ionospheric data - nist

72
CRPL-F72 National Bureau of Standart library, H. W. Bldg. $EP 8 V950 IONOSPHERIC DATA ISSUED AUGUST 1950 U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS CENTRAL RADIO PROPAGATION LABORATORY WASHINGTON. D. C.

Upload: others

Post on 04-Oct-2021

12 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ionospheric Data - NIST

CRPL-F72 National Bureau of Standart

library, H. W. Bldg.

$EP 8 V950

IONOSPHERIC DATA

ISSUED

AUGUST 1950

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

CENTRAL RADIO PROPAGATION LABORATORY WASHINGTON. D. C.

Page 2: Ionospheric Data - NIST

1 ■ ' \VV\, .. . v : ' . ' : ■: ■ ■ ' - . ■ . : ■

\ . •1 o-1 .* ' • ; • • - ' fj v- ' /. -V-f “ ,v3

. . f ' 5 .V. 4 r ; ■>■■■; ■ i’/ ■. V#f

■ : ' . . . -?‘m. >l'V, ■■ 1 , ■■ 1 ■■■'.. ' ' • , ■ . : T >■ t ; ,-f iV i\ * ■ ' ■

’ F ' ’ i>> ■ i

' ' ■, ' -

7 p ' ' ■ .. ,. , i

■ - a, it-'-: •: .."■■■ , ■: ■

, 'F; ;■.;■■■ ■; ; . S ' ;:

' ../ ; ' ^ % i ' ' : " ’ " 31 ' % "

■ ' ■- ■ I . . F,,f / • F Fts V. I'M FF:;-, . \ • ..

* • - • 'V -F--V’ ■;* •/' ~'i ' ■ Y^Vy-" ’* i'(" ’■ V' :'y‘ ' ?• V-h,?v-V V - FV* fs ./-’v ' ‘ S

, ’ --- , > ‘ ' ;• „ • . •' 1 , • y .> •, Vy‘ ‘ • 4 • * ‘V4 - A' ;;v' -

:■ F ■; : ■ F vFF :■ F , ' '■ s , - , , ;V > - ' - . . . -v/ vr ^ ^ ; . F . ■: ' . F >■■■" ■ / ’'.F,’: 7,;

i ' • ■ 1 " - { * • 1 *\.. ''' \ ' ' F , • 'F^F V. ; V; . S'.■ ••'-'-'F:• •'

.

' •. y-:A ' C-.v w‘.

' ,

Page 3: Ionospheric Data - NIST

CRPL-F72 NATIONAL BUREAU OF STANDARDS

CENTRAL RADIO PROPAGATION LABORATORY WASHINGTON, D.C.

Issued 24 Aug. 1950

IONOSPHERIC DATA

CONTENTS

Baga

Symbols, Terminology# Conventions »*» . 2

World-Wide Source© of Ionospheric Bata . . e . . 5

Hourly Ionospheric Bata at Washington, XU C* . » 6# 12* X9» &6

Ionospheric Stormin@®s at Washington# D. G® , , » 7« 31

Sudden Ionosphere Disturbance® ••••••••• 7» 32

Badio Propagation Quality Figure® „*«»»*«» 7* 36

Bel&tiv© Sunspot Sobers » , , * ® . . . s » . • 8# 3?

Observation® of the Solar Corona • ••••<>•• 9*38

Observations of Solar Flare® 10*

Indices of Geomagnetic Activity »,*»•».»* 10#

Tables of Ionospheric Bata, »**»». •»«•* 12

Graph® ©f Ionospheric Bate »**•*».®*.® **6

Index of Tables and Graphs of Ionospheric Data

in CEPL-F72, . * . . © . . » • . . . . . . 66

Page 4: Ionospheric Data - NIST

2

SYMBOLS, TERMINOLOGY, CONVENTIONS

Beginning with data reported for January 1949, the symbols, termi¬ nology, and conventions for the determination of median values used in this report (CRPL-F series) conform as far as practicable to those adopted at the Fifth Meeting of the International Radio Gons,ultative Committee (C.C.I.R.) in Stockholm, 1942, and given in detail on pages 2 to 10 of the report CRPL-F53, '“Ionospheric Data," issued January 1949.

For symbols and terminology used with data prior to January 1949, see report IRPL-C61, "Report of International Radio Propagation Con¬ ference, Washington, 17 April to 5 May, 1944y" previous issues of the .F series, in particular, IRPL-F5, CRPL-F24, F33, F50, and report CRPL-7-1, "Preliminary Instructions for Obtaining and Reducing Manual Ionospheric Records."

Following the recommendations of the Washington (1944) and Stockholm (1942'' conferences, beginning with data for January 1945, median values are published wherever possible. Where averages are reported, they are, at any hour, the average for all the days during the month for which numerical data exist.

In addition to the conventions for the determination of medians given in Appendix 5 of Document No. 293 E of the Stockholm conference, which are listed on pages 9 and 10 of CRPL-F53, the following conventions are used in determining the medians for hours when no measured values are given because of equipment limitations and ionospheric irregularities. Symbols used are those given on pages 2-9 of CRPL-F53 (Appendixes 1-4 of Document No. 293 E referred to above).

a. For all ionospheric characteristicss

Values missing because of A, B, C, F, L, M, N, Q, R, S, or T (see terminology referred to above) are omitted from the median count.

b. For critical frequencies and virtual heights:

Values of foF2 (and foE near sunrise and sunset) missing because of E are counted as equal to or less than the lower limit of the recorder. Values of h’F2 (and h*E near sunrise and sunset) missing for this reason are counted as equal to or greater than the median. Other characteristics missing because of E are omitted from the median count. See CRPL-F38, page 9.

Values missing because of D are counted as equal to or greater than the upper limit of the recorder.

Page 5: Ionospheric Data - NIST

3

Values missing because of G are countedi

1. For foF2, as equal to or less than foFl. 2. For hsF2, as equal to or greater than the median*

c

Values missing because of W ar© counted! 1. For foF2, as equal to or less than the median when

it is apparent that h'F2 is unusually high; otherwise, values missing because of W are omitted from the median count.

