it321 unit 1 powerpoint

73
www.ciscopress.com Switching Basics and Intermediate Routing CCNA 3 Chapter 1

Upload: ken-voller

Post on 02-Nov-2014

119 views

Category:

Documents


0 download

DESCRIPTION

VLSM

TRANSCRIPT

Page 1: IT321 Unit 1 PowerPoint

www.ciscopress.com

Switching Basics and Intermediate Routing CCNA 3

Chapter 1

Page 2: IT321 Unit 1 PowerPoint

www.ciscopress.com

VLSM

• Variable-length subnet masks were developed to allow multiple levels of subnetted IP addresses within a single network

• The routing protocol you use must support VLSM– Open Shortest Path First (OSPF)– Enhanced Interior Gateway Routing Protocol (EIGRP)– Routing Information Protocol version 2 (RIPv2)

• VLSM is crucial for an effective IP addressing plan

Page 3: IT321 Unit 1 PowerPoint

www.ciscopress.com

VLSMPrefix Length

• Prefix length is a shorthand way for expressing the subnet mask for a particular network– Number of 1s in the binary representation of

the subnet mask• When bits are taken from the host part of an

address and added to the network part, the number of the bits in the host part decreases

– You create additional subnets at the expense of the number of host devices on each network segment

Page 4: IT321 Unit 1 PowerPoint

www.ciscopress.com

VLSMPrefix Length

• Number of subnets can be calculated using the 2s formula, where s is the number of bits by which the default mask is extended

• In IOS releases prior to 12.0, you must explicitly allow subnet 0

• In IOS releases 12.0 and later, subnet 0 is enabled by default

• The all-1s subnet has always been allowed

Page 5: IT321 Unit 1 PowerPoint

www.ciscopress.com

VLSMPrefix Length

• Bits that are not part of the network or subnetwork portions of the address are the range of host address

• Use the 2h – 2 formula (where h is the number of host bits) to calculate available host addresses; all 0s in host portion is the subnet identifier address, all 1s in host portion is the subnet broadcast address

Page 6: IT321 Unit 1 PowerPoint

www.ciscopress.com

VLSMPrefix Length

Network Mask and IP Address for the Range 192.168.1.64 Through 192.168.1.79, with Host Bits Shaded

• In the IP network number that accompanies the network mask, the following are true:– When the host bits are all binary 0s, that address is the beginning of the address range

– When the host bits are all binary 1s, that address is at the end of the address range

Page 7: IT321 Unit 1 PowerPoint

www.ciscopress.com

VLSMPrefix Length

Fourth Octet for the Range

192.168.1.64 Through

192.168.1.79 (continued

on next slide)

Page 8: IT321 Unit 1 PowerPoint

www.ciscopress.com

VLSMPrefix Length (continued)

Fourth Octet for the Range

192.168.1.64 Through

192.168.1.79

(continued)

Page 9: IT321 Unit 1 PowerPoint

www.ciscopress.com

VLSMPrefix Length

• In this example, PCs use the prefix length of 28 (the subnet mask 255.255.255.240) to determine which other devices on their local network have their first 28 bits in common– A 28-bit prefix length permits 14 hosts per subnet

• The PC uses ARP to find the corresponding destination MAC address if communication with any of these devices is necessary

• If the destination IP address is not in the range for the subnet, the packet is forwarded to the default gateway

Page 10: IT321 Unit 1 PowerPoint

www.ciscopress.com

VLSMPrefix Length

• A router works in a similar manner when it makes a routing decision– It compares the destination IP address of the packet to

network entries in the routing table– The network entries have a prefix length associated

with them– The router uses the prefix length to determine how

many destination bits must match to send the packet out the corresponding outbound interface that is associated with the network number in the routing table

