<10,13)—3.*LS*ALPHA51: STIFF(10,14)«-6.*ALPHA52: STIFF(10,15>«3.»LS*ALPHA531 STIFF(11,11)-2.*(LE**2)*BETA54: STIFF(12,12>*6.(ALPHA55: STIFF(12,13>=3.*LS*ALPHA56> STIFF(13,13)«2.*(LS**2)*ALPHA57 > STIFF(14,14)*6.(ALPHA58 STIFF(14,15)»-3.*LS*ALPHA59: STZFF(15,1S)«2.«(|.S**2>«ALPHA

254

OKJGiMAl PAGE ISOF POOR QUALITY

60:61 ••62:63.64:65:

66:67:68:69:7 0 =71:72=73:7 4 =75:76:77:78:79:80:81:82:83:84.85:86=87:88:89:90 <91=92=93:94:95:96.97=9B<99:

100=101:102=103=104:105=106.107=103=109:110=ill.112.113=114:115=116.117=118=

DO 20 1-1,14K-I+iDO 20 J»K,15STIFF<J,I)«STIFF(I ,J)

20 CONTINUE

DO 30 I»i,15DO 30 J«1,1SH C ( I , J > = 0 .

30 CONTINUEMC<1 > 1>-156 .«AMC<i ,2>=22.«LS*AMC<1,5>=54.»AMC(i,8>»-13.*LS*AMC(2,2)«4.*(LS**2)*AMC(2,S)-13.*LS*AMC<2,B>«-3.»<LS**2>*AMCC3,3>»1S6.*AMC(3,4)«-22.*LS*AMC(3,5)=S4.*AMC(3,0>«13.*LS*AMC<4,4)«4.*aS«2>*A

MC(4,8)»-3.*(LS<*2)*AMC(S,S>-312.*A+156*BMC<S,6)-22.*LE*BMC(5,7)«54.»BM C < 5 , 9 > — 13.*LE*B

MC<6,7)»13.*LE*BMC(6,9)=-3 *(LE**2)*BMC(7,7)«312.*BMC(7,10)«S4.*BH C ( 7 , l i > — 13.»LE*BMC(8,8>»16.*(LS*X2)*AMC(8>12)«-13.*LS*AMC(B,13)=-3.*(LS**2)»AMC(8,14)«13.*LS*AMC(8>15)«-3.t(LS*«2)*AHC(9>9)-8.*(LE**2)*BMC(9,10)«=13.»LE*BMC<9 ,11>— 3.*(LE**2>*BMC(10, 105=156. *B+312.*AMC(10,U)«- 22.*LE*BMC(10 , 12)^54. *AMC(10,13)=13.*LS*AMC<10,14>-S4.»AMC(10,15) — 13.»LS*AMC(l l , i i ) -4 *<LE**2)*BMC(12,12)-156.»AMC(12,13)-22.«LS*AHC(13,13>-4.*<LS**2>*AMC(14,14)-1S6.«AMC(14,15)«-22.*LS*AHC(15,15>-4.*<LS**2>*ADO 40 1-1,14K-I+1DO 40 J-K,15MC(J , I ) -MC(I , J )

255

120:121:122=123'124=125=126=127120=

130 :131=13£:133:134:135;136;137:13ft:

40 CONTINUEDO 50 1-1,15DO 50 J-1,15MD<I,J)«0.

SO CONTINUEHD<7,7)*Mt+M8+M9MD<7,8)=M9*L9-HQ*L8

DO 60 1 = 1 ,14

DO 60 J=K,15M D < J , I ) * M O ( I , J )

6o CONTINUE:DO 70 1-1,15DO 70 J=1,1SM A S S ( I , J ) » M C ( I , J ) + M D ( I , J )

70 CONTINUER E T U R NEND

256

1:

23:

A56789,1011131314IS161718192021222324232627.

SUBROUTINE: OP LOOP <MASS, STIFF, EVAL,EVEC>

28 ;C29.C30;C31 :32:

33:

34:

35:

36:

37.38:

39:

40:

41:

42=C

43 :C

44 :C

45 =

46 <47.48:

49. CS0>51:

52.S3.54.55.56 :C

57:

58:57:

60 :C

61:C

62:

63:

MASS AND STIFF ARE THE INPUT H AND K MATRICES.SUBROUTINE FIRST FINDS SIMILARITY TRANSFORMATION PHI1 SUCHTHAT THE COLUMNS OF PHI1 ARE EIGENVECTORS OF MASS NORMALIZEDSUCH THAT

(PHI!)'(MASS)<PHI1>=<IDENTITY) (' DENOTES TRANSPOSE)

THEN FINDS ANOTHER SIMILARITY TRANSFORMATION PHIS NORMALIZEDGUCH THAT

(PHI2)'<PHI1>'(STIFF) <PHI1XPHI2)«DIAG(EVAL)

WHERE EVAL ARE THE EIGENVALUES OF THE OPEN-LOOP SYSTEM,I.E., THE SQUARES OF THE EIGENFREQUGNCIES.

FINALLY, THE PRODUCT

EVEC=<PHI1MPHI2>

IS RETURNED - THE J COLUMN IS EIGENVECTOR OF OPEN-LCDPSYSTEM CORRESPONDING TO J EIGENVALUE.

(UNTIL THE SECOND CALL TO SYMQRR, PHI2 1C UDPD FORINTERMEDIARY CALCULATIONS)

PARAMETER N-15

REAL MASS(N,N)DIMENSION STIFF(N,N>DIMENSION EVEC<N,N>,EVAL(N>DIMENSION PHIi<N,N),PHI2<N,N),PHIiT(N,N>,WORK<500>

CALL MCOPY(MASS,PIIIi,N,N>CALL SYMQRR (*601, PHI I, N,N,EVAL,UORK >

RENORMALIZE FIRST SIMILARITY TRANSFORMATION

DO 100 1=1, NDO 100 J«=i,NPHI1(I,J)=PHI1(I,J)/SQRT(EVAL(J))

100 CONTINUE

CALL MTRANS(PHI1 ,PHI1T,N,N)CALL MMULT<STIFF,PHI1,PHI2,N,N,N)CALL MMULT<PHI1T,PKI2,EVEC,N,N,N)CALL MCOPY(EVEC,PHI2,N,N)CALL SYMQRR(»701,PHI2,N,N,EVAL,HORI{)

CVAL NOW CONTAINS THE SQUARES OF THE EIGENFREQUENCIES

CALL MMULT<PHI1,PHI2,EVEC,N,N,N)

EVEC NOU CONTAINS THE CORRESPONDING EIGENVECTORS ASCOLUMNS

CO TO 900

257

64:

65:

66:

67:

68:

69:

70 :

71'72 =73:

74:

75 =

601 CONTINUEWRITE(6,602>

602 FORMAT(IX,'CLUTCHED ON FIRST CALL TO SYMQRR')GO TO 900

701 CONTINUEWRITE(6 ,702)

702 FORMAT(IX,'CLUTCHED ON SECOND CALL TO SYMQRR')900 CONTINUE

RETURNEND

1:

Z

3 =4 .

6'C7:

8:

9 =

10'

12 =

13'C14: 100

15:

16: lOOd

17 =18:

19:

SUBROUTINE INVERS(A,N>

DIMENSION A<N,N>,UORK(1000>

THIS SUBROUTINE WILL CALL AINU FOR AN ACSL PROGRAMAND IT WILL HANDLE THE ERROR TRAPPING

CALL AINVR(A,N,N,*100,UORK>

RETURN

HANDLE ERROR BOMB OUTSCONTINUEWRITE(6,1000>FORMATdX,' ****»«*»***«* INVERSION PROBLEM *«*********«««»»*'>

RETURN 0END

258

1 SUBROUTINE MADD<A,B,C,L,N>2:C THIS SUBROUTINE CALCULATES THE SUM A+B AND STORES THE RESULT IN C3-C L " ROUS OF A AND B , N » COLS OF A AND B4-- DIMENSION A(L ,N> ,B<L ,N > ,C(L ,N)5: DO 100 I-l.Lb. DO 100 J=1,N7. C(I,J) -8:100 CONTINUE9: RETURN

10: END

1 :2 C

3-CA5 =

6:

7

Q.