2. For h*F2, as equal to or greater than the median.

Values missing for any other reason are omitted from the median count.

c. For MUF factor (M-factors):

Values missing because of G or W are counted as equal to

or less than the median.

Values missing for any other reason are omitted from the median count.

d. For sporadic E (Es):

Values of fEs missing because of G (no Es reflections observed, the equipment functioning normally otherwise) are counted as equal to or less than the median foE, or equal to or less than the lower frequency count of the recorder.

Values of fEs missing for any other reason, and values of h'Es missing for any reason at all are omitted from the median count.

Beginning with data for November 1945, doubtful monthly median values for ionospheric observations at Washington, D. C., are indicated by paren- theses, in accordance with the practice already in use for doubtful hourly values. The following are the conventions used to determine whether or not a median value is doubtful;

1. If only four values or less are available, the data are considered insufficient and no median value is computed,

2. For the F2 layer, if only five to nine values are available, the median is considered doubtful. The E and FI layers are so regular in their characteristics that, as long as there are at least five values, the median is not considered doubtful.

3. For all layers, if more than half of the values used to compute the median are doubtful (either doubtful or interpolated), the median is

considered doubtful.

The same conventions are used by the CRPL in computing the medians from tabulations of daily and hourly data for stations other than Washington,

beginning with the tables in IRPL-F12.

Page 6: Ionospheric Data - NIST

4

The table® and graphs of ionospheric data a4« correct for the values reported to the CEPL9 hut* because of variations in practice in the interpretation of records and scaling and manner of reporting of values* may at time® give an erroneous conception of typical ionospheric characteristics at the station. Some of the errors are due to?

a. Difference® in scaling records when spread echoes are present.

b. Omission of values when f©F2 ie less than or equal to foFl* leading t© erroneously high values of monthly averages or median valuese

e. Cfeission of value® when critical frequencies ar® i®e@ than th® lower frequency limit ©f the recorder* al@© leading to @rren@©u@ly high values of monthly average ©r median mime®.

These effect® were discussed on pages 6 and 7 of the previous F*»serie® report 1BPL-F5*

Ordinarily* a blank space in th© fls column of a table i® the result of th© fact that a majority of th© readings for the month

below th© lower limit of th® recorder or less than th© correa- ponding mines ©f foS. Blank spaces at the beginning and ©ad of columns of hsFl* fofl* hel9 and foJB are usually the result ©f diurnal variation in these characteristic®. Complete absence of median® ©f h§Fl and foil i® usually the result of seasonal effects.

The dashed**!in® prediction curves of th© graphs of ionospheric data are obtained from th© predicted saro-suf contour charts of th® CBFL-D series publication®. Th® following points &r© worthy of note?

a® Predictions for individual stations used to construct the chart® may be more accurate than th© value® read from the chart© since ®©m© smoothing of th® contour® is necessary to allow for th® longitude effect within a gone® Thus* in¬ asmuch as th® predicted contour® ar® for th® center of each gone* part ©£ th® discrepancy between th© predicted and observed values a® given in the F series say b® caused by th© fact that th® station ia not centrally located within th® so a® 9

b. The final presentation of th® predictions is dependent upon th® latest available ionospheric and radio propagation data* a® well a® upon predicted sunspot number.

Page 7: Ionospheric Data - NIST

5

ce There ia no indication ©a the graph® of the relative reliability of the data; it is necessary to consult the tables for such information.

The following predicted smoothed 12*»a@nth running-average Zurich sunspot numbers were used in constructing the contour charts;

Month Predicted Sunspot lumber 1950 1949 1948 194? 1946 I]?f5

December 108 114 126 85 38 Boveaber 112 115 124 83 36 October 114 116 119 81 23 September 115 11? 121 79 22 August 111 123 122 77 20 July 101 108 125 116 73 June 103 108 129 112 6? May 102 108 130 109 6? April 101 109 133 10? 62 March 103 111 133 105 51 February 103 113 133 90 46 January 105 112 130 88 42

WORLD-WIDE SOURCES OF IONOSPHERIC DATA

The ionospheric data given here in tables 1 to 40 and figures 1 i® 80 were assembled by the Central Radio Propagation Laboratory for analyst® and correlation, incidental to SKPL prediction of radio propagation c®ad¬ ditions. The data are median values unless otherwise indicated. The following are the source® of the date in this issue:

Australian Department of Supply and Shipping, Bureau of Mineral Resource®» Geology and Geophysics:

WathsroOft West Australia

french Ministry of laval Armaaents (Section for Scientific Research); Mar, French West Africa Fribourg, Germany

Institute for Ionospheric Research, Liadau Tiber lortheta, Hannover, Gemany; Liadau/H&r*, Germany

Page 8: Ionospheric Data - NIST

6

She Boyal S@ih@rlands Meteorological Institutes Se Bilt* Holland

All India Badio (Cove rasa ®n& ©f India}® lew Delhi® In&tas Bombay® India Delhi® India Madras* India Siroehy (Tirucfaimpalli)® India

Sadi© ®@gul&t©ry Agency® Tokyo® J&p&ni Akita® Japan fc^Os Japan WaMcanaig Japan laaagawa® Japan

!©di@ Wav© Research Laboratories# latioaal Taiia&n University® Taip©he Fomosa® Chinas

Formosa® China

Sew Zealand Bsp&rtsient of Scientific and Industrial Research* Christchurch* lew Zealand (Canterbury University College Observatory) B&rotonga I®

lorwegian Defense Research Establishment® Ejeller per Liliestrom# ferways Olio® Morwsy

South African Council for Scientific and Industrial Bese&rehs Capetown® Union of South Africa Johannesburg® Union ©f South Africa

Hational Bureau ©£ Standards (Central ladle Propagation Laboratory) : Baton Rouge® Louisiana (Louisiana State University) Qmm I9 teaneay®@ Peru (Institute Ge@£i@ie© de Huaneay©) Maui® Hawaii San Francisco® California (Stanford University) San Juan® Puerto lie© (University of Puerto Me©) Trinidad® British West Indl®® Washington® Bc C. Whit® Vow Mexico

HOURLY IONOSPHERIC DATA AT WASHINGTON, D. C.

fh@ data given in table® 41 to 52 follow the scaling practices given in the report IlPL»C6l9 ^Report of International Bsdi© Propa¬ gation Conference®a page® 36 to 39® and the ia@di&n values ®r© determined

Page 9: Ionospheric Data - NIST

?