Page 11: IT321 Unit 1 PowerPoint

www.ciscopress.com

VLSMPrefix Length

• The router determines from the table where to send the packet destined for 192.168.1.67– In this table, there are four entries for network 192.168.1.0– The third entry is for the 192.168.1.64 subnet, which is the subnet

to which 192.168.1.67 belongs– Note that the next subnet, 192.168.1.80, begins with a number

larger than 192.168.1.67

Page 12: IT321 Unit 1 PowerPoint

www.ciscopress.com

VLSMBenefits of VLSM

• More efficient use of IP addresses– Without use of VLSM, a single subnet mask must be

implemented with an entire Class A, B, or C network

• Greater capacity to use router summarization (discussed later in this chapter)– Allows more hierarchical levels within an addressing

plan

• Isolation of topology changes from other routers

Page 13: IT321 Unit 1 PowerPoint

www.ciscopress.com

VLSMBenefits of VLSM

VLSM Permits Flexible, Efficient Subnet Address Allocation

Page 14: IT321 Unit 1 PowerPoint

www.ciscopress.com

VLSMVLSM Calculations

• VLSM is used to maximize number of possible IP addresses available for a network– Point-to-point serial links require only two host

addresses, so a /30 subnet does not waste scarce subnet addresses

• With VLSM, you can subnet a subnet!• Next slide will show how the subnet

172.16.32.0/20 is further subnetted with a /26 prefix

Page 15: IT321 Unit 1 PowerPoint

www.ciscopress.com

VLSMVLSM Calculations

Further Subnetting 172.16.32.0/20 to /26 Prefixes

Page 16: IT321 Unit 1 PowerPoint

www.ciscopress.com

VLSMVLSM Example

VLSM Used to Define Subnets of 172.16.32.0 Across the Boundary Between Octets Three and Four

Page 17: IT321 Unit 1 PowerPoint

www.ciscopress.com

VLSMCIDR and Route Summarization

• The definition of classless inter-domain routing (CIDR):– Allocation of one or more blocks of Class C network numbers to

each network service provider– Organizations using the network service provider for Internet

connectivity are allocated bitmask-oriented subsets of the provider’s address space as required

• CIDR (“cider”) was developed to address the problem of IP address space running out and core Internet routers running out of capacity

• Route summarization is the representation by a single network of a group of contiguous networks

Page 18: IT321 Unit 1 PowerPoint

www.ciscopress.com

VLSMCIDR and Route Summarization

Route Summarization of Contiguous Subnets of a

Class B Network

Page 19: IT321 Unit 1 PowerPoint

www.ciscopress.com

VLSMCIDR and Route Summarization

Route Summarization of Contiguous Subnets of a Class B Network (continued)

• Router D in previous slide has these networks in its routing table– 172.16.12.0/24– 172.16.13.0/24– 172.16.14.0/24– 172.16.15.0/24

• To calculate the summary route:– Find the number of highest-order bits that match in all addresses– Locate where the common pattern of digits ends– Count the number of common bits; this is the length of the

summary route

Page 20: IT321 Unit 1 PowerPoint

www.ciscopress.com

VLSMCIDR and Route Summarization

Route Summarization of Contiguous Subnets of a Class B Network (continued)

• Follow these guidelines when calculating summary routes:– Addresses that do not share the same number of bits as the prefix

length of the summary route are not included in the summarization block

– The IP addressing plan is hierarchical in nature to allow router to aggregate the largest number of IP addresses into a single summary route

– IP networks can only be summarized in 2n networks (for some n), where the last octet of the first network in the sequence is divisible by 2n

Page 21: IT321 Unit 1 PowerPoint

www.ciscopress.com

VLSMRoute Aggregation

• By using a prefix length instead of an address class to determine the network portion of the address, CIDR allows routers to aggregate routing information– Shrinks routing table– One address and mask combination can represent the routes to

multiple networks

• Route aggregation is used more loosely than CIDR; describes the summarization of classful networks

• Without CIDR, routers must maintain tables for individual networks

Page 22: IT321 Unit 1 PowerPoint

www.ciscopress.com

VLSMRoute Aggregation

CIDR Permits the Aggregation of Contiguous Class B Networks

Page 23: IT321 Unit 1 PowerPoint

www.ciscopress.com

VLSMRoute Aggregation

Summarization Employs the Furthest-to-the-Right Principle

Page 24: IT321 Unit 1 PowerPoint

www.ciscopress.com

VLSMRoute Aggregation

• In previous slide, the router can summarize routes to these networks using a 13-bit prefix which these 8 networks share– 10101100 00011000 00000000 00000000 = 172.24.0.0– 11111111 11111000 00000000 00000000 = 255.248.0.0