10:

11 i

12

13:

SUBROUTINE MhULT<A,B,C,L,M,M>THIS SUBROUTINE CALCULATES THE PRODUCT AB AND STORES THE RESULT IN C

100

" ROUS OF A , M - COLS OF A AND ROUS OF B,DIMENSION A(L,M)>B(M,N)>C(L,N)DO 100 I=1,LDO 100 J=i,NCCI.J) =0.0DO 100 K~1,MCC " A(I,K)*B(K,J)C(I,J) - C(I,J) * CCCONTINUERETURNEND

N = COLS OF B

1: SUBROUTINE MVMULT<A,B,C,M,N)2=C THIS SUBROUTINE CALCULATES THE PRODUCT OP HATRIX A AND3:C VECTOR B AND STORES THE RESULT IN VECTOR C4: DIMENSION A(M,N>,B(N),C<«)5: DO 100 I»1,N6: C<I>-0 07: DO 100 J=1,NB< CC*A(I,J)*£<(J)?= C<I)=C<I)+CC10 100 CONTINUE11= RETURN12: END

1: SUBROUTINE MTRANSCA,AT,M,N)2=C THIS SUBROUTINE CALCULATES A TRANSPOSE AND STORES RESULT IN AT3:C M - ROWS OF A , N • COLUMNS OF A4: DIMENSION A<M,N>,AT<N,H>Si DO 100 J«1,H6> 00 100 1=1,N7. AT(I,J) •8:100 CONTINUE9. RETURN10: END

259

1: SUBROUTINE VADD<A,B,C,M>P.C THIS SUBROUTINE CALCULATES THE SUM OF VECTORS A AND ft AND3:C STORES THE RESULT IN VECTOR C4> DIMENSION A(M),B(M),C(M)5 = DO 100 I-l.M6 C(X>*A(X>+B(I>?: 100 CONTINUE3 RETURN9: END

1 SUBROUTINE VTRANS(A,AT,M>2:C THIS SUBROUTINE CALCULATES THE TRANSPOSE Or VECT0.7 A AND3:C STORES THE RESULT IN MATRIX AT4; DIMENSION A(M),AT(i,H>S-. DO 100 1=1,M6; AT(1,I)-A(I>7i 100 CONTINUE8: RETUHN9= END

1: SUBROUTINE M C O P Y < A 1 , B 1 , M , N >2-C THIS SUBROUTINE COPIES A INTO B3 C (BOTH ARE M ROWS BY N COLUMNS)4.- DIMENSION Al ( M , N ) ,Bl (M, N)S> DO SOO I»1,M6. DO 200 J-i.N7' B 1 ( I , J > « A K I , J >B. 200 CONTINUE9< 500 CONTINUE10• RETURN11; END

ii SUBROUTINE MPRINT(A,M,N,NCHAR,TEXT)2=C THIS SUBROUTINE PRINTS A HATRIX WITH TEXT AS A HEADING3=C M - ROWS OF A , N - COLUMNS QF A4; DIMENSION A(M,N),TEXT(SO)5< IREH-MOD(NCHAR,6)6< IF(IREM.EQ.O) NUORDS-NCHAR/67> I F ( I R E M . N E . O ) NUORDS-NCHAR/6 •»• 18> URITE(6 ,10) (TEXT(I ) , I= i ,NUORDS>9.10 FORMAT(//iX,SOA6//>

10. DO 100 I-i,Hi i > U R I T E < 6 , 2 0 ) < A ( I , J > , J - 1 , N >12-100 CONTINUE13.20 FORMAT(SX,11C11.S)14. URXTE (6,31)15.30 FORMAT ( / />16. RETURN17 •. END

260

gWWL PAQs £**• POOR ouAin*,

APPENDIX E

NUMERICAL OUTPUTS FOR THE SIMULATION OF ADAPTIVE CONTROL DURINGSHUTTLE HARD DOCKING TO FOUR-PANEL SPACE STATION

o e e e e e8 S S S S §8 S S 8 S 2

o o e o§ e e e

S S S

e p p p « •

1 1 1 1 2 se p p c r> e• • • • « «•

• i

• •• • ». o o- • » • - • » • o c«• • •» • e eM «n • •> • •

S o o oe e e

S o e ee o c

I

« ••

i

i»M•••

i

ixol*a iz=.'-.1.

• K « x «• M'M MOW

iLik"^ >v»-oao, >zZ c . •• ooeaik

— f 1^»».zz xo& — t M *i»m £«TiL«s-.rs-.-.sss^-.s-.isi-.gsss.»= M X •.»-•.»*>-• •«»bX%^^MO

t .«•— •> »eo<

11 1** p » » S?2 "21*15 4

t •• ••* »W• •MMILZh » • *Z^

• ••••&» X «.••••>•->«W ••• X »»W«O •

-» ••««• ••»xx«- •»>•••&.• •

% S S Ss s s g

9 m f • «• •» • » • • tn

?ggo/grg*.ogo• • • • ni «M •#» •-• •

M»c»e••OOKO O O O

ooc• «c •oopoo^ooc£ •5«po5eo»ooo,«*<c»eepee «ece

Is

261

• o •» • o o o o» 0 * t f * O O O O O

• o w o » * * « » * « »o o m o o « n t • • «

I •

o0 O •> » • O O O O

O O »• • • O 0 0 0

O •• O O O • •« •o n a o o • » > f »

• • t

O a • • O O 0 0

*

S o* >oeo«occococ« -o .>0»»OOO 'OOOOOOO 'O-O

o o»»ooo->oooeeoo*oi»

o o ••••o o o* o o o o o o o *o«O O W M O O O «oe co eoo»> o>-

'

S o • »ooo«ooo*o «oooooi^»oo<9 »oao «o«oooo

o o*»-^ooo«ooo« omoooo» a«« OOOMOO oi> o«o a o a

• 0

oo • •« oo* o o o— olooooO O W W O O O •OOO»O».OOOO

o o o o o e • o » . « « o o e oo o o o o o o o « o o o o o o

O O O O « O O M O • * • *O O O O O • * O * 4 * V M t f M

o o§ 0 0 0 • o o « * * * » o o o o

O O O O * O O « I » — O O O O

t

0 0 0 0 0

0 0 0 0 0 0 0 ^ 0 0 0 0 0 0 0• o • • 0 0 0 * ^ 0 0 0 • • • •

• •

2 O O O M » O O M » O O O Oo o o • • » o o « e o o o o

t •

oo o o o > * o i ? o o a a o oo o o o o 0 0 * 1 0 0 0 0 0 0e o o o * « i » o » o o o o o o

s ° . 5 ° . ; ^ s § . - § s § § s §* • • J " . t - S . ' S o § § S S § §

s ss s• * • •

eooe«ooo«oooooooeoo«eooceeo«eooooo«o >o«aoooa • »ooo« oo aoooo«o •oooo «o*o «oaooo**ooo «ooooooo *o*

t • • • • •

S So S• * * *

• 0*00000 *ooooo««ooo *ooo «o*oooo;|s|||g|£|||||::||g£|||:|S||||

J. • t • . . .•

• o«ooooo*oooeooia>ooe*ooo«e*iOooe

* *

262

PAGE 13OF POOR QUALITY

« « « *

» » »

o o o o o o

«t « * *f 1*1 -• »-» « « o * o •PI £ «? £ $ £ .«

o o « o * t * n o o M * t v t

M « * M * * « « « l « » « y ^ M

1 S

o e o o o o o o o o o

5 i s 13 f- i I i- i:-r s ^ f s r s s r s ?

e c e co o o eo o o oo o o oo o o c

o o o oS o o o0 0 0

o e e co o o o

o o o ee e o eo e o eo e o oo e o c

i i

S o e ee e o

o o o oS o o o0 0 0

o o o o o o o o

i i i * i i i i i i* «M C O »» »• ***» * * l « * * M 0 t v « V t

? o o o c o o o e• t • • • t • • •^ ^ •* O ^ •• Irt • O *^ • 9

OOO OOOOOOO00OOOOOO00 OOO OOO• •• ••••••*•••»•••••• • • • •••o*»** vw^MfMvtvvpb•*o««iMir»o* • •*»»«.* ••* *«yfi«».

