irf3710

Upload: andres-morocho

Post on 01-Mar-2016

4 views

Category:

Documents


0 download

DESCRIPTION

mosfet

TRANSCRIPT

  • IRF3710HEXFET Power MOSFET

    01/17/02

    Parameter Typ. Max. UnitsRJC Junction-to-Case 0.75RCS Case-to-Sink, Flat, Greased Surface 0.50 C/WRJA Junction-to-Ambient 62

    Thermal Resistance

    www.irf.com 1

    VDSS = 100V

    RDS(on) = 23m

    ID = 57AS

    D

    G

    TO-220AB

    Advanced HEXFET Power MOSFETs from International Rectifier utilizeadvanced processing techniques to achieve extremely low on-resistanceper silicon area. This benefit, combined with the fast switching speed andruggedized device design that HEXFET power MOSFETs are well knownfor, provides the designer with an extremely efficient and reliable device foruse in a wide variety of applications.

    The TO-220 package is universally preferred for all commercial-industrialapplications at power dissipation levels to approximately 50 watts. The lowthermal resistance and low package cost of the TO-220 contribute to its wideacceptance throughout the industry.

    Advanced Process Technology Ultra Low On-Resistance Dynamic dv/dt Rating 175C Operating Temperature Fast Switching Fully Avalanche Rated

    Description

    Absolute Maximum RatingsParameter Max. Units

    ID @ TC = 25C Continuous Drain Current, VGS @ 10V 57ID @ TC = 100C Continuous Drain Current, VGS @ 10V 40 AIDM Pulsed Drain Current 230PD @TC = 25C Power Dissipation 200 W

    Linear Derating Factor 1.3 W/CVGS Gate-to-Source Voltage 20 VIAR Avalanche Current 28 AEAR Repetitive Avalanche Energy 20 mJdv/dt Peak Diode Recovery dv/dt 5.8 V/nsTJ Operating Junction and -55 to + 175TSTG Storage Temperature Range

    Soldering Temperature, for 10 seconds 300 (1.6mm from case )C

    Mounting torque, 6-32 or M3 srew 10 lbfin (1.1Nm)

    PD - 91309A

    This datasheet has been downloaded from http://www.digchip.com at this page

  • IRF3710

    2 www.irf.com

    S

    D

    G

    Parameter Min. Typ. Max. Units ConditionsIS Continuous Source Current MOSFET symbol

    (Body Diode) showing theISM Pulsed Source Current integral reverse

    (Body Diode) p-n junction diode.VSD Diode Forward Voltage 1.2 V TJ = 25C, IS = 28A, VGS = 0V trr Reverse Recovery Time 140 220 ns TJ = 25C, IF = 28AQrr Reverse Recovery Charge 670 1010 nC di/dt = 100A/s ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)

    Source-Drain Ratings and Characteristics

    57

    230A

    Starting TJ = 25C, L = 0.70mH RG = 25, IAS = 28A, VGS=10V (See Figure 12)

    Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)

    Notes: ISD 28A, di/dt 380A/s, VDD V(BR)DSS, TJ 175C Pulse width 400s; duty cycle 2%. This is a typical value at device destruction and represents operation outside rated limits. This is a calculated value limited to TJ = 175C .

    Parameter Min. Typ. Max. Units ConditionsV(BR)DSS Drain-to-Source Breakdown Voltage 100 V VGS = 0V, ID = 250AV(BR)DSS/TJ Breakdown Voltage Temp. Coefficient 0.13 V/C Reference to 25C, ID = 1mARDS(on) Static Drain-to-Source On-Resistance 23 m VGS = 10V, ID =28AVGS(th) Gate Threshold Voltage 2.0 4.0 V VDS = VGS, ID = 250Agfs Forward Transconductance 32 S VDS = 25V, ID = 28A

    25 A VDS = 100V, VGS = 0V 250 VDS = 80V, VGS = 0V, TJ = 150C

    Gate-to-Source Forward Leakage 100 VGS = 20VGate-to-Source Reverse Leakage -100 nA VGS = -20V

    Qg Total Gate Charge 130 ID = 28AQgs Gate-to-Source Charge 26 nC VDS = 80VQgd Gate-to-Drain ("Miller") Charge 43 VGS = 10V, See Fig. 6 and 13td(on) Turn-On Delay Time 12 VDD = 50Vtr Rise Time 58 ID = 28Atd(off) Turn-Off Delay Time 45 RG = 2.5tf Fall Time 47 VGS = 10V, See Fig. 10

    Between lead, 6mm (0.25in.)

