isfd4 moellmann core

16
   1    /    1    6 Dipl.-Ing. Axel Moellmann, Prof. Dr.-Ing. Pieter A. Vermeer 1 Prof. Dr.-Ing. habil. Bernhard Westrich 2 1 University of Stuttgart, Germany, Institute of Geote chnical Engineering 2 University of Stuttgart, Germany, Institute of Hydraulic Engineeri ng Reliability Analysis of River Embankments --using analytical methods and finite elements-- 4th I ntern ationa l Sy mposiu m on Flood Defence , 6-8 May, 2008, Toronto, Canada Funding Project Management Coordination Pre sent atio n with in the fra mework of the RIM AX- Pro jec t „P CRi ver Rel iab ili ty and ris k analysis in river flood protection under consideration of geotechnical, hydrological and hydraulic factors”

Upload: luca-morreale

Post on 06-Apr-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ISFD4 Moellmann Core

8/3/2019 ISFD4 Moellmann Core

http://slidepdf.com/reader/full/isfd4-moellmann-core 1/16

   1   /   1   6

Dipl.-Ing. Axel Moellmann, Prof. Dr.-Ing. Pieter A. Vermeer1

Prof. Dr.-Ing. habil. Bernhard Westrich2

1 University of Stuttgart, Germany, Institute of Geotechnical Engineering2 University of Stuttgart, Germany, Institute of Hydraulic Engineering

Reliability Analysis of River Embankments

--using analytical methods and finite elements--

4th International Symposium on Flood Defence,

6-8 May, 2008, Toronto, Canada

Funding Project Management Coordination

Presentation within the framework of the RIMAX-Project „PCRiver – Reliability and riskanalysis in river flood protection under consideration of geotechnical, hydrological andhydraulic factors”

Page 2: ISFD4 Moellmann Core

8/3/2019 ISFD4 Moellmann Core

http://slidepdf.com/reader/full/isfd4-moellmann-core 2/16

   2   /   1   6

Benefits of reliability analysis

Aim of a reliability analysis in river flood protection

Systematic determination of flood risk as cost-benefit-analysis

Risk = Failure probability x Consequence

Not: „This is a potential weak spot!“

But: „Those are the sections to start improving theflood protection.“

And: „Those are the most cost-efficient measures.“

Page 3: ISFD4 Moellmann Core

8/3/2019 ISFD4 Moellmann Core

http://slidepdf.com/reader/full/isfd4-moellmann-core 3/16

   3   /   1   6

Outline

• Introduction into reliability analysis

• Case study Elbe river

• Probabilistic Finite-Element Analysis of embankment stability

• Conclusions and Outlook

Page 4: ISFD4 Moellmann Core

8/3/2019 ISFD4 Moellmann Core

http://slidepdf.com/reader/full/isfd4-moellmann-core 4/16

   4   /   1   6

µS µRσS σSσR σR

Introduction into reliability analysis

SRZ −= R: Resistance, S: Stress

Stress x, Resistance x

Failure probability p(Z<0)

   P  r  o   b  a   b   i   l   i   t  y

   d  e  n  s   i   t  y f (Resistance: R)f (Stress: S)

Z

Z

22

SR

SRσ

µ=

σ+σ

µ−µ=βReliability index for Gaussian (normally)

distributed variables and Z = R - S:

Limit state equation:

Page 5: ISFD4 Moellmann Core

8/3/2019 ISFD4 Moellmann Core

http://slidepdf.com/reader/full/isfd4-moellmann-core 5/16

   5   /   1   6

Case study Elbe river

Torgau / Saxony

Page 6: ISFD4 Moellmann Core

8/3/2019 ISFD4 Moellmann Core

http://slidepdf.com/reader/full/isfd4-moellmann-core 6/16

   6   /   1   6

Case study Elbe river

Comparison to a 100-year flood only considering overflow (Dike stretch B)