e-*. wri c*fc»i*»*-*i« (vr-*> «». •H«V>'«-I^*I^* ••*»•*• w*viin«-in«^tfi**o««mm««*«« *^n««»m«w*««o««iwMO««^••—o^. •—••»*»»•.«» «^.p«»o^«*«***«i«o*m«

S S 5 .O C O Co o c o

S g g g0 0 0 0s g s s

>ooo» e•• oooooo •«w oooooo**c•OOOOOOMO

oco o c e c o c o o o

_ __ > « 9<w«»IV^f^ •••«»Pt«*^«l«iPt»IW«fVt«*«OWM»««n«MI

OOO QOOOOOOOOOOOOOOOO OOO OOO• » • • • • • • • • • t t » t t » » a « • • • • i •

»*.*«i»*.«vtr»««io» r- «r>. e »

???«*««ie»»**oo»««i 0*0 o^^

- I f f«

7S

is:

M

«*oov^oo

263

o o o o o o o oS o o o o o « o o o o

O O O O O M O Oe o a a

s I o o «• oo o • o o a

S o a o oe e o *

o a o o f>0 0 0 0 0

8 § g

o oo oo oo oa o

-> o o

« o o o o o o o• o o - - -

S S 6 og go o

O O O O O O O O O - -o o o o o o o o a o oss-. s s s s s s s s

o o o o o o a o o o ao o o o o o o o o o o- ( 0 0 0 0 0 0 0 0 0S o o o o o o o o o

o o o e o o o o o§

o o o

o o o o o o o d o o o«• 0 0 0 0 0 0 0 0 0 0

o o o o e e o o o- o o » o ~ - ~ -0 0 0 0

lOoooaoooooooooooooooM> oooooooeccooooooooooo> oaoooooooooaooooooooniI O O O O O O O O O O O O O O O O O O O O < MI OOOOO 000 O 00 000000000<U

ieoooeooooeoooeeooe«eo100900303000000090000'ooooooeooooooeoooo^o> ooooooooooooooooooooloooooooeo

o ooooooooooooooao«oooo

tooooooooooSooooantoooooooooooooeooeeoo»oeeoaoaooooooooaooo0*0000

oi•J

a o o o e e e e

• • • •

o o o o o

o o o o• • I t

« • • »°. °.o «

r s• • t • • •? ? ? ? ? ? ?s s s s s z t zs s s s s z z :

• • • • • • • •3 S S S 2 K S'S S 5 C0 0 • . • » « . • > • — » « «O O o o m m m o f f i o

o o o o o- » t » » —

* * • •

o o o o o o e

oaoooo oooooooooooooooooaoooo•••••• ••••••••§••••••••>••>•W*k«*»OAIfltOOOM«OO«««*O««Mfl»fft«toO^t«o«**«

Mmnn MMnmvn* • •m«m*n*M «n« •! « n?o o o e eooeecooe e ec o ee ooo c e o• • • • t « i t « i > i i < t > t t

MOM«O»««»««>»inMi>•§»«!•• ••>•••«§»••» ••*

• • * • ! • •

oooa• i • •«<•

S oooooooeoooooowooeooooooooaooooooooMaooaoaooooooooooooooo«ooooooO OOOOOO90 OOOOOOoOOOOOOooooooooooooooo»oooooo

ooooeoooooooooooooo oo oooeeo• • • • • • • • • • • • • • • • • • • • • • • • • • •

» • OM«I —>••« <nn o •»»••• o —•>•"•« o«o« — •»•«••» «•«•••«««« m iw •»» o»» ». oa«*«o«w <• o»wo<i» •»O>«M M«l«*fli«»fli««W«*o •»*»••• •••no «*••• ««»»M^«<||

264

ORIGINAL PAGE IS

POOR QUALITY

o o o o o o o o o o o o o o oS o o o o o o o o o — o o o oO O O O O O O O O O O O O O O

ot

iiililiii.iiiii

0

o

i e i s 3 S S ? S S 3 S S 3 3

o

o o o o o o o o o o o o o o oe o o o e o M o o o o o o o o

O O O O O « » O O O O O O O O O

S e o o o w o o c e o c o o oo o o o o — o o o o o o o o o

f o o o o o o o o o o o o o oo o o v i a o o o o o o o o oo o o o o o o o o o o o o o o

w0

f eoo o o— c e o o o o o c o c o o o o e o o e o o e c o0000000000000000000000000000»

so o o o M O O o o o o o o o o o o o c o o o o c e o e m c eO O O O 0 9 O O O O O O O O O O O O O O O O O O O O O O O O

SSS 0-8 00 000 000 000009000000 S3 00e c o o — o o c o o o o o o o o o o o o o o o o e o e — o e

M

eeoooooeooooooeoooooooooo»ooooOO«OO90<BOOOOOOOOOOOOOOOOO«»OOOOo o o o o o c e o o o e e o e o o o o o o c e e o o o e o oO O « O O 9 O 0 O O O a O O O O O O O O O O 9 O O t » O O O O

o«ooooooeoooooooooeoooeo<neooooo» OOO OO OOOO O O O O 3 O O O O O O O O O O 9 OOOO«ooooooeoooooooeoeooooo».oocooo• 9 0 O O O O O O O O O 9 0 O O 9 O O O O O 9 O O O O 9 0 O• •ooooooooeooooeeeooooooxeooooo

ssss0 0

00ooo o

iiO 0o c

ooooooSSSooo

000

000

o o oe o eooo

g o oo e

000o e e

oooSSSooo

o o o000

ill

ooo

in

iiigooo e

oo0oo

0

0

oe

oooa

00

o oe o

0 9

000 0

sso o§3

eoO 9

SS

ii

S Cf0

\\

ooS3So

o e e o o oo ooooo

o o oo o c

0 OOOO 0e oo o o o000000

o ooooo0 0000 0

x =». r a.r

S e oo o e9 9 09 O

O OOOO 0e o ooo ce ooooo

265

g oeeeoooooooooooooooooeO Q O G O O O O O O O O O O G O O O G G O G — — — — — — — — — — — —

O O O O O O 0 O O O O O O O O O O O O O O O O O O O O O O O O G O O O

S o o o e o p o o o o o o o o o o o o e o o o o o o o o o o o o o o oeoaoeeooeoceeeeoeoeeoeooeooeoeeeoe>ooooooooeooooooooo«<o

iza .z f tz f tz f tza .za .x f t r t . r i . z f t ;>>-ft c ft z ft S •• —» »»— — »>•>•»• »«»«».cioooooce>ooix»KM>«ic>*f t f t .3 soft iw»«^ ft »«ft »•»•-•- — •< *> m » « a<nnp><a«

«• » 3 MM^ftMftMM^^OX

Sooooooooooooooooooooooooooooooeooooooeooooaeeooooaooeoeeeoeeeeeeeeaeooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooaoeeoooeooooaoeooooooeooooooooooooe

O •• fli »l V « • » « I V » » « » f t Z f t f f lS —n-za -c* . = —.a.fti — — • > « «

• • •S M Of- o.» e» o <0 ^ #« ^> •sr

» o*ooo*e»o«or-o*«S« • • • • • • • • • • • • • • • •.• O Q0 O ««Otfl O MO •• O •• O VKM ^

• • I • *— • ••!».«« —*»»•> «•_• <••<«•X Z ft Z ft Z --X Zft Z ft Z - — ft

?o eo o e o o o oeoe* » • • • • • • ••••

ooooooaoooooooeoooooooooeoooeoeoooop* o«emcine«>e«cineei««»39000390000 ooooooooaoaooooooo?3ooooo« o»3aooo»oao«o*»««eooeooaeoooeoooooeooooooooGoeoeoooooo o«a«ten>eMo«a«o — — •»•O O O O O O <» O O O O O O O O O O O O O O O O O O O O O O OOOOOO O». O T C O * O M 3 V < O « O — O —«••<«ooooooooooooooooooooooooaooooooooooe* e — e * a»e«e«o —e ««>«•>