• A single address and mask define a classless prefix that summarizes routes to the eight networks: 172.24.0.0/13

Page 25: IT321 Unit 1 PowerPoint

www.ciscopress.com

VLSMRoute Aggregation

• Using a prefix to summarize routes results in the following:– More efficient routing– A reduced number of CPU cycles when calculating

a routing table or sorting through routing table entries to find a match

– Reduced router memory requirements

Page 26: IT321 Unit 1 PowerPoint

www.ciscopress.com

VLSMSupernetting

• The practice of using a summary network to group multiple classful networks into a single address is called supernetting– Subnetting breaks down a classful network– Supernetting pastes together classful networks

• With Class A and B address space almost exhausted, large organizations requested multiple Class C network addresses from their service providers

• A block of contiguous Class C addresses can appear as a single large network, or supernet

Page 27: IT321 Unit 1 PowerPoint

www.ciscopress.com

VLSMSupernetting

• Supernetting and route aggregation are similar– Route aggregation is used in the context of

summarizing routes with BGP– Supernetting is a term used when the summarized

networks are under common administrative control

• Many networking professionals use the terms “route summarization” and “route aggregation” interchangeably

Page 28: IT321 Unit 1 PowerPoint

www.ciscopress.com

VLSMCIDR Example

CIDR Permits the Aggregation of Several Classful Networks into a Single Route Advertisement

Page 29: IT321 Unit 1 PowerPoint

www.ciscopress.com

Classful and Classless Routing

• Behavior of classful routing is limited compared to classless routing– Classful routing protocols(RIPv1, IGRP) cannot do

VLSM• Make routing decisions and send routing updates

according to Class A, B, and C constructs

– Classless routing protocols work independently of Class A, B, and C addresses

• In the “real world,” classful routing protocols are close to becoming irrelevant

Page 30: IT321 Unit 1 PowerPoint

www.ciscopress.com

Classful and Classless RoutingClassful Routing

• RIPv1 and IGRP are the two classful routing protocols– Rare to see either of these employed on a router today– Classful routing protocols do not include subnet mask

information in their updates

• The router applies two options when receiving a routing update packet– If the routing update information contains the same major

network number as configured on the receiving interface, the router applies the subnet mask that is configured on that interface

– If the routing update information contains a different major network than the one configured on the the receiving interface, the router applies the default subnet mask

Page 31: IT321 Unit 1 PowerPoint

www.ciscopress.com

Classful and Classless RoutingClassful Routing

• The router applies two options when receiving a routing update packet (continued)– The default classful masks are:

• Class A: 255.0.0.0• Class B: 255.255.0.0• Class C: 255.255.255.0

• All subnets of the same major network (Classes A, B, and C) must use the same mask when using a classful routing protocol

Page 32: IT321 Unit 1 PowerPoint

www.ciscopress.com

Classful and Classless RoutingClassful Routing

• Routers running a classful routing protocol perform automatic route summarization across network boundaries– They make assumptions about networks based on their IP

address class– These assumptions lead to automatic summarization of

routes when routers send routing updates across major classful network boundaries

• Routers send update packets to other connected routers– Routers sends entire subnet address (without mask); assume

the network and the interface use the same subnet mask

Page 33: IT321 Unit 1 PowerPoint

www.ciscopress.com

Classful and Classless RoutingClassful Routing

• Router receiving the update makes the same assumption– If different masks are used, router would have wrong

information in routing table– Important to use the same subnet mask on all interfaces that

belong to the same classful network

• When a router using a classful protocol sends an update regarding information of a subnet of a classful network across an interface belonging to a different classful network, the router assumes the remote router will use the default subnet mask for that IP address class