■fry the conventions given above under ^Symbols, f@rain©l©gy» Conven¬ tions* w Beginning with September 19^9, the date ar@ taken at a m®w location, ft® BelvoiF, firginia^,

IONOSPHERIC STORMINESS AT WASHINGTON, D.C.

fable 53 presents ionosphere character figures for Washington* D. 6®e during July 195®» a® dei©rained by the criteria given in the report IBPL-B5* ^Criteria for Ionospheric Storrainegs,K together with Cheltenham, Maryland, geomagnetic E-figures, which are usually somriant with them*

SUDDEN IONOSPHERE DISTURBANCES

fables 54 through 59 list the sudden ionosphere disturbances observed at fft® Belvoir, ?irginiag July 195®! Brentwood and Somerton, England, July 19501 Point B©yes, California, July 195® • Colombo, Ceylon, May 195© S Biverhead, lew forte, July 1950* and Lindau/Hara* Germany, June 195©? respectively®

RADIO PROPAGATION QUALITY FIGURES

fable 60 gives provisional radio propagation quality figures for the Horth Atlantic and lorth Pacific areas, for 01 to 12 a»4 13 to 2b SOT* June 1950® compared with the GBPL darily radio disturbance warnings, which are primarily for the lorth Atlantis paths, the C1PL weekly radio propagation forecast® of probable disturbed periods, and the half-day Cheltenham, Maryland, geomagnetic E-figures®

fh© radio propagation quality figure® ar© prepared from radio traffic and ionospheric data reported to the C!PL@ in & mener basically the a® that described in 1BPL--E31, ®Horth Atlantic Jladi® Propagation Bisturb- &nc©®, October 1943 through October 19^5©w issued February 1® 19^6, She seal® ©©aversions for @ach report mm revised for use with the data be¬ ginning January 1948@ and statistical weighting replace® what wa@f ia effect, subjective weighting® Separate master distribution curves of the type described in 2EPL-B31 war® d«rived for the part of 19^6 covered by each report 1 date received ©sly sine® 19^6 are compared with the »st®? €mrv@ for the period ©f the available date* A x©p@rt whose distribution is the sane as the aagter is thereby converted linearly to the 0,-figure scale® Each report is given a statistical weight which is th® reciprocal

Page 10: Ionospheric Data - NIST

8

©f the departure from linearity. The half-daily radio propagation qual¬ ity figure, beginning January 1948, is the weighted mean ©f the report® received for that periods

These radio propagation quality figures giv© a consensus of ©pinion of actual radio propagation conditions as reported by the half day over the two gisneml areas® It should b® horn® in mind, however, that though the quality «ay he disturbed according to the CHFL scale, the cause ©f the disturbance is not necessarily known* There are many variables that mist b® considered® la addition to ionospheric stormiaess itself as the cause, condition® may be reported as disturbed because of seasonal characteristics such a® are particularly evident in th@ pronounced day and night contrast ©v@r forth Pacific paths during the winter months, or because of improper frequency usage for the path and time ©f day in question® Insofar as possible, frequency usage is inelud@d in rating the reports® Where the actual frequency is not shown in th® report to the CBPL, it has been assumed that the report is mad® on the us© of optimum working frequencies for the path and time ©f day in questiom® Since there is a possibility that all disturbance shown by the quality figures is not due to ionospheric stormiaess alone, ©are should b® taken in using the quality figures in r@- search correlations with solar, auroral, geomagnetic, or other data® never¬ theless, these quality figures do reflect a consensus of opinion of actual radio propagation conditions as found ©a any on® half day in either of the two general ar@as®

RELATIVE SUNSPOT NUMBERS

Table 61 presents the daily American relative sunspot number, computed from observations ©oamnie&ted to CHPL by observers in America and abroad® Beginning with the observations for Janu&iy 1948, a new method of reduction ©f observations is employed such that each observer is a®si|s©& a [email protected] ©raining ^observatory coefficient*® ultimately referred to Zurich observations in a standard period, 3D@©@ab®r 1944 to September 1945, and a ®tat litleal weight, th© reciprocal of the variance of the observatory co¬ efficient® The daily aumbor® listed la th® table ar® the w®ight@d means of all observations received for each day® Detail® ©f th® procedure ar© given in the Publication of th® Astronomical Society of the Pacific, issued February 1949, in an article entitled ^leduction of Suaspot-lfember Obser¬ vations®9 Th© American relative sunspot number computed in this way is desig¬ nated B^. It i® acted that a number of observatories abroad, Ineluding the Zurich observatory, are included la H4® The scale of E4 was referred specifi¬ cally to that of the Zurich relative sunspot numbers in the standard compari¬ son peri©^ sine® that time, is influenced by th® Zurich observation® only in that Zurich prove® to b® a consistent observer and receives a high statis¬ tical weight® In addition this table list® the daily provisional Zurich sunapot number®. Eg*

Page 11: Ionospheric Data - NIST

9

OBSERVATIONS OF THE SOLAR CORONA

Table® 62 through 64- gif© the observation® of the solar corona during July 1950 obtained at Climax,, Colorado* fey the High Altitude Observatory of Harvard University and the University of Colorado® Tables 65 through 67 list the coronal observations obtained at Sacra¬ mento Peak, lew Mexico, during June 1950* derived by the High Altitude Observatory from spectrograms taken by Harvard University as a part of its performance of an Air Materiel Command research and development contract administered by the Air force Cambridge Research Laboratories, The data are listed separately for east and west limbs at ^-degree in¬ terval® of position angle north and south of the Solar Equator at the limb, Th© time of observation is given to the nearest tenth of a day® GCT,

Table 62 give® th© intensities of th© green (5303A) line of the ©mission spectrum of the solar corona; table 63 gives similarly the intensities of the first red (637^A) coronal line; and table 6hs the intensities of the second red (6?02A) coronal line; @11 observed at Climax in July 1950»