S .».

x&ca.c».et.Ck.rxxk.^a.*».•. eee oooooooa*»MM*. — «t MM* •«»»»« « k>

T T O

266

ORIGINAL PAGE ISOF POOR QUALITY

oo o o o o o o o o o oooo o o o o o o eooooo e o oo'« e«ooo*-o»o»o«o«o«o«o«£>«o o» o£ o • o«'o« a*-oXt «« ••oo»o»o».eo*»o»o<uoAio«o«o t»>o«>o<wo«o<»MMw o**e^o<vo*«OfAO* t o««*«* iA i * *e*o«c^c• <^o«o»o»o<HO»o«io«ono«omo»-> o««o«io*o*o*ic«*oo»«»*»Of>o«>o»o• *vo«ov*oi*o**o«o«*c*oooMO»«iMio O « O * » O V > O W O « C < * O M « > V » » V V O « * O « C ~ O•»*o»o»o«iooocooe«ooo<*o«w«» o»o*>o«>o«>o»aooo >»• vo»owooo«o

• • • ( • • • • • •

aa.MM^^Mfc«^^-f,«».,*w«r«-g ^^^^^^j«-..-- tSaaaSMM^XM tM

>oo o o o o o o o o o ooo o o o o o o o oooooo o o omjijt J>oJ> J» * * * •• • ••• f . t _ ? _ J _ « _ •_ J_iJ-.« i^J • • •>MOOOO«O~O —otTowo mo^oaoM — <•OMOooo«o~o~o^>owe«o«a«ToM«« _o oivoo o «o i o« e»««>-<ii^e>e«iv-amom o»ooo«o*o«o •aoovomv* »»o»ooo»o>"ot»o».o»«»>o«jo»io»«•••-• o • « o o *»o -»o-* o« e «o a o « o o*t « •» e mo » o«e «o *»c A«O •••* • •«p*o — o»"««»om omooo«o«o»Oi^o«on9i»>'i>t » ono « o»»ooo«< o»> o——ji «»>wo«oo

• • • • • « • •oniomn »«« —OKioxi

• ! * • • <

S§Sr?32?i>JS£22SgS|SSSS5||

•«O««M • t « B M > « » M M I » l * l » «•••«• flB • •• • 9 V *• ••••••^••••At • *•ooeo o o o o o o o o o ooo oo o o o o o oooooooo o o•••• • • • • • • • • • ••• • • • • • • • • • • » • • • • • ••»Mwoa>OMOoofteo*o*o**owa»>c9«i* o^eae«iooo^eoo«*MO»«M««fteoe*«o»Mcoa »onomoi>9«io«ooa«o «o «-— onoSaoa? §3 o—So «•««•-» JJO — OMO

»o« MO»• • • • • • • • • • • • • • • • •-• o - O <• O • O — O O —- — •

n»*.c&c*.z*.z«.z*.za.z*.ca.cft.zi.>-a.——•••«<•• • «ai»»>oaooooaoeoz >»%»- MM*. «- & •.•••«»««><««•• •««»•>««»a »Mw«.to«.«.M»»c x o

267

• » < • •e a o• • •OTOI* ce e« e» CM e« o»- e»ow o» ooo

» o«o

&x ».x a.z•• ooo oo

> «• «•• «• MO OO O O• 11 • •

O £ O " M • So wo iv* m no e o «*• •• «o» o»* * «

SSfCSJS

? ? SI

>»o-»eao«<*o ft o «*o MO •?<

«IOO<MO»IO»O — OO 0*>OO OooMooo«io4e 'O«o4ro«ooo«o«o«e» o^o —o

—««. •>«to»e« o—o «o« o «i o«y o

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

• S 2 SS• • »CrxciSS—o

t • • • • f

o o o o o o o o o e• • • ' » » • • • i • ooo eooooooo o o o o o o

S »5wo-oaooaoo«m««i.»i»«o~o393io-o»ooof c O » e M o » o * > o » o « » o o O««MOM o f » e « > c « 2 « o « c

o 9 ov^a* a«*o«otna<u»^ooMft«*W9A 04* 9«*o «•• o*' o«»o5Sio«>o«o«o»o«o*!««ooo»»e*e«o«e»o«<o»o

«•.»>

7-7 -^—«.7«^.• ». ^-«. ^w>»M««»M.i * * m »«».c«.r — !:lil --——-ft'

268

• «-«•<>»-«!•.;s

oaoceT 2 x• « x*i *.««u•.MM I-.-OXO

o o o

o -• o » oo e o vo « e «o «of t>

o e o e o e o o o o o o o o o o oooor«* AI«OA1O««O«lG«»O«OMOMOMO*or-*»M*»~ ~ OM O »*O *«O — O « M

O«UO*O«O«<O» — A><

« *) « «MO O OOO

oa oni oo AIMO«0« 00^ —

§ »OX Of OAI••on o» • AI

OWOM am*-*

X 30. »aoaoa xz uV4«X«ktf l«C

o o o e o o o oooooo o o o o o o o o o ooo• •• • • • • • • • » • • • • • • •• • i • • • •

• O M O « O « 0 « O M 9 « O « « « * r » » * O « O » - O M O M O O O « 0 0 ^ * * ~ "~

>»o<r oin o«i>>

? O M O ^ O ^ O V O O V 9 ••••MO •• O <AO • O •• O At a **O M O V O •• O M 4 ••• • • • • • I I • • •

:i.r-» —a.ra. = a. x>«»a, x a. •—»» *i •• * «nf»eaaaaoooaa x xu• ^ ^ * . X M M M K M K O k a 3 a 9 « « « » ^ l « f M ^ N a . ^ M « « * * M < U « « « « I A # » « « e

»• >- »» N^.k>MM^ NO,>- M M Z a

• I •V.OOO«*O^C«f^OMOMOM «<MO»O«O»9 IMOOO *O «O<

S O O O O OI • • f » O O O O O O O O O O O O O O O O O O O O O

• • • • * t t « 4 _ J • _ • _ . ? • * _ J • _ • • £ •

gr:

»*«.r»« <4*r •. »•. x •.«_ a •.« _..m«v*iv * ««»^ftoooeooooooo ** «

^»»M*4(L *-^ & MM^vwrnnfU 9* « » ^> f-« « k>S ' ^ M f ^ A ^ & & M f M ^ X X O

269

o o o o o eoeoco o o o o o o o o o eooe• • •• • • • • - • • • * • • » • • . • • • • • • • • • • »» o »o »• o»> ee owoo « «ni<u»o*>o*> e «io • o*» o»> < "

o o o o o o• t • III

- — _- — > o « o o o — o<nr>»jo* O*-OI»OKO<WO»»-*«» — o^o««o»-o— o»o»io*>o»o»»o —•>.»«ooofc .o^r ~ - _ - _ _ _ ^

i«»o •

•«• • • « « • » « • «l«»OM*0«t • « • * « • • % • - • « • • •«« —oo o o o o o oooooooo o o o o o o o o o ooo•II I I I » lll*ll*l * I « I I I I • • III

O O O M C i*c^o«ooo««e»»«'f |»ooo — o « o — o t f *e«o9o«o«o— o**«^V v O O O t f l O — O ^ o •O0M9*^OV l m «*O f% C t t l O A O W O - O ^ O t f l O ^ O W O * * ^ V

«• «0«iO — 0*>>0«0»<>«••«<•• — «W«o"»To—0« O — O —0«0* — 0*«IO— 0-^— —• • • • • • • • • • • • • • « • •

•»•»•»•» MM M M M « L £ 333&t-MM*.>-a.l. MM»- ..M <U Jl • « «£££«££

270

O O 09 9 O O O O O O O O O O O O O O 9 9 O O O O

Of0«0«0

•• I* * -»\

& * & :

• • >l • • •

«-ooccaoacco :