Page 34: IT321 Unit 1 PowerPoint

www.ciscopress.com

Classful and Classless RoutingClassful Routing

Automatic Summarization Occurs at Classful Boundaries with RIPv1 and IGRP

Page 35: IT321 Unit 1 PowerPoint

www.ciscopress.com

Classful and Classless RoutingClassful Routing

• The process in the previous slide is automatic summarization across the network boundary– Router sends a summary of all the subnets by

sending only major network information– Classful routing protocols automatically create a

classful summary route at major network boundaries

– Classful routing protocols do not allow summarization at other points within the major network space

Page 36: IT321 Unit 1 PowerPoint

www.ciscopress.com

Classful and Classless RoutingClassful Routing

• The router that receives the updates behaves in a similar fashion– When a routing update contains information about a

different classful network than the one that is in use on its interface, the router applies the default classful mask to that update

• When using classful routing protocols, assigning the same subnet mask to all subnets is called fixed-length subnet masking (FLSM) – sometimes called static-length subnet masking

Page 37: IT321 Unit 1 PowerPoint

www.ciscopress.com

Classful and Classless RoutingDiscontiguous Subnets

• A classical problem with classful routing protocols:– Discontiguous subnets occur when a major network

separates subnets of a major network– This can cause erroneous entries in routing tables– Traffic will not always reach its destination

• Do not permit the use of discontiguous networks when using a classful routing protocol

Page 38: IT321 Unit 1 PowerPoint

www.ciscopress.com

Classful and Classless RoutingDiscontiguous Subnets

Discontiguous Subnets Present a Problem with Classful Routing

Page 39: IT321 Unit 1 PowerPoint

www.ciscopress.com

Classful and Classless RoutingDefault Routes

• Routers learn paths to destinations in three ways:– The system administrator defines static routes via

an attached interface or the next hop to a destination

– The network engineer manually defines default routes as the path to take when no known route exists to the destination; default routes minimize the size of the routing table

– Dynamic routing occurs when the router learns of paths to destinations by receiving routing updates from other routers via a routing protocol

Page 40: IT321 Unit 1 PowerPoint

www.ciscopress.com

Classful and Classless RoutingDefault Routes

• You can define a static route with the ip route command:

• You can define a default route with the ip default-network command:

Page 41: IT321 Unit 1 PowerPoint

www.ciscopress.com

Classful and Classless RoutingDefault Routes

A Default Network is Configured Pointing Toward the Internet

Page 42: IT321 Unit 1 PowerPoint

www.ciscopress.com

Classful and Classless RoutingDefault Routes

• You can define a default route to work with either static or dynamic routing:

• The 0s represent any destination with any mask• Default routes are often referred to as quad-zero

routes

Page 43: IT321 Unit 1 PowerPoint

www.ciscopress.com

Classful and Classless RoutingClassful Routing Table

• What does a router running a classful routing protocol do with packets that lie in subnets that have no entry in the routing table?– The router discards the packets!

• This can be overcome by using the ip classless command– Causes the router using a classful routing protocol to

evaluate all packets using the longest-match criterion– As a last resort, the router uses a configured default

route

Page 44: IT321 Unit 1 PowerPoint

www.ciscopress.com

Classful and Classless RoutingClassless Routing

• All routing protocols except RIPv1 and IGRP are classless routing protocols

• RIPv2, OSPF, IS-IS, EIGRP, and BGPv4 are classless routing protocols that support VLSM and CIDR

• With classless routing protocols, different subnets in the same major network can have different subnet masks– Maximizes use of addresses

Page 45: IT321 Unit 1 PowerPoint

www.ciscopress.com

Classful and Classless RoutingClassless Routing

• Classful routing protocols automatically summarize to the classful network boundary; classless routing protocols allow you to control the route summarization process manually (might be needed to limit size of routing tables)

• Classless routing protocols do not automatically advertise every subnet

• By default, classless routing protocols perform automatic network summarization at classful boundaries, just like classful protocols

Page 46: IT321 Unit 1 PowerPoint

www.ciscopress.com

Classful and Classless RoutingClassless Routing

• Difference between classless routing protocols and their predecessors is that you can manually turn off automatic summarization– Use the no auto-summary command– Not needed with OSPF or IS-IS