99

87

9488

0

20

40

60

80

100

120

Validierung HQ100

   R

  e   t  u  r  n  p  e  r   i  o   d   T   [  a

Section 1 Section 2 Section 3 Section 4

100-year flood

Page 7: ISFD4 Moellmann Core

8/3/2019 ISFD4 Moellmann Core

http://slidepdf.com/reader/full/isfd4-moellmann-core 7/16

   7   /   1   6

Case study Elbe river

Computed failure probabilities for dike stretch B

461

463

448448 476

238

331

725

302

242

0

200

400

600

800

1000

Overflow / 

Overtopping

Uplift / Piping Slope

instability

Damage of

the revetment

Combined

failure

probability

   R  e   t  u  r  n  p  e  r   i  o   d   T

   [  a   ]

Section 1 Section 2 Section 3 Section 4

>>5000>>5000>>5000 1709 3759

Page 8: ISFD4 Moellmann Core

8/3/2019 ISFD4 Moellmann Core

http://slidepdf.com/reader/full/isfd4-moellmann-core 8/16

   8   /   1   6

Case study Elbe river

Comparison to Elbe flood 2002 - dike failure statistics (Horlacher, 2005)

Overflow / Overtopping

Uplift / Piping

Slope instability

47 %

24 %

29 %

Overflow / Overtopping

Uplift / Piping

Slope instability

6 %

28 %

66 %

Relative failureprobability (PC-Ring)

29 %

24 %

47 %

Dike failurestatistics

Slope instability

Uplift / Piping

Overflow / Overtopping

Failure mode

Page 9: ISFD4 Moellmann Core

8/3/2019 ISFD4 Moellmann Core

http://slidepdf.com/reader/full/isfd4-moellmann-core 9/16

   9   /   1   6

Case study Elbe river

Reliability water level and reliability freeboard

Design floodwater level

Reliability water level

Reliability freeboard Dike body

100 97 8377

94

46

91

53

0204060

80100

Section 1 Section 2 Section 3 Section 4   F  r  e  e   b  o  a  r   d   f  o  r

   H   Q   1   0   0   /   R  e

   l   i  a   b   i   l   i   t  y

   f  r  e  e   b  o  a  r   d

   [  c  m   ]

Freeboard for a HQ100 Reliability freeboard

Page 10: ISFD4 Moellmann Core

8/3/2019 ISFD4 Moellmann Core

http://slidepdf.com/reader/full/isfd4-moellmann-core 10/16

   1   0   /   1   6

Probabilistic Finite-Element Analysis

of embankment stability

2.83 m4.06

HB = γ w· zB

1.44 m

1.70 m

15.99h

HA = γ w· zA

1

1.00 m

q = 0?

Total incremental displacements

→ Stability reserves due to transient seepage effects can be quantified.

→ Zoned dike structure can be taken into account.

Benefits:

N

Page 11: ISFD4 Moellmann Core

8/3/2019 ISFD4 Moellmann Core

http://slidepdf.com/reader/full/isfd4-moellmann-core 11/16

   1   1   /   1   6

Probabilistic Finite-Element Analysis

of embankment stability

Stochastic input parameters

2 4 6 8 10 12 14c @kN•m²D

0.050.1

0.15

0.2p.d.f.

5.´10-8 k @m•sD

5´106

1´107

1.5´107

2´107

p.d.f.

15 18 21phi @°D

0.05

0.1

0.15

0.2

p.d.f.

ϕ‘

Friction angle ϕ‘→ normally

distributed

Effective cohesion c‘

→ lognormally distributed

Permeability k

→ lognormally distributed

µϕ’ = 17.1°σϕ’ = 1.76°

µc’ = 4.65 kN/m²σc’ = 3.72 kN/m²

µk = 5 · 10-5 m/sσk = 2.5 · 10-5 m/s

µϕ’µc

µk =

3 Scenarios:hmax,1 = 2.83 mhmax,2 = 2.40 mhmax,3 = 1.20 m

h

→ Correlated river water level h

and duration of the flood wave N

Page 12: ISFD4 Moellmann Core

8/3/2019 ISFD4 Moellmann Core

http://slidepdf.com/reader/full/isfd4-moellmann-core 12/16

   1   2   /   1   6

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

0 2 4 6 8 10 12

Time [Days]