O O

• • • • • • V»-9.>O>.9.>OI»tftO«teOI*Ol*O««»ome9enio^

name W9«ool*QtfO99*.9«

« 9 -*O* D«»O—O«WO «9 * .I • • • t • • •

s •?»•M 7 O

oo o e o o e 0990000 0 o o o o o oco

9«9t>.o«o«ovoni9-*«-o»ininnii«i909« o mow o -

• • • • • :• IV Mtft«O*«*«a«t* «»»V «*V«& X « . X ? Z - Z « . Z & C K - - I ^?i

271

•» o *»O • * tf»

c o o o o o o o o o o e o o

O « ••

« « « * » » O* 4 n M •* * •**t O «- M m • M *. (U •* •• M^ • * « f r » * - M « M O O « »

O » W*M IV »»

• •

0 0 0 0 0 0

s s =

o •• ••

O O O O O p O O A O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

• • ! • • ¥ • • • • § • • • • • • • • • » • • • • • • • • •in oiro«**ti»i« *n* 0*1 *n • r> * o« *M*»*^O«O«OIA(V*>

i • • • t • • »

» O O O Q f t * A I - « M m i * « « * «

i • I • • •

O O O O « h — — • I * ^ — » ' W » I••••••M«««*«*«*»k».»-.t^* I

• • • • t •

oooo ooooeooo• • • • ••••••••• *» * ^ Wt w»P* •* O *»W 4 O 9 •.••

te M •

t • • »

'

•e o e• • •

s -s

)*««e«*«t««««>«r«>—•w«to*^*o^«»«bO«««*pi »»•>*•*•|MMM«OOM««^««90>fr«*» OO«««««Minirt*<U •*«•»»»» MOM O«^-*»

I • • • • • • * • • • • • • • • »•• M •• •• (V I* •• ••

• • • • • • t 0 » • 0 t

• • t •

• • » •

272

•to3

m

•>

*VK•••

D

•O

t

•k

A «fC-

•1

•>MV*•nV.

••

i

«•«.

r — «-• *»•* « to c

• •

* •*<•• ••!

* »

• •

r> «•v » •O O «

«IT0>•

«

4>

*

_o•

w

«w

0• •

• «• M

»A,n.

m

*0

•r-.«P-,IWc••

»•

•*• -

VM0»

M •• •• •

•**• m «F **r- »b•* — s o

*

» • « m•- « * IA* ** « «• * n «i

t ft ft

O ftri«V»MMt» >- — O J» » « «

M« MVt

> *M*I

oeooocooooooeoo

» • t I

• • o •

eo o o o o o o o o o o otS.U^SSJm^**»-•<••».—— nj»i — —r>««o«

— «• «••«««« ««»IH W00 C O O O O C O C C C O

• ••• • ••• I •

oo e e ? c e o o e o e i

u • • • • • • t • .*>•••( w««ntft»bfn**pt«*Mi w«• oo oooooooooo o• • • • • • • • • » » • •M « % * « t f l ^ M M « t f » » ^ « O M«• *W» » « W V « « M •<U*«M»»»M

• • • ft • • •

« • • • t • •

s s g g o o — o c c

gi

o oo co o

0 0 0 0 0 0 * 0c o e o o o

S o c o o o eo o o o o c

ooc o o o- c e e o c c

O O O O O O M l O O O O O O Oo o o o e e * o o o o o o oe e o e o o M i o o c o o o o

§ s0 0 * ^ 0 0 0 c o e c co o o o o o o o o o oo e t n o o o e o o o eo o o o o o o o o o o

oooooo^oooooooooooooooooooo

gooooooooooooooooooooooooooo o o o c — o o o o o o o o o e o o o c o o o o c o

O O O O O O « " O O O O O O O O O O O O O O O O O O O 9

o o o o c c c o o o o o e c e c oOOOOOOOO 9OO00009 3_ _ ^ _ .oooooocoooccooooo

O O O O « « O O O O O O O O O O O O O i 9 O O O O O O 9 Ooooo«*oocec ec o c o e c o o o o c o c o o c

oooooooocooooooooooooooooo -oO O ^ O O O O O O O O O O O O O O O O O O O d O O — Ooo*oooeccocoo* -ooooooooooooooo»oooooao«.o

Soooooooo<»oooocooecec-oo — oec

273

O O 9 O O O O O

iiiiliii

oooooooooO 9 9 9 O O 9 4 *O O C O O O O C A I

§o

o o o o o aO 3 9 O O O

ooooooooo

|

I

000000*00oooooo«»oo

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0

O O O O 3<% 309

O O O O O « O O O0 0 0 0 0 — 0 0 0oc o o o «oo o

o o o o o « oo o o o o • o

0 9 9 9 9 9

S o o o o eo e o o

0000*0000OOOO 90 O 90oooon ioooo0000^*9900OOOO *OOOO

O O O OO O O O9 9 9 9

O O O O O 3 O 3 0S S a S S S S S So o o o o o o o o

o oosss O O C C O O O O COOOOOO«tOO9OOOOOOOOOOOOOOOOOOO»ooeoooMoooooooooooooceooeoooee

« % O O O O O O «OOO OO OO OO 9O O O O O OO O O O O <p«Win oo oooo«ooooooooooo oooo oo oooo om* O O O O O O < M O O O O O O O O O « O O O O » O O O 0 9 0 0 / W

— o o*l 39m oo

3O9o o o o o o o o oOQ<P 9 O 9 9 O Ooo • o o o o o o

ooooo3oaooO . O O O O »O OOOO OO O O O O O O OOO9 OO .aOf l tOOOOO 3 9 O O 9 O O O O 9 9 O O O 9 O O O

o o o o w e o o o o o o o o o o o a o o o e o o o o o x o o

o ooo ooo oo X O400300OO•- ooooooooo

O *O 3 3O9 O 9

• OOOT O O O O O 00 O O O O3000v>Oooooco00 •0oot f iooooocooo

9O-*9 l>9OOO9OO

O O O O O O O O O O O « O O O OO-3O000094OO«l09OOoooooooeooo^oeeoOOO3OO3 33 O9«99O3

«9O000VOOOOOOOOWOO99OOOO«00 GOOO 0 0

W » 9 O O O O O O O 9 9 9 O O O 9 O 3 9 O O O O i < I O O 9 9 ' 9 9fit * O O O O O O O O O O O O O O O O O O O O O O « O O O O C OM 4 t O 9 0 0 9 O O O O O a < > O , 0 9 9 O 9 O O 0 3 * » O 9 9 O 0 3_i — o oo oooooooo oe oooo oo oe o > o o o e o o

274

c

o o *c c ooooooc9O9OOOOO**

O OOOOOO*Oc* 000000*0C- O9OOO99Oocoocoovo

C 000 00» 00o o o o o o * ooc ooooc*oo

OOOOOttOOO0 0 000* 000ocooo»-cooc o o o o e oooc 0000*000

o oco— oooc

^ oootAaooooooo » o o oo o

c cooooccc0 9 9 OO OOOOe cmoooooooo «o c o o c> c

0*0000000C foOOOOOOOo «aooooooS — oooccc'C•99OOOOO

— oooooooo•*» oooooooo** ooooeooof^ OOOOOOOO• oooccooo

§0 00 00 00 00 00 00 00 00 00 00 00 00 00 OCo oo oo oo oo oo oo oo oo oo oo oo oo oo oo

oc oo oo e e oo o o o o oo oo oo oo oo oo cc c c

OO OC OC OO OO OO OC OO OO OO OO OO OO CO COOO OO OO OO OO CO OO OO OO OO OO OO OO OO OO

0000000000000000000000000000000000 D COOOC00090

oooeoooooooooooooooooooooooooooooooooooooooocOOOCOCO • 0 C OC C 0 0 OO O 000 OOOOOOOOOOO 0 O 0 OO 0 C C C -COO