• Automatic summarization can cause problems in networks with discontiguous subnets– This can be fixed by turning off automatic

summarization

Page 47: IT321 Unit 1 PowerPoint

www.ciscopress.com

Classful and Classless RoutingClassless Routing

Discontiguous Subnets Presenting a Problem with Classless Routing

Page 48: IT321 Unit 1 PowerPoint

www.ciscopress.com

Classful and Classless RoutingEffect of Auto-Summary and No Auto-Summary

• Beginning with IOS Release 12.2(8)T, EIGRP and BGP had auto-summary enabled by default

• RIPv2 has always had auto-summary enabled by default

Default Behavior of RIPv2 is to Automatically Summarize at the Network Boundary

Page 49: IT321 Unit 1 PowerPoint

www.ciscopress.com

Classful and Classless RoutingEffect of Auto-Summary and No Auto-Summary

RIPv2 Supports VLSM with Automatic Summarization Disabled

Page 50: IT321 Unit 1 PowerPoint

www.ciscopress.com

Classful and Classless RoutingEffect of Auto-Summary and No Auto-Summary

• To disable auto-summary in RIPv2, use the no auto-summary command as seen below

Page 51: IT321 Unit 1 PowerPoint

www.ciscopress.com

RIP Version 2

• RIP Version 1 characteristics– Uses hop count as the metric for path selection– Maximum allowable hop count is 15, so infinite

distance equals 16 hops– Uses hold-down timers to prevent routing loops with a

default of 180 seconds– Employs split horizon to prevent routing loops– Failure to receive routing updates in a timely manner

results in removal of routes previously learned from a neighbor

Page 52: IT321 Unit 1 PowerPoint

www.ciscopress.com

RIP Version 2

• RIP Version 1 characteristics (continued)– The administrative distance is 120– Routing updates are broadcast every 30

seconds by default– Is capable of load-balancing over as many as

six equal-cost paths; four is the default– Does not support authentication– Does not support VLSM because it is a

classful routing protocol

Page 53: IT321 Unit 1 PowerPoint

www.ciscopress.com

RIP Version 2

• RIP Version 2 characteristics– Uses hop count as the metric for path selection– Maximum allowable hop count is 15, so infinite

distance equals 16 hops– Uses hold-down timers to prevent routing loops with a

default of 180 seconds– Employs split horizon to prevent routing loops– Failure to receive routing updates in a timely manner

results in removal of routes previously learned from a neighbor

Page 54: IT321 Unit 1 PowerPoint

www.ciscopress.com

RIP Version 2

• RIP Version 2 characteristics (continued)– The administrative distance is 120– Routing updates are multicast every 30 seconds by

default– Is capable of load-balancing over as many as six

equal-cost paths; four is the default– Supports clear text and Message Digest 5 (MD5)

authentication– Supports VLSM because it is a classless routing

protocol– Supports manual route summarization

Page 55: IT321 Unit 1 PowerPoint

www.ciscopress.com

RIP Version 2

• Major improvements with RIPv2:– Support of authentication

• Clear text is the default• MD5 used to encrypt enable secret passwords

– VLSM use– Sending subnet masks in updates– Multicasting routing updates

• Uses 224.0.0.9 as destination• Keeps PCs and servers from having to process the

broadcast

Page 56: IT321 Unit 1 PowerPoint

www.ciscopress.com

RIP Version 2

– Multicasting routing updates (continued)• Keeps PCs and servers from having to process the

broadcast (continued)– IP sends the packet to the User Datagram Protocol

(UDP) and UDP checks whether RIP port 520 is available; most PCs and servers do not have a process running on this port and discard the packet

– Sometimes it is running as a gateway discovery technique in TCP/IP services, such as UNIX or Windows

Page 57: IT321 Unit 1 PowerPoint

www.ciscopress.com

RIP Version 2

• Broadcast disadvantages of RIPv1– RIPv1 can fit up to 25 networks/subnets in

each update; updates are sent every 30 seconds

• If the routing table has 1000 subnets, 40 packets will be sent every 30 seconds

• Each of these broadcasts will have to be looked at by all devices on the network