T&bl® 65 gives the intensities ©f the green (5303A) coronal line; table 66„ th© intensities of the first red (63?4A) coronal line; and table 67* the intensities ofvthe second red (6?02A) coronal line; all observed at Sacramento Peak in June 1950*

Th@ following symbols are used in tables 62 through 67* a» obser¬ vation of low weight; ->, corona not visible; and X, position angle not included in plate estimates®

Coronal tables in this series through F69» May 195^® designated the nominal wave length of the far red coronal line as 6?04A| however, 6702A appears to be a more reliable value and i® used in later issue®. The two are found almost interchangeably in the literature#

Page 12: Ionospheric Data - NIST

10

OBSERVATIONS OF SOLAR FLARES

Table 68 gives the preliminary record of solar flares reported to the CRPL. These reports are communicated on a rapid schedule at the sacrifice of detailed accuracy® Definitive and complete records ar® published later in the Quarterly Bulletin of Solar Activity, I.A.U., in various observatory publications, and elsewhere. The present listing serves to identify and roughly describe the phenomena observed. Details should be sought from the reporting observatory.

Reporting directly to the CHPL are the following observatories: Mt. Wilson, McMathrllulbert, U.S. Naval, Wendelstein, Kanzel, and High Altitude at Boulder, Colorado. The remainder report to Meudon (Paris), and the data are taken from the Paris URSIgram broadcast, monitored fairly regularly by the CRPL. The data on solar flares re- ported from Boulder, Colorado are provided by Harvard University as the result of work undertaken on an Air Materiel Command Research and Development Contract administered by the Air Force Cambridge Research Laboratories.

The table lists for each flare the reporting observatory, date, times of beginning and ending of observation, duration (when known), total projected area, .and heliographic coordinates. For the maximum phase of the flare is given the time, intensity, area relative to the total area, and the importance. The column "SID observed" is to in¬ dicate when a sudden ionosphere disturbance, noted elsewhere in these reports, occurred at the time of a flare. Times are in Universal Time (GOT).

INDICES OF GEOMAGNETIC ACTIVITY

Table $9 lists various indices of geomagnetic activity based on data from magnetic observatories widely distributed throughout the world® The Indices are: (l) preliminary mean 3-hourly K-indices, Iw; (2) preliminary international character-figures, C; (3) geo¬ magnetic planetary three-hour-range indices, Kp; (4) magnetically selected quiet and disturbed days*

Kw is the arithmetic mean of the I-indices from all reporting observatories for each three hours ©f the Greenwich day, on a seal© 0 (very quiet) to 3 (extremely disturbed). The C-figur© is the arith¬ metic mean of the subjective classification by all observatories of

Page 13: Ionospheric Data - NIST

each day8® magnetic activity on a seal® of 0 (quiet} t© 2 {storm).* Th© magnetically quiet and disturbed days are ©elected by the inter*” national scheme outlined on pages 219-227 in tbs December 1943 issue of Terrestrial Magnetise and Ataos.PberlqJlgLai£i§Mg:»

Kp is the mean standardized K™lnd®x from 11 observatories between geoma^ietie latitudes 47 and 63 degree®. The seal© is 0 t© 9, expressed in third® of a unit® @.g.» 5™ is 4 2/3, 5© is 5 0/3» and 5 4 is § l/3. This planetary index is designed to measure solar particle™radiation by its magnetic ©ffutots, specifically to m®@t the need® of research worker* in the ionospheric field, k complete description of Kp has appeared in Bulletin 12b, ^Geomagnetic Indices G and K, 1948,* published in Washing™ ton, D. 0., 1949, by the Association of Terrestrial Magnetism and Elec¬ tric ity. International Union ©£ Geodesy and Geophysics,. Tables of Ip for 1945-48 ar@ in Bulletin 12b; for 1940-44 and 1949, in these 0EPL-P reports, F65-67; for 1950, monthly in F68 and following issues® Currant tables &r© also published quarterly in the Journal ©f Geophysical Research along with data @n sudden commencements (@e) and solar flare effects (®fe).

Th® Cenmitte© @n Characterisation ©f Magnetic Disturbances ATMS, IUGG* has kindly supplied this table® Th® Meteorological Office, B§ lilt* Holland, collects th© data a&d eorapil®® Iw, 0 and selected days. The Chairman ©f th© Committee computes th© planetary Index.

Page 14: Ionospheric Data - NIST

12 TABLES OF IONOSPHERIC DATA

Table 1

Washington, D. C. (38.7°S, 77.1°W)_July 195°

Time h'F2 f oF2 h' FI foFl h'E foE fEs (M3000)F2

00 290 5.2 3.0 2.8

01 280 4.8 2.9

02 280 4.5 2.5 2.9

03 280 3.9 2.3 2.9

04 280 3.5 2.6 2.9

05 280 3.7 (120) (1.7) 1.8 3.0

06 300 4.7 230 3.5 (110) 2.3 4.3 3.0

07 380 5.3 230 4.2 110 2.7 4.1 2.9

08 360 5.7 220 4.5 110 3.1 4.8 2.9

09 370 5.9 200 4.6 100 3.3 5.1* 2.9 10 380 6.0 200 4.8 (100) 3.4 6.8 2.8

11 400 6.0 200 4.8 (100) 3.5 5.4 2.8

12 420 6.0 200 4.8 (100) 3.6 5.5 2.7

13 400 6.1 200 4.8 (100) 3.5 5.1 2.7 14 380 6.2 200 4.8 (100) (3.5) 4.2 2.8

15 400 6.4 210 4.7 (110) 3.4 4.6 2.8

16 360 6.4 220 4.6 110 3.2 2.8

17 340 6.6 220 4.3 110 3.0 2.8

18 300 6.8 240 (3.8) 110 2.5 3.8 2.9

19 270 6.9 (120) 1.7 4.2 2.9 20 260 (7.1) 3.5 (2.9)

21 270 (6.6) 3.8 (2.8)

22 280 (6.0) 3.0 (2.8)

23 290 (5.5) (2.8)

Times 75.0°W. Sweep: 1.0 Me to 25.0 Me in 15 seconds.