S0900000000000OO9900OOOOOOOOOOOOOOOOO09O900O9ooooocooooocoocooooooooooooooooooooooooooeoo

oooo •oooooooc-ooooooooooooooooooocooocc *oooooo

coococ c oooooooooooooooooocoooooooo oo eeoc-oeoecOOOOOOO 9OOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOo o o c o o ooooooooeeooooooooooooooocco oooooooeeocOOOOO 00 00 OOOOO OOOO 0000000000000000 OOOOOOOO OOO

OOOOO OOOO OOOOOO 000 OOOOOOOOOOOOOOOOOOOOOO 09000ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo *oooooooooooo

SSSS§SSoSSSeo§ooSSoSeeSSSeSSSSSSS§oSSS§eoeSSSOOOOOOOO9OOOOOOOOOOOOOOOOOOOOOOO99OOOOoooooeooooocoooeooeooe *ooe coo coocoococ

voooooooooooooooooooooooooeoooooooooeeoooooooOOOOO OOOOOOOO OOOOOOOOOOOOOOOOOOOOOOO9OOOOOOOOoccooooooooocooocooooooeoeooooooocococooococoOOO900OOOOOOOOOOOOOOOOOOOO •99OOOOOCOO09OOO009

SooooooooooooooooooooooooooooooooooooooooooooOOOOO OO9O 9OOOOOOOOOO OOO OOOOOOOOOOO9OOOOOOOOOftOOOCOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOC4OOOOOOOO-9OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO9O9O9

at

275

o o c*o o oo o c

CO Co o o

o o o99 0

O O O

OOOO0 C C 0O O 9 O

OOOO

Sc* c oOOO

OOOO

o o oo o oo o c

o o oo a o

0 00O 9 O

0 00

OOOOOOOOo o c oOOOO

o o o«ooo-S.OOO —

0 0

o o00c o

o o

o es*00

OOOO

C 0 — 0o o —o

*

9000OOOOOOOOOOOO

eo0 0o oo o

o oo o0 0

O Mss

0 000o o

sso o00

e oo oooo o

e*>0*o o

o o0 0

90 OOO O COOOOO

900000 00

OC 00

o «-0 •

O —O ta

'o oo o00

o o??

OOO000OOO

* oo* oo• oo

04

o <S3

e0o

o9o

«• «

*

o <c c

a 00

> e o> 00: co

COo o

oo« om o

o o o oo o e o

> 9000

> O O 9 O»aooo

00 ft 0o o woo o • o

*

* o e owo o o

e o o ogo o o0 00

OOOO

o o o o co oo o o

o o o o o00000

00 00o o o oo o o o

o e oo o o o

o o o oo o o o00 00

O C C 9 O O

o o o o c oOOOOOO

00 OO OOO O OOOOssssss

o o00o oc o

eoo oe e

o o9 Ooo

OOOO

OOOO0 000

M0•

OOOO

000=

00o oo oC 0

c oss

sso o

oooio eo§ 00-0*o o *•

*

ssssss

OOCOCCCC COOOOO3OOCOOOOOO 9OCoooooooooocccococr

oooooooocoo o o o o o c coooooooooooccccoc cooooooooc

oooooooccoooooooc.^eococcocc,O O O O O O O O 2

ooooooooc

foooooc c coooococcooococcc

ooooooooc

eeoooocccSooooooocoooooooc

OOOC^OCOOOOOOOO* 00 O CO <> e o c o e o o o o c c o o o o o ~ o c o o o o

o oo&«oooooooooooooooooeoooceoooooo oooo«-eeoeoo

OOOOO 3O93-oooocccccooec e c c eeeooecooc?coooocooc

S * o o o e c c o o o o » o o o e o e c o o o o o c o o o e o o o o o t f t o o o o e j o o o o_ V O O O O O O O O O O « y o O 9 O O O O O 9 p O O O p p 9 O O 9 O O O « O O O O O O O O O

SOO9OOOOOOOOo—ooooooooo

» * O O O O O O O O O O n i O 9 9 O O O O O ' 3 Oo « o e o o o o c o o o •eeoeooooooOVOOOOOOO9OOOOOOOOO9OOOOOOOOOOOOOOOO9OOOOOO

>ecoccoc> o o o o o o ;»c c cc o c c

000000000<AOOOOOOOOOOOOOOOOOO>OOOOOO OOOOOO OO O-»9c . e c c o c o c c f » o o o o o o o o e o o o o o c e e o c e c c * o o o > e e e o e > e e c eO O O 9 O O O O O * O O O O O O O O O O O O O O O O O O O O O O - * O O O O O O O O O O W O

S O O O O O O O O M O O O O O O O O O O O O O O O O O C O O O O M O O O O O O O O O O W Ooooooooowoooooooooooooooooooooo«»oooooooooowo

ooooooooo~>c o c o c c c c» O O O O 00 O C.^ o o e o o c c)O 9 99 9 O Csst

e cgoeoKi eeooeeeeeoeooeeeooeeee»oeoeeooeoe«eeoe

S ooooo • e o o c o o o c o c o o o o o o o o o o e o « o e o c o o o o o o » « o o c oooooo<vaooooooooooooooooooooo t *oooaooooooooooo

e o o o o o « i c o o o o o e o o o o o o o o o o o o o o o * o o o o o c o o Q O * - c e o o

ecececcecOO 3033333

SeoocoeceOO O O 30 O Cooeoooooc

00 *00 90000 0000 00000000009*000 000 0000«WO 000 000oo««ecoocococoooooooooooeo»>ecooeoooee»90ooooo

ooo ooeo e cooooaooooooecoeoccOOOO 30C O

oooooooc cSOO 30 3 J O Cooooooc cm000000003oeeeeoc ec

276

• • I

t t • t • »

o ococoo^r«»^^«** — o

c cccecfr>«-0'**C' — ««*v<

• • • • • •

S r c c cee»*~»£»£ei£

»• » • »

c c c c oc c oe c

OAOOOOOO9O

ft • • • t

0000000000

O O»OOO*»OfW — *—(/»»—«

Pt • « • •*ir* o» — •

» •

sUs;• t •

a

i

s 5JJ

t • • f

t • • •

0 0 0 00

o o o oo• • • * •

oooeo

ORIGINAL PAGE J3Of POOFt uAfclfT

oo oo oo oo oo oo oo oo oo oo ooII •• t* II • I * » » t It It • 1 II

*£ *« M* »£ M* MM 0»- VO 0 * W 2 * ** . » o — o —• — fr r> « c r« c— • •* »»t »r

• ft t i l l * »ft •! • • •

Ofc**O(W«****IAO«'V*'V«*«IO«***V*«ft*OIMOO*'1«»G«>"*»

ooooooooooooooeeooooooooooooooooo

ooooooooooooooooooooooooooooooooo

M • vt rT« 10 m «*••«*« *««»»»» ««^» ««w«*«vo**i*«*in

ooccooc cooooooooooooc ooeocooocoec

zS«ss%SSHs8:§S22?2&§H;S*sss:-s«:OOOOOOOOOOO9O9OOOOOOOOOOOOO90O99O

ooeooooooooooooooooc oooooooooooe o• • • • • • • • t i « » * f t i • • • • • t t « t » t t t * t t i t

c -V277

o o o o oo o o o oo • o o o s s

000t t t

OOCCCOOO69MCOOOOOOOOO—*^OOOOOOOOO9 9 •*

OOOOOO3O-OJ1F-

o o o o oo o o o oo o o a oo o o o o• 3 o o a

0 0 0 1 * 0 0o o o « o oo o o £ o oo o o • o o

o o o o o

o o o o oO O O O C O O O O - * « I V

g o o o o 0 0 3- O O O

o a o 3 o 3o o o

t t to o o o o o o o o » t » n iOOOOOOOOOOMK

e o o o o o o e e « » > -

3 O

S oo o —

§OOOOOO003 O

IOOOOOOOOOOOOCOOOOOOOOCVOOOOO

• ooooooooo<SOOOOOOoooooooooni—inoooocoooomv*

OOOOOOOOOOOOOOCOOOCOOOOOOOOOf^OCOC^OOoooooooooooooooooooooooooooo^oooonooOOOOOOOOOOOOOOO •OOOOOOOOOOOO«OOOO«10O