Page 58: IT321 Unit 1 PowerPoint

www.ciscopress.com

RIP Version 2

• Multicast advantages of RIPv2– The IP multicast address for RIPv2 has its own MAC

address: 0x0100.5e00.0009– Devices such as PCs and servers read this MAC

address and determine it is not for them; they discard the frame

– If a device can’t distinguish this MAC address, the packet will be discarded at the IP layer (OSI network layer) as the multicast IP address is not the IP address of the device

Page 59: IT321 Unit 1 PowerPoint

www.ciscopress.com

RIPv2 Configuration

• The router rip command starts a RIP routing process; the network command causes the implementation of these three functions:– Routing updates are multicast out an interface– Routing updates are processed if they enter

that same interface– The subnet that is directly connected to that

interface is advertised

Page 60: IT321 Unit 1 PowerPoint

www.ciscopress.com

RIPv2 Configuration

Sample Network and Configuration of RIPv2

Page 61: IT321 Unit 1 PowerPoint

www.ciscopress.com

RIPv2 Configuration

• In the previous slide, these commands were used to configure Router A:– Enable RIP as the routing protocol: router RIP– Identify Version 2 as the RIP being used:

version 2– Specifying a directly connected network:

network 172.16.0.0– Specifying a directly connected network:

network 10.0.0.0

Page 62: IT321 Unit 1 PowerPoint

www.ciscopress.com

Verifying RIP Configuration

Sample Network for Verifying RIP Configuration

Page 63: IT321 Unit 1 PowerPoint

www.ciscopress.com

Verifying RIP Configuration

• Most common commands for verifying RIP Configuration:– Display parameters for routing protocols: show ip

protocols– Summary of IP information and status of all interfaces:

show ip interface brief– Ensure that appropriate commands are configured for

the RIP network: show running-config– Display contents of routing table: show ip route

Page 64: IT321 Unit 1 PowerPoint

www.ciscopress.com

Verifying RIP Configuration

Page 65: IT321 Unit 1 PowerPoint

www.ciscopress.com

Verifying RIP Configuration

Page 66: IT321 Unit 1 PowerPoint

www.ciscopress.com

Verifying RIP Configuration

Fields in the Routing Table Defined

Page 67: IT321 Unit 1 PowerPoint

www.ciscopress.com

Troubleshooting RIP Configuration

Sample Network for Troubleshooting RIP Configuration

The debug ip rip command displays real-time RIP routing updates as they are sent and received

To turn off debugging, use the no debug ip rip or the undebug all (u all) commands

Page 68: IT321 Unit 1 PowerPoint

www.ciscopress.com

Troubleshooting RIP Configuration

The debug ip rip command

Page 69: IT321 Unit 1 PowerPoint

www.ciscopress.com

Troubleshooting RIP Configuration

Sample debug ip rip output

Page 70: IT321 Unit 1 PowerPoint

www.ciscopress.com

Summary

• Classless IP addressing is implemented with:– VLSM: the ability to subnet a subnet and use different

subnet masks in the same classful network– CIDR: the allocation of blocks of contiguous address

space to customers by ISPs– Route summarization: a generic term that describes

the use of a single network to represent a sequence of logically contiguous networks

– Route aggregation: a generalized form of supernetting– Supernetting: pasting together classful networks into

supernets

Page 71: IT321 Unit 1 PowerPoint

www.ciscopress.com

Summary

• Classful routing protocols:– RIPv1– IGRP

• Classless routing protocols:– RIPv2– EIGRP– OSPF– IS-IS– BGPv4

Page 72: IT321 Unit 1 PowerPoint

www.ciscopress.com

Summary

• RIPv2, EIGRP, and BGPv4 can turn automatic route summarization on and off

• RIPv2 is an improvement to RIPv1– Adds authentication, VLSM support, passing of subnet

masks in routing updates, and multicasting of routing updates

• Configuring RIPv2 requires adding the version 2 command; adding no auto-summary is recommended

• All connected networks participating in RIP are defined with the network command in the form of classful networks

Page 73: IT321 Unit 1 PowerPoint

www.ciscopress.com

Summary

• RIP configuration can be verified with several commands: show ip protocols, show ip interface brief, show running-config, and show ip route

• You can troubleshoot RIP with the debug ip rip command