Table A

San Fraicisco, California (37.4° N, 122. 2°V) June 1950

Time h'F2 f oF2 h1 FI foFl h'E foE fEs (M3000)F2

00 290 5.9 4.4 2.8 01 300 5.6 3.0 2.8 02 300 5.4 2.8 2.7 03 290 5.1 2.9 2.8 04 300 4.8 3.1 2.8 05 300 5.0 — — — — 3.2 2.8 06 340 5.7 250 3.7 120 2.3 3.7 2.9 07 380 6.2 240 4.4 120 2.8 5.0 2.8 08 380 6.6 230 4.6 ] 20 3.9 5.3 2.7 09 400 7.1 210 4.8 120 3.9 5.2 2.7 10 420 7.1 210 5.0 120 4.0 5.5 2.6 11 410 7.3 210 5.0 120 4.0 5.4 2.6 12 410 7.4 220 5.0 120 4.0 5.6 2.6 13 380 7.6 230 5.0 120 4.0 4.8 2.6 14 180 7.5 220 5.0 120 3.8 2.8 15 350 7.4 230 4.9 120 3.9 2.8 16 340 7.2 240 4.7 120 3.6 4.4 2.9 17 340 7.2 240 4.5 120 2.9 4.4 2.9 18 300 7.4 240 4.0 120 2.5 4.1 3.0 19 260 7.2 3.8 3.1 20 240 6.8 3.6 3.0 21 260 6.6 3.8 2.9 22 280 6.0 5.3 2.8 23 300 5.8 4.9 2.8

Time: 120.0°W. Sweep 1.3 Me to 18.0 Me in 4 minutes.

Table 2

Oslo, Norway: (60.0°N, 1'

w

0 0 June 1950

time h'F2 f oF2 h1 FI foFl h'E foE fEs (M3000)F2

00 270 6.5 2.4 (2. 8) 01 280 6.2 2.7 (2. 8) 02 280 5.8 2.9 (2.8) 03 295 5.9 275 2.5 150 1.5 3.3 (2. 7) 04 300 5.9 250 3.2 120 1.9 3.5 2 8 05 330 6.1 230 3.8 110 2.3 3.4 2 8 06 360 6.0 230 4.1 105 2.6 3.5 2 8 07 340 6.4 220 4.4 105 2.9 3.6 2. 8 08 360 6.4 210 4.7 100 3.1 3.7 2. 8 09 350 7.0 205 4.8 100 3.3 3.8 2 8 10 335 6.9 205 4.9 100 3.3 4.8 2. 8 11 350 6.7 205 5.0 100 3.4 5.0 2. 9 12 380 6.6 200 5.0 100 3.4 3.9 2 8 13 365 6.6 200 5.0 100 3.4 4.0 2 8 14 370 6.7 200 5.0 100 3.4 3.8 2 8 15 350 6.5 210 5.0 100 3.3 3.8 2 8 16 355 6.4 210 4.7 100 3.2 3.8 2 9 17 350 6.5 215 4.5 105 3.0 3.6 2 9 18 310 6.7 230 4.3 105 2.8 3.6 2 9 19 305 6.8 240 3.9 no 2.4 3.6 3 0 20 265 6.8 245 (3.3) 115 2.0 3.9 3 0 21 260 7.0 — — 120 1.6 3.4 (3 0) 22 250 6.7 — — 2.4 (2 9) 23 260 6.8 2.1 (2 8)

Time: 15.0°E. Sweep: 1.3 Me to 14.0 Me in 8 minutes, automatic operation;

supplementary recorder, 1.6 Me to 10.0 Me.

Table h

White Sands. New Mexico (32.3°B, 106.5»W) June 1550

Time h’F2 f oF2 h' FI foFl h' E f oE fEs (M3000)F2

00 300 6.0 4.2 2.6 01 290 5.9 3.5 2.7 02 280 5.7 3.8 2.7 03 280 5.4 3.0 2.7 04 280 5.1 3.2 2.7 05 280 5.0 — — — 4.3 2.8 06 240 5.9 240 — 120 (2.3) 5.2 2.8 07 330 6.7 230 4.4 (no) (2.8) 5.6 2.7 08 330 7.4 220 4.7 no (3.1) 6.4 2.7 09 340 7.6 210 4.9 110 (3.4) 5.7 2.7 10 380 7.8 210 5.1 110 (3.7) 5.7 2.6 11 400 8.0 210 5.2 110 (3.8) 5.4 2.5 12 400 8.2 220 5.2 no (3.9) 5.5 2.6 13 380 8.7 220 5.2 110 (3.9) 5.0 2.6 14 360 8.6 220 5.1 no 3.8 5.4 2.6 15 360 8.4 220 5.0 no 3.6 5.4 2.6 16 340 8.3 220 4.8 110 3.3 5.0 2.7 17 320 8.2 240 4.4 no (3.0) 4.8 2.8 18 300 8.0 240 — (no) (2.4) 4.2 2.8 19 260 8.0 3.8 2.9 20 240 7.7 3.0 2.9 21 270 6.8 3.6 2.7 22 280 6.0 3.9 2.7 23 300 6.0 3.6 2.6

Tima: 105.0°W„ Sweep: 0.8 Me to 14.0 Me in 2 minutes.

Table 5

Time: 90.0°W. Sweep: 2.12 Me to 14.1 Me in 5 minutes, automatic operation.