_

eoooooeoovvm

gOOOOOOOOOOOOOOO*ooooooapppppaa.p<00 00 OOOO^OOO

OOaOOOOOOOOOOOOOOOOO^OOOOV^OOOOMOOOOOOoo 'ocoooocoooooooocoocooo.«*oooo«-coocoooooaoooooooiaoooooooaoooo<»oooo«oooao3oooooooooooooooooooooooo<*oc ~ ~ ~ ~ ~ ~ ~OOOOOOOOOOO »O OO O 00 OOOOO O »OC

oooaoooooxotfie c c o o c c c c o . * * .

oooaoooooeoooo*oooo«ocoooooo8oooooooOO3O33OOOOaOO9O3O03OooaooooooooooooooooooSOoooOOOO

nioooontooooooooasoooAtooooodSOOOOO >OOOO »OOOOOOOO

oO

oooooOO3OO

Soo oo oooooooo ooo oooo — oooo»ooeooooooooooaoo »o a a oo o oo o oo o * O 3 O 3 «o3oo3oaaoo

oooooooooooO M 9 O O O O O O O O Oo»ooeoooooo

ooooooccc«*cOOO 3OOOOO9 /» —OOOOOOCOCK—•"g oaaoooo 3 Ji *• •»•oooooooo—««

• itMMM333

>oo eoo» nt —

SO O O O* J* •*a a •» o * * M8

oopoopoooooooppopoSioeopooppoooooooeo• oeoooo OOP

ooo* • •

OOOOOOOCO"——

I , ft • ft

278

ORIGINAL PAGE ISOf- POOR QUALITY

• • • •

O O O O 00• ff • • • •«• o «*« » •

O O O O 00

e •* i

ooooo

• • • • •

• • • •

o o c o o o o o o o

— ni o ni T

o o o e o

• • • I

O O O O O O O O O O O O I

• •

o o oo

• • • I tit t • t ••

oooooooooooooooooooooo

« — — •>•I I • •

« *«»!«•e c a e oo»«• •» 9- +• •» o

—If O * ••

O O O O O O

•> m » iwn vi» -u -• m /< tfi

A t • •0»«I

— «>•. O-* 9 J* l/t

o o o o c c c o o c o o e o c o o c o c o oW» — « V«U •> KIT r-9 » « p» — W 0« » <!« «

• • • • • • • • t • t

OOOOOOOOO030OOOOOOOOOO• I•«•> I

l o c o c e o o o o e o o o o e o

• m«««4«<**«^i4a«<vo««»«*nfv«<«

• Mnmiv —•»n>ma «•»<«« •» •ooooooooaoooooocooo• • • • • • > • • • • > • • ( • • • •

> —«v—4>>un>»«t.r-i

279

BIBLIOGRAPHY

1. Wang, S.J. and J.M. Cameron, "Dynamics and control of a large

space antenna," Journal of Guidance, Control and Dynamics, Vol.7,

No. 1, Jan.-Feb. 1984, pp. 69-76.

2. Cameron, J.M., M. Hamidi, Y.H. Lin, and S.J. Wang, "Distributed

control of large space antennas," paper presented at the

Workshop on Applications of Distributed System Theory to the

Control of Large Space Structures, July 14-16, 1982, Pasadena,

Ca., pp. 225-247.

3. Landau, I.D., Adaptive Control: The Model Reference Approach,

Marcel Dekker, Inc., New York, 1979.

4. Kalraan, R.E., "Design of self-optimizing control," Trans. ASME,

Vol. 80, No. 2, 1958, pp. 468-478.

5. Feldbaura, A.A., "Dual control theory," collected in Optimal and

Self-Optimizing, R. Oldenburger, Ed., MIT Press, Cambridge,

Mass., 1966, pp. 458-496.

6. Iserman, R., II. Baur, W. Bamberger, P. Kneppo, and H. Sibert,

"Comparison of six on-line identification and parameter

estimation methods," Automatica, Vol. 10, 1974, pp. 81-103.

7. Ljung, L., "Analysis of recursive stochastic algorithms," IEEE

Trans, on Automatic Control, Vol. AC-22, 1977, pp. 551-575.

8. Ljung, L., "On positive real transfer functions and the

convergence of some recursive schemes," IEEE Trans, on Automatic

Control, Vol. AC-22, 1977, pp. 539-551.

280

9. Landau, I.D., "Elimination of the real positivity condition in

the design of parallel MRAS," IEEE Trans, on Automatic Control,

Vol. AC-23, No. 6, Dec. 1978, pp. 1015-1020.

10. Martin-Sanchez, J.M., "A new solution to adaptive control,"

Proc. IEEE, Vol. 64, 1976, pp. 1209-1218.

11. Johnstone, R.M., D.G. Fisher, and S.L. Shah, "Hyperstable

adaptive control — an indirect, input-output approach with

explicit model identification," Joint Automatic Control

Conference, 1979, pp. 487-494.

12. Narendra, K.S., and L.S. Valavani, "Direct and indirect adaptive

control," Automatica, Vol. 15, No. 6, Nov. 1979, pp. 653-654.

13. Goodwin, G.C., P.J. Ramadge and P.E. Caines, "Discrete time

multivariable adaptive control," IEEE Trans, on Automatic

Control, Vol. AC-25, No. 3, June 1980, pp. 449-456.

14. Goodwin, G.C., P.J. Ramadge, and P.E. Caines, "Discrete time

stochastic adaptive control," SIAM Journal of Control and

Optimization, Vol. 19, 1981, pp. 282-285.

15. Whitaker, H.P., P.V. Osburn, and A. Keezer, "New developments in

the design of adaptive control systems," Institute of

Aeronautical Sciences, Paper 61-39, 1961.

16. Donalson, D.D., and C.T. Leondes, "A model referenced parameter

tracking technique for adaptive control systems," IEEE Trans.

Appl. Ind., Sept. 1963, pp. 241-262.

17. Winsor, C.A., "Model reference adaptive design," NASA-CR-98453,

Nov. 1968.

281

18. Butchart, R.L. and B. Shackcloth, "Synthesis of model reference

adaptive control systems by Lyapunov's second method," Proc,

1965 IFAC Symp. Adaptive Control (Teddington, England), ISA,

1966, pp. 145-152.

19. Parks, P.C. "Lyapunov redesign of model reference adaptive

control systems," IEEE Trans, on Automatic Control., Vol. AC-11,

July 1966, pp. 362-367.

20. Phillipson, P.H., "Design methods for model reference adaptive

systems," Proc. Inst. Mechanical Engineers, Vol. 183, Part I,

'1968-1969, pp. 695-706.

21. Gilbart, J.W., R.V. Monopoli and C.F. Price, "Improved

convergence and increased flexibility in the design of model

reference adaptive control systems," Proc. 9th IEEE Symp.

Adaptive Processes Design and Control, Dec. 1970, pp. IV.3.1-

3.10.

22. Landau, I.D. and B. Courtiol, "Adaptive model following systems

for flight control and simulation," AIAA 10th Aerospace Sciences

Meeting, No. 72-95, January 1972.

23. Popov, V.M., "The solution of a new stability problem for

controlled systems," Automation and Remote Control, 24, 1963,

pp. 1-23.

24. Landau, I.D.,. "Synthesis of discrete model reference adaptive

control," IEEE Trans, on Automatic Control, Vol. AC-16, 1971,

pp. 507 508.

282

25. Landau, I.D. and H.M. Silveira, "A stability theorem with

applications to adaptive control system," Proc. 3rd IFAC Symp.

on Sensitivity, Adaptivity, and Optimality, Ischia, Italy, June

1973, pp. 282-286.

26. Bethoux, B. and B. Courtiol, "A hyperstable discrete model

reference adaptive control system," Proc. 3rd IFAC Symp. on

Sensitivity, Adaptivity, and Optimality, Ischia, Italy, June

1973, pp. 287-289.

27. Anderson, B.D.O., "A simplified view of hyperstability," IEEE

Trans, on Automatic Control, Vol. AC-13, 1968, pp. 292-294.