    from packageand center of die contact

    Ciss Input Capacitance 3130 VGS = 0VCoss Output Capacitance 410 VDS = 25VCrss Reverse Transfer Capacitance 72 pF = 1.0MHz, See Fig. 5EAS Single Pulse Avalanche Energy 1060280 mJ IAS = 28A, L = 0.70mH

    nH

    Electrical Characteristics @ TJ = 25C (unless otherwise specified)

    LD Internal Drain Inductance

    LS Internal Source Inductance S

    D

    G

    IGSS

    ns

    4.5

    7.5

    IDSS Drain-to-Source Leakage Current

  • IRF3710

    www.irf.com 3

    Fig 4. Normalized On-ResistanceVs. Temperature

    Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics

    Fig 3. Typical Transfer Characteristics

    0.1 1 10 100

    VDS, Drain-to-Source Voltage (V)

    0.1

    1

    10

    100

    1000

    I D, D

    rain

    -to-S

    ourc

    e Cu

    rrent

    (A)

    3.5V

    20s PULSE WIDTHTj = 25C

    VGSTOP 16V 10V 7.0V 6.0V 5.0V 4.5V 4.0VBOTTOM 3.5V

    0.1 1 10 100

    VDS, Drain-to-Source Voltage (V)

    0.1

    1

    10

    100

    1000

    I D, D

    rain

    -to-S

    ourc

    e Cu

    rrent

    (A)

    3.5V

    20s PULSE WIDTHTj = 175C

    VGSTOP 16V 10V 7.0V 6.0V 5.0V 4.5V 4.0VBOTTOM 3.5V

    3.0 4.0 5.0 6.0 7.0 8.0 9.0

    VGS, Gate-to-Source Voltage (V)

    0.10

    1.00

    10.00

    100.00

    1000.00

    I D, D

    rain

    -to-S

    ourc

    e Cu

    rrent

    ()

    TJ = 25C

    TJ = 175C

    VDS = 15V20s PULSE WIDTH

    -60 -40 -20 0 20 40 60 80 100 120 140 160 1800.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    T , Junction Temperature ( C)

    R

    , D

    rain

    -to-S

    ourc

    e O

    n Re

    sista

    nce

    (Norm

    alize

    d)

    J

    DS(

    on)

    V =

    I =

    GS

    D

    10V

    57A

  • IRF3710

    4 www.irf.com

    Fig 8. Maximum Safe Operating Area

    Fig 6. Typical Gate Charge Vs.Gate-to-Source Voltage

    Fig 5. Typical Capacitance Vs.Drain-to-Source Voltage

    Fig 7. Typical Source-Drain DiodeForward Voltage

    1 10 100

    VDS, Drain-to-Source Voltage (V)

    10

    100

    1000

    10000

    100000

    C, C

    apac

    itanc

    e(pF)

    Coss

    Crss

    Ciss

    VGS = 0V, f = 1 MHZCiss = Cgs + Cgd, Cds SHORTEDCrss = Cgd Coss = Cds + Cgd

    0 20 40 60 80 1000

    2

    5

    7

    10

    12

    Q , Total Gate Charge (nC)

    V

    , Ga

    te-to

    -Sou

    rce

    Volta

    ge (V

    )

    G

    GS

    I =D 28A

    V = 20VDS

    V = 50VDS

    V = 80VDS

    0.0 0.5 1.0 1.5 2.0VSD, Source-toDrain Voltage (V)

    0.10

    1.00

    10.00

    100.00

    1000.00

    I SD,

    R

    ever

    se D

    rain

    Cur

    rent

    (A)

    TJ = 25C

    TJ = 175C

    VGS = 0V

    1 10 100 1000VDS , Drain-toSource Voltage (V)

    0.1

    1

    10

    100

    1000

    I D, D

    rain

    -to-S

    ourc

    e Cu

    rrent

    (A)

    Tc = 25CTj = 175CSingle Pulse

    1msec

    10msec

    OPERATION IN THIS AREA LIMITED BY RDS(on)

    100sec

  • IRF3710

    www.irf.com 5

    Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

    Fig 9. Maximum Drain Current Vs.Case Temperature

    VDS90%

    10%VGS

    td(on) tr td(off) tf

    VDS

    Pulse Width 1 sDuty Factor 0.1 %

    RD

    VGSRG

    D.U.T.

    VGS

    +-VDD

    Fig 10a. Switching Time Test Circuit

    Fig 10b. Switching Time Waveforms

    25 50 75 100 125 150 1750

    10

    20

    30

    40

    50

    60

    T , Case Temperature ( C)

    I ,

    Drai

    n Cu

    rrent

    (A)

    C

    D

    0.01

    0.1

    1

    0.00001 0.0001 0.001 0.01 0.1 1

    Notes:1. Duty factor D = t / t2. Peak T = P x Z + T

    1 2

    J DM thJC C

    P

    t

    t

    DM

    1

    2

    t , Rectangular Pulse Duration (sec)

    Ther

    mal

    Res

    pons

    e(Z

    )

    1

    thJC

    0.010.02

    0.05

    0.10

    0.20

    D = 0.50

    SINGLE PULSE(THERMAL RESPONSE)

  • IRF3710

    6 www.irf.com

    QG

    QGS QGD

    VG

    Charge

    D.U.T. VDS

    IDIG

    3mA

    VGS

    .3F

    50K

    .2F12V

    Current RegulatorSame Type as D.U.T.