   W

  a   t  e  r   l  e  v  e   l   a   b  o  v  e

   l  a  n   d  w  a  r   d   d   i   k  e   t  o  e   [  m   ]

Water level h Factor of safety

Probabilistic Finite-Element Analysis

of embankment stability

Phase shift between maximum water level and minimum factor of safety

→ Factor of safety ? needs to be checked for various time steps

for various flow patterns

1.25

1.20

1.15

1.10

1.05

1.00

0.95

0.90

   F

  a  c   t  o  r  o   f  s  a   f  e   t  y   ?

?crit

hmax

Page 13: ISFD4 Moellmann Core

8/3/2019 ISFD4 Moellmann Core

http://slidepdf.com/reader/full/isfd4-moellmann-core 13/16

   1   3   /   1   6

Probabilistic Finite-Element Analysis

of embankment stability

First Order Reliability Method with Adaptive Response Surface (FORM-ARS)

Perform numerical simulations around mean value

Output: Factor of safety ? from a numerical stability analysis

Find best-fit Response Surface for ? = b0 + b1· f ‘ + b2· c‘+ b3· k

Find design point for Response Surface

Check design point with numerical results

IF ( ? ˜  1 ) AND IF ( New design point = Old design point )

Determination of failure probability

then

Perform numericalsimulations around

the design point

else

Page 14: ISFD4 Moellmann Core

8/3/2019 ISFD4 Moellmann Core

http://slidepdf.com/reader/full/isfd4-moellmann-core 14/16

   1   4   /   1   6

Probabilistic Finite-Element Analysis

of embankment stability

Response Surfaces for three different maximum water levels

Transformation into standard-normalized variables:

 C o h e s

 i o n  u 2F ri c t i o n angl e u1

   P  e  r  m  e  a   b   i   l   i   t  y  u   3

 C o h e s

 i o n  u 2

hmax,1 = 2.83 m

hmax,2 = 2.40 m

hmax,3 = 1.20 m

Numericalresults β1 ˜ 3.18

x

xi

Xu

σ

µ−=

→ 240 Finite-Element calculations → Return period of failure: ˜ 40,000 years

β2 ˜ 3.41

β3 ˜ 4.01

Page 15: ISFD4 Moellmann Core

8/3/2019 ISFD4 Moellmann Core

http://slidepdf.com/reader/full/isfd4-moellmann-core 15/16

   1   5   /   1   6

Conclusions and Outlook

• Reliability analysis as basis for a reliable flood riskmanagement

• Comparable tendency with dike failure statistics during the

flood in 2002

• Integration of a probabilistic FE-analysis for slope instabilitieswhich regards zoned dikes and transient seepage effects

• Provision of a tool for risk-based river flood protection

• Accompanying paper at ISFD4 2008 by Merkel and Westrich

Page 16: ISFD4 Moellmann Core

8/3/2019 ISFD4 Moellmann Core

http://slidepdf.com/reader/full/isfd4-moellmann-core 16/16

   1   6   /   1   6

Thank you for your attention!

Questions?

4th International Symposium on Flood Defence6-8 May, 2008, Toronto, Canada

Dipl.-Ing. A. Moellmann

Institute of Geotechnical Engineering, University of Stuttgart

Pfaffenwaldring 35, 70569 Stuttgart

Tel. ++49/ (0)711 / 685 – 63779, Email: [email protected]

Financial support: Cooperation partners:

Dam Authority of Saxony, Pirna

Regional administrative authority Tübingen

Rijkswaterstaat, Dienst Weg-en Waterbouwkunde, Delft,The Netherlands

Forschungszentrum Karlsruhein der Helmholtz-GemeinschaftProjektträger Forschungszentrum Karlsruhe