Table 6

Maul. Hawaii (20.8°«, 156.5°W)_June 1950

Time h'F2 f oF2 h' FI foFl h'E foE fEs (M3000)F2

00 290 8.6 2.8 01 280 8.4 2.9 02 260 8.0 3.0 03 260 7.0 3.0 04 260 6.2 2.9 05 280 6.0 2.8 06 260 6.3 130 _ 2.9 07 240 6.6 230 — 120 (2.7) 4.0 2.8 08 340 7.8 220 4.9 110 (3.0) 5.2 2.6 09 390 8.6 210 4.9 no 3.4 4.9 2.4 10 420 9.3 210 5.1 no 3.6 5.3 2.4 11 410 10.0 210 5.2 110 3.7 5.6 2.5 12 400 10.6 210 5.2 110 (3.8) 5.4 2.6 13 370 11.2 210 5.2 110 (3.8) 4.6 2.6 14 360 11.6 210 5.1 no 3.8 5.0 2.7 15 350 11.8 220 5.0 110 3.6 5.0 2.8 16 320 11.9 220 4.8 no 3.4 4.9 2.9 17 300 12.0 230 4.4 no 3.0 4.4 2.9 18 270 11.4 240 — no (2.3) 3.9 3.0 19 260 10.4 3.2 3.0 20 260 9.8 3.0 2.9 21 280 9.3 2.7 2.8 22 290 9.2 2.8 23 300 8.8 _

Time: 150.0°W. Sweep: 1.0 Me to 25.0 Me In 15 seconds.

Page 15: Ionospheric Data - NIST

13

Table 7 Table 8

San Juan, Puerto Rico (18.4°H. 66.1°W) June 1950 Trinidad, Brit. West Indies (10. 6°K, 61.2 °W) June 1950

Time h'F2 foF2 h' FI foFl h'E f oE fEs (M3000)F2 Time h'F2 f oF2 h1 FI foFl h' E fcE fEs (M3000)F2

OC 260 9.4 2.8 00 240 10.5 3.2

01 240 8.9 2.9 01 230 9.4 3.1

02 250 8.0 2.8 02 240 8.5 3.1

02 250 (7.3) 2.8 03 240 8.0 3.2

04 260 7.2 2.8 04 220 7.4 3.2

05 250 6.4 2.9 05 240 6.9 3.2

06 240 6.2 2.9 06 240 6.4 100 1 .8 2.6 3.1

07 230 (7.2) — (8.9) 07 220 7.4 210 — 100 2.6 3.4 3.2

08 280 8.1 4.7 (3.3) 4.2 2.9 08 250 8.0 200 4.7 100 3.2 4.3 3.0

09 300 8.8 5.0 3.5 4.4 2.9 09 300 8.8 200 5,1 100 3.6 4.6 2.8

10 330 9.5 5.3 _ 4.1 2.8 10 320 9.8 200 5.2 100 3.8 4.8 2.7

11 330 10.0 (5.3) — 5.0 2.8 11 340 10.8 320 5.3 100 3.9 5.0 2.8

12 320 10.5 5.3 _ 4.9 2.9 12 340 11.4 210 5.3 100 4.0 5.1 2.8

13 (340) (11.2) (5.3) — 5.3 (8.7) 13 320 12.0 200 5.2 100 3.9 5.2 2.9

14 300 11.5 5.3 _ 5.6 2.8 14 320 12.4 210 5.2 100 3.8 5.5 2.9

15 300 11.7 5.1 3.7 5.2 2.9 15 320 12.2 200 5.1 100 3.6 5.0 2.9

16 290 11.3 4.9 3.5 4.9 3.0 16 300 12.2 220 5.0 100 3.3 5.4 2.9

17 280 (10.2) — _ 4.6 2.8 17 270 11.6 220 4.4 1.00 2.8 4.4 2.9

18 250 10.0 — 4.2 3.8 18 240 11.2 — — 100 2.3 4.1 2.9

19 240 (9.8) (3.8) 19 260 10.8 4.2 2.9

20 260 (9.4) (8.8) 20 270 10.9 3.0 2.8

21 260 (9.2) (8.8) 21 260 11.4 2.0 2.9

22 270 (9.3) (8.8) 22 260 11.3 2.3 3.0

23 270 9.4 2.8 23 240 11.0 2.0 3.1

Tine; 60.0°W. Time: 60.0°W. Sweep 2.8 Me to 13.0 Me in 9 minutes, automatic operation; Sween 1.2 Me to 18.0 Me, manual operation.

supplemented by manual operation.

Table 9 Table 10

Huancayo, Peru (12.0°S, 75.3°W) June 1950 DeBUt, Holland (S2.1°K. 5.2°E) May 1950

Time h' F2 f oF2 h' FI foFl h'E fo£ fEs (t.13CI00)F2 Time h'F2 f oF2 h' FI foFl h'E foE fEs (M3000)F2

00 230 7.0 3.0 00 305 6.2 2.3 2.5

01 230 6.6 3.0 01 310 5.7 2.3 2.5

02 220 6.1 3.1 02 300 5.4 2.7 2.6

03 240 5.4 3.1 03 305 5.2 2.7 2.6

04 230 4.8 3.1 04 300 5.4 300 2.9 175 1.8 3.3 2.7

05 240 4.0 3.1 05 300 5.9 250 3.5 120 2.1 3.6 2.8

06 290 4.4 100 1.2 3.0 2.9 06 510 6.2 230 4.0 105 2.6 3.9 2.8

07 240 7.0 100 2.3 4.3 2.9 07 340 6.9 220 4.5 100 3.0 4.6 2.8

08 270 8.6 220 4.9 100 2.9 4.9 2.8 08 350 6.9 220 4.7 100 3.2 4.7 2.8

09 300 9.0 210 5.0 100 — 8.7 2.5 09 350 7.3 220 5.0 100 3.4 4.6 2.8

10 310 9.0 210 5.1 100 _ 10.6 2.5 10 385 7.6 210 5.0 100 3.5 4.9 2.7

11 320 8.8 200 5.0 100 _- 10.7 2.4 11 380 7.6 220 5.2 100 3.5 4.7 2.7

12 320 8.7 200 5.0 100 _ 10.8 2.4 12 390 7.3 210 5.2 100 3.5 4.6 2.7

13 320 8.8 200 5.0 100 _ 10.8 2.4 13 350 7.6 220 5.0 100 3.5 4.2 2.7

14 310 8.9 200 4.8 100 _ 10.7 2.4 14 360 7.6 220 4.9 100 3.4 4.2 2.7

15 300 8.9 210 4.8 100 _ 9.9 2.4 15 325 8,0 225 4.8 100 3.3 3.9 2.8

16 240 8.9 230 4.8 100 2.7 6.2 2.4 16 310 7.9 235 4.5 105 3.1 4.0 2.0 17 250 9.1 100 2.0 4.2 2.5 17 300 8.2 240 4.1 105 2.7 4.0 2.8