28. Monopoli, R.V., "Model reference adaptive control with an

augmented error signal," IEEE Trans, on Automatic Control, Vol.

AC-19, Oct. 1974, pp. 474-485.

29. Morse, A.S., A. Feuer, and B.R. Bartnish, "An unstable dynamical

system associated with model reference adaptive control," IEEE

Trans, on Automatic Control, Vol. AC-23, June 1978, pp. 499-500.

30. Narendra, K.S. and L.S. Valavani, "Stable adaptive controller

design - direct control," IEEE Trans, on Automatic Control, Vol.

AC-23, Aug. 1978, pp. 570-583.

31. Narendra, K.S., Y.H. Lin and L.S. Valavani, "Stable adaptive

controller design - part II: proof of stability," IEEE Trans, on

Automatic Control, Vol. AC-25, No. 3,, June 1980, pp. 440-448.

32. Morse, S. and A. Feuer, "Adaptive control of single-input

single-output linear systems," IEEE Trans, on Automatic Control,

Vol. AC-23, August 1978, pp. 557-570.

283

33. Morse, A.S., "Global stability of parameter-adaptive control

systems," IEEE Trans, on Automatic Control, Vol. AC-25, No. 3,

June 1980, pp. 433-439.

34. lonescu, T. and R.V. Monopoli, "Discrete model reference

adaptive control with an augmented error signal," Automatica,

Vol. 13, 1977, pp. 507-517.

35. Narendra, K.S. and Y.H. Lin, "Stable discrete adaptive control,"

IEEE Trans, on Automatic Control, Vol. AC-25, No. 3, June 1980,

pp. 456-461.

36. Suzuki, T. and S. Takashima, "A hyperstable scheme for discrete

model reference adaptive control system," International Journal

of Control, Vol. 28, 1978, pp. 245-252.

37. Johnstone, R.M., S.L. Shah, and D.G. Fisher, "An extension of

hyperstable adaptive control to nonminimum phase systems,"

International Journal of Control, Vol. 31, 1980, pp. 539-545.

38. Narendra, K.S. and L.S. Valavani, "Direct and indirect model

reference adaptive control," Automatica, Vol. 15, 1979, pp. 653-

664.

39. Narendra, K.S. and L.S. Valavani, "A comparison of Lyapunov and

hyperstability approaches to adaptive control of continuous

systems," IEEE Trans, on Automatic Control, Vol. AC-25, No. 2,

April 1980, pp. 243-247.

40. Monopoli, R.V. and C.C. Hsing, "Parameter adaptive control of

multivariable systems," International Journal of Control, 22,

No. 3, 1975, pp. 313-327.

284

41. Sobel, K., H. Kaufman, and L. Mabius, "Model reference output

adaptive control systems without parameter identification," 18th

IEEE Conference on Decision and Control, Ft. Lauderdale, FL,

Dec. 1979, pp. 347-351.

42. Sobel, K., H. Kaufman, and L. Mabius, "Implicit adaptive control

systems for a class of multi-input multi-output systems," IEEE

Trans, on Aerospace and Electronics Systems, Sept. 1982, pp.

576-590.

43. Broussard, J.R. and M.J. O'Brien, "Feedforward control to track

the output of a forced model," Proc. 17th IEEE Conference on

Decision and Control, Jan. 1979, pp. 1149-1154.

44. Balas, M.J. and C.R. Johnson, "Toward adaptive control of large

structures in space," Applications of Adaptive Control, Academic

Press, 1980, pp. 313-344.

45. Johnson, C.R., "Adaptive modal control of large flexible

spacecraft," AIAA Journal of Guidance and Control, Vol. 3, No.

4, July-August 1980, pp. 369-375.

46. Rohrs, C.E., L. Valavanl, M. Athens, and 6. Stein, "Robustness

of adaptive control algorithms in the presence of unmodeled

dynamics," Proc. 21st IEEE Conference on Decision and Control,

Dec. 1982, pp. 3-11.

47. Bar-Kana, I., H. Kaufman, and M. Balas, "Model reference

adaptive control of large structural systems," AIAA Journal of

Guidance and Control, Vol. 6, No. 2, March-April 1983,

pp. 112-118.

285

48. Workshop Briefing Charts, Study Task No. 9 - Berthing, NASA

Space Station Task Force Concept Development Group, Dec. 5-9,

1983.

49. Craig, M., Study Task No. 11 - Configuration and Controllability

Studies, NASA Space Station Task Force Concept Development

Group, Dec. 16, 1983.

50. Clough, R.W. and J. Penzien, Dynamics of Structures, McGraw-

Hill, N.Y., N.Y., 1975.

51. Juang, J.N. and S.J. Wang, "An investigation of quasi-inertial

attitude control for a solar power satellite," Space Solar Power

Review, Vol. 3, 1982, pp. 337-352.

52. Hahn, W., Theory and Application of Lyapunov's Direct Method,

Prentice-Hall, Inc., New Jersey, 1963.

53. Lyapunov, M.A., "Investigation of a singular case of the problem

of stability of motion," Mat. Sbornik 17, 1893, pp. 252-333

54. Bar-Kana, I., ."Direct multivariable model reference adaptive

control with application to large structural systems," Ph.D.

Dissertation, Rensselaer Polytechnic Institute, Troy, New York,

May, 1983.

55. Landau, I.D., "Design of discrete model reference adaptive

systems using the positivity concepts," in Proc. 3rd Symp. on

Sensitivity, Adaptlvity and Optimality, Ischia, Italy, 1973,

pp. 307-314.

286 NASA-JPL-ComL. LA.. CaB.

TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No. JRL 85_5? 2. Government Accession No.

4. 'Tit le and SubtitleDynamic Modeling and Adaptive Control for

Space Stations

7. Author(s) che_Hang charles In and Snyh John Wang

9. Performing Organization Name ar

JET PROPULSION LAB(California Institul4800 Oak Grove DriiPasadena, Calif orn:

id Address

3RATORY:e of Technology/eLa 91109

12. Sponsoring Agency Name and Address

NATIONAL AERONAUTICS AND SPACE ADMINISTRATIONWashington, D.C. 20546

3. Recipient's Catalog No.

5. Report DateJuly 15, 1985

6. Performing Organization Code

8. Performing Organization Report No.

10. Work Unit No.

11. Contract or Grant No.NAS7-918

13. Type of Report and Period Covered

JPL Publication

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract of all large space structural systems, space stations present a uniquechallenge and requirement to advanced control technology. Their .operations requirecontrol system stability over an extremely broad range of parameter changes and highlevel of disturbances. During shuttle docking the system mass may suddenly increase bymore than 100% and during station assembly the mass may vary even more drastically.These coupled with the inherent dynamic model uncertainties associated with large spacestructural systems require highly sophisticated control systems that can grow as thestations evolve and cope with the uncertainties and time-varying elements to maintainthe stability and pointing of the space stations.

This report first deals with the aspects of space station operational propertiesincluding configurations, dynamic models, shuttle docking contact dynamics, solar panelinteraction and load reduction to yield a set of system models and conditions. A modelreference adaptive control algorithm along with the inner-loop plant augmentation designfor controlling the space stations under severe operational conditions of shuttledocking, excessive model parameter errors, and model truncation are then investigated.The instability problem caused by the zero-frequency rigid body modes and a proposedsolution using plant augmentation are addressed. Two sets of sufficient conditionswhich guarantee the globablly asymptotic stability for the space station systems areobtained.

The performance of this adaptive control system on space stations is analyzed throughextensive simulations. Asymptotic stability, high rate of convergence, and robustness ofthe system are observed under the above-mentioned severe conditions and constraintsinduced by control hardware saturation.

17. Key Words (Selected by Author(s))

Astronautics (General),Engineering (General)"Computer Programming and SoftwareSystems Analysis

18. Distribution Statement

Unlimited/Unclassified

19. Security Clossif. (of this report)

Unclassified

20. Security Clossif. (of this page)

Unclassified21. No. of Pages 22. Price

JPL 0184 R9/83