    Current Sampling Resistors

    +

    -

    VGS

    Fig 13b. Gate Charge Test CircuitFig 13a. Basic Gate Charge Waveform

    Fig 12b. Unclamped Inductive Waveforms

    Fig 12a. Unclamped Inductive Test Circuit

    tp

    V(BR )D SS

    IAS

    Fig 12c. Maximum Avalanche EnergyVs. Drain Current

    R GIA S

    0.0 1tp

    D .U .T

    LV D S

    +

    -

    VD D

    D R IV E R

    A

    15V

    2 0 VVGS

    25 50 75 100 125 150 1750

    110

    220

    330

    440

    550

    Starting T , Junction Temperature ( C)

    E

    , Si

    ngle

    Pulse

    Ava

    lanch

    e En

    ergy

    (mJ)

    J

    AS

    IDTOP

    BOTTOM

    11A 20A 28A

  • IRF3710

    www.irf.com 7

    Peak Diode Recovery dv/dt Test Circuit

    P.W. Period

    di/dt

    Diode Recoverydv/dt

    Ripple 5%

    Body Diode Forward DropRe-AppliedVoltage

    ReverseRecoveryCurrent

    Body Diode ForwardCurrent

    VGS=10V

    VDD

    ISD

    Driver Gate Drive

    D.U.T. ISD Waveform

    D.U.T. VDS Waveform

    Inductor Curent

    D = P.W.Period

    +

    -

    +

    +

    +-

    -

    -

    RGVDD

    dv/dt controlled by RG ISD controlled by Duty Factor "D" D.U.T. - Device Under Test

    D.U.T*Circuit Layout Considerations Low Stray Inductance Ground Plane Low Leakage Inductance Current Transformer

    * Reverse Polarity of D.U.T for P-Channel

    VGS

    [ ]

    [ ]

    *** VGS = 5.0V for Logic Level and 3V Drive Devices

    [ ] ***

    Fig 14. For N-channel HEXFET power MOSFETs

  • IRF3710

    8 www.irf.com

    L E A D A S S IG NM E NT S 1 - G A T E 2 - D R A IN 3 - S O U RC E 4 - D R A IN

    - B -

    1 .32 (.05 2)1 .22 (.04 8)

    3 X 0.55 (.02 2)0.46 (.01 8)2 .92 (.11 5)2 .64 (.10 4)

    4.69 ( .18 5 )4.20 ( .16 5 )

    3X 0.93 (.03 7)0.69 (.02 7)

    4.06 (.16 0)3.55 (.14 0)

    1.15 (.04 5) M IN

    6.47 (.25 5)6.10 (.24 0)

    3 .7 8 (.149 )3 .5 4 (.139 )

    - A -

    10 .54 (.4 15)10 .29 (.4 05)2.87 (.11 3)

    2.62 (.10 3)

    1 5.24 (.60 0)1 4.84 (.58 4)

    1 4.09 (.55 5)1 3.47 (.53 0)

    3 X 1 .4 0 (.0 55 )1 .1 5 (.0 45 )

    2.54 (.10 0)2 X

    0 .3 6 (.01 4) M B A M

    4

    1 2 3

    N O TE S : 1 D IM E N S IO N IN G & TO L E R A N C ING P E R A N S I Y 1 4.5M , 1 9 82. 3 O U T LIN E C O N F O R M S TO JE D E C O U T LIN E TO -2 20 A B . 2 C O N TR O L LIN G D IM E N S IO N : IN C H 4 H E A TS IN K & LE A D M E A S U R E M E N T S D O N O T IN C LU DE B U R R S .

    Part Marking InformationTO-220AB

    Package OutlineTO-220ABDimensions are shown in millimeters (inches)

    Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market.

    Qualification Standards can be found on IRs Web site.

    IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105TAC Fax: (310) 252-7903

    Visit us at www.irf.com for sales contact information.01/02

    LOT CODE 1789ASSEMBLED ON WW 19, 1997IN THE ASSEMBLY LINE "C"

    INTERNATIONALRECTIFIER

    LOGO

    ASSEMBLYLOT CODE

    PART NUMBER

    DATE CODEYEAR 7 = 1997WEEK 19LINE C

    EXAMPLE: THIS IS AN IRF1010