18 300 8.8 2.4 18 285 8.4 250 3.5 110 2.3 3.6 2.8

19 300 8.4 2.4 19 280 8.2 — — — 1.8 3.0 2.9 20 280 8.4 2.5 20 27'j 7.7 2.7 2.8 21 250 8.4 2.7 21 230 7.1 2.2 2.7 22 230 7.8 2.8 22 290 6.9 2.2 2.6 23 230 7.3 2.9 23 300 6.4 2.1 2.6

Time: 75.0°W. Time: 0.0°. Swe op: 16.0 Me to 0.5 Me in 15 minutes. automatic operation Sweep 1.4 Me to 16.0 Me in 7 minutes, automatic operation

Table 11 Table 12

Lindau/Harz, Germany (51.6°N, 10.1CE) May 1950 Fonno6 a, China (25.0oK, 121.0°E) May 1950

Time h'F2 foF2 h' FI foFl h'E foE fEs (M3000)F2 Time h'F2 f oF2 h1 FI foFl h'E foE fEs (M3000)F2

00 280 6.1 2.0 00 01 290 5.9 2.2 01 02 300 5.5 2.2 02 03 290 5.2 2.1 03 04 280 5.0 — — — E 2.5 04 05 270 5.5 270 — no 1.8 3.2 05 06 270 5.9 250 3.9 100 2.4 4.2 06 07 310 6.2 230 4.2 100 2.8 4.4 07 08 330 6.6 220 4.6 100 3.1 4.5 08 280 9.4 240 4.9 120 3.3 5.4 3.0 09 360 7.0 220 4.7 100 3.3 4.7 09 300 9.8 240 5.8 120 3.5 5.6 2.8 10 350 7.4 210 4.9 100 3.4 4.9 10 320 11.8 250 5.8 120 4.0 5.8 2.5 11 340 7.6 210 5.0 100 3.5 4.6 11 330 12.8 220 5.8 120 3.3 5.4 2.5 12 370 7.7 220 5.1 100 3.6 4.6 12 320 14.3 220 6.1 110 3.8 4.8 2.8 13 360 7.6 210 5.1 100 3.6 5.2 13 320 14.4 210 6.0 120 3.6 5.0 2.7 14 360 7.6 220 5.1 100 3.5 4.6 14 320 14.4 240 5.7 120 3.7 5.2 2.8 15 320 7.6 220 4.9 100 3.4 4.1 15 320 14.4 220 5. 4 12C 4.0 4.8 2.9 16 310 7.8 220 4.8 100 3.3 4.0 16 320 14.4 240 5.7 120 3.8 4.7 2.9 17 290 7.8 230 4.4 100 3.0 3.5 17 280 14.4 240 4.9 120 3.3 4.7 3.2 18 260 8.0 250 — 100 2.6 3.6 18 280 14.4 — 5.6 120 — 5.4 3.2 19 260 8.3 — — 100 2.1 3.7 19 260 14.4 4.5 3.2 20 250 8.1 — E 3.0 20 21 250 7.7 2.6 21 22 260 7.1 2.5 22 23 280 6.7 2.2 23

Time: 15.0°E. Tine: 120.0°E Sweep 1.0 Me to 16.0 Me in 8 minutes. Sweep : 2.5 Me to 14.5 Me in 15 minutes , manual operation.

Page 16: Ionospheric Data - NIST

14

Table 13

Guam I. (13.6°H, 144.9°E) May 1950

Time h'F2 foF2 h'Fl foFl h‘E foE fEs (M3000)F2

00 300 (10.9) (2.7)

01 260 (10.7) (2.9)

02 250 9.8 3.0 03 250 9.3 3.1 04 240 8.3 4o0 3.1 05 230 6.2 4.0 3,1 06 250 6.7 — — 5.5 3.0 07 250 8.4 — — 110 2.9 7.3 3.0 08 250 9.5 220 — 110 (3.2) 8.8 2.9 09 260 10.2 220 — no (3.5) 8.5 2.6 10 300 10.8 220 — no 3.8 8.8 2.5 11 320 11.1 220 — no (4.0) 8.5 2.4 12 340 12.0 220 5.3 no (4.0) 8.8 2.5 13 340 (12.6) 210 — no (4.0) 8.7 (2.4) 14 340 12.8 220 — no 3.9 7.0 2.4 15 340 (13.0) 220 — no 3.7 4.9 (2.5) 16 340 (13.0) 230 — no 3.4 6.0 (2.4) 17 250 (13.0) 240 — no 2.9 7.0 (2.4) 18 270 (13.0) 120 — 6.2 (2.4) 19 310 (12.4) 4.6 (2.4) 20 350 (11. S) 1.7 (2.2) 21 360 (11.1) (2.3) 22 350 (10.8) 3.6 (2.4) 23 320 (10.4) 2.1 (2.5)

Time: 150.0°®. Sweep: 1.0 Me to 25.0 Me in 15 seconds.

Sweep: 1.0 Me to 15.0 Me in 7 seconds.

Table 17

Time: 135.0°E. Sweep: 1,0 Me to 17.0 Me in 15 minutes, manual operation.

Table 14 Johannesburg, Onion of 3. Africa (26.2°S, 28.0°®) May 1950

Time: 30.0°®. Sweep: 1.0 Me to 15.0 Me in 7 seconds.

Table 16

Time: 136,0°E. Sweep: 1.0 Me to 17.0 Me in 15 minutes, manual operation.

Table 18

Yamagawa, Japan (31.2°H„ 130.6°E) April 1950

Sweep: 1.2 Me to 18.6 Me in 15 minutes, manual operation.

Page 17: Ionospheric Data - NIST

15

Table 19

Time: 120.0°E. Sweep: 2.5 Me to 14,5 Me In 15 minutes, manual operation.

Table 21

Time: 172.5°E. Sweep: 1.0 Me to 13.0 Me.

Time: Local. Sweep: 1.8 Me to 16.0 Me in 5 minutes, manual operation. •Height at 0.83 foF2.

••Average values; other columns, median values.

Table 20

Watheroo, V. Australia (30.3°S . 115.9°S) April 1950

Time h'F 2 foF2 h' FI foFl h'E foE fEs (M3000)F2

00 270 5.1 2.7 2.8

01 270 5.1 2.9 2.e 02 260 5.1 2.8 2.9 03 250 4,9 3.0 3.0

04 240 4.4 2.8 3.0

05 250 4.2 2.5 2.8 06 250 4.2 2.4 2.9 07 240 7.0 2.0 3.4

08 240 S. 5 240 — 2.7 3.2 3.4

09 250 10.7 230 4.8 3.1 3.4 3.3

10 250 11.2 230 4.8 3.3 3.7 3.2

11 250 11.5 220 4.8 3.3 3.8 3.1 12 260 11.6 220 4.8 3.4 3.8 3.1 13 270 11.8 230 4.9 3.4 3.6 3.0 14 260 11.8 240 5.0 3.3 3.6 3.0 15 260 11.8 240 4.2 3.3 3.3 3.0 16 240 11.4 240 — 2.8 3.2 3.0 17 240 10.8 2.1 3,0 3.1

18 220 9.6 2.4 3.1 19 230 8.1 2.9 3,1 20 240 7.2 2.6 3.0 21 240 6.0 2.9 3.0 22 250 5.5 2,4 2.9 23 250 5.2 2.9 2.0

Time: 120.0°S. Sweep: 16.0 Me to 0. 5 Me in 15 minutee, automatic operation.

Table 22

Rarotonga I.(31.3°S, 159.e°VI) March 1950

Time h’F2 f oF2 h' FI foFl h'E foE fEs (M3000)F2

00 280 7.8 3.0 01 300 8.0 2.9 02 300 7.8 2.9 03 280 7.4 3.0 04 300 7.8 2.9 05 280 6.7 2.9 3.0 06 290 7.6 — — 2.5 3.1 07 250 9.3 250 5.5 no 2.3 3.3 3.1 08 250 10.7 240 6.0 no 2.9 3.8 3.3 09 250 10.9 240 5.4 no 3.5 3.9 3.2 10 2S0 11.2 240 6.0 no 3.6 4.4 3.1 11 290 11.3 240 6.3 no 3.8 4.3 3.1 12 300 11.6 250 6.1 no 3.9 4.6 3.1 13 300 11.8 250 6.3 no 4.0 4.4 3.1 14 300 11.8 250 5.8 no 3.8 4.3 3.0 15 300 11.8 250 5.8 no 3.7 4.5 3.0 16 290 11.2 250 5.5 no 3.5 4.6 3.0 17 300 11.3 250 5.6 no 3.1 4.4 3.0 18 260 10.3 260 — — — 3.8 3.2 19 270 10.2 — — 3.6 3.1 20 270 9.5 — — 3.5 3.1 21 270 9.2 2.9 3.C 22 280 8.2 3.0 23 280 9.0 2.9

Time! 157.5°t#. Sweep; 2.0 Me to 16.0 Me, manual operation.

Table 24

Time: Local. Sweep: 1.8 Me to 16.0 Me in 5 minutes, manual operation. •Height at 0.83 fPF2.

••Average values; other columns, median values.

Page 18: Ionospheric Data - NIST

16 Table 25 Table 26

Time: Local. Sweep: 1.8 Me to 16.0 Me in 6 minutes, manual operation. •Height at 0.83 foF2.

••Average values; other columns, median values. Table 27

W&kkanai, Japan (45.4°N, 141.7°B) January 1960

Sweep: 1.0 Me to 14.0 Me in 16 minutes, manual operation.

Table 29

Sweep: 1.0 Me to 17.0 Me in 18 minutes, manual operation.

Time: Local. Sweep: 1.8 Me to 16.0 Me in 5 minutes, manual operation. “Height at 0.83 foP2.

Table 28

Time: 135.0°E. Sweep: 1.0 Mo to 17.0 Me in 15 minutes, manual operation.

Table 30

Yamagawa, Japan (31.2°H, 130.6°B) January 1950

Timet 135.0°B. Sweep: 1,2 Me to 18.5 Me in 15 minutes, manual operation.

Page 19: Ionospheric Data - NIST

Table 31

17 Table 32

Delhi, India (38 ,S°H, 7?.1°E) J anu.org ^ 3 950 Bombay, India (19.0°!I, 73.0°S) Jaoua£J 1950

Time « foF2 h'Fl foFl h'E foE fEs (M3000)F2 Time * foF2 h'Fl foFl h'E foE fEs (M3000)F2

00 300 4.0 3.0 00 01 200 4.2 01 02 — 02 03 — — 03 04 — — 3.3 04 05 280 4.4 05 06 280 5,1 06 07 270 6.3 07 300 7.5 08 260 8.5 3.4 08 360 10.6 2.8 09 280 10.0 09 390 11.9 10 280 11.5 10 420 12.9 11 280 12.0 11 430 13.4 12 300 12.7 3.0 12 480 14.1 2.6 13 300 12.8 13 — —

14 300 12.8 14 480 14.6 15 300 12.2 15 480 14.6 16 300 12.2 3.1 IS 480 14.6 2.6 17 280 10.6 17 480 14.7 18 280 9.8 16 450 14.5 19 270 7.8 19 420 13.9 20 280 7.5 3.2 20 420 13.7 2.6 21 280 6.0 21 390 12.9 22 280 5.6 22 390 11.7 2.8 23 300 4,8 23 360 11.1

Time: Local. Times Local. Swe ep 1,8 Me to 16.0 Mo in 5 minutes, manual operation. Sweep: 1.8 Me to 16.0 Me in 5 minuteo, manual operation.

*Average valuer other columns, median values. Table ,33

Sweep: 1.6 Me to 16.0 Me in 5 minutosj manual operation. ^Height at 0.83 foF2.

^’Average values; other columns, median valueB.

•Height at 0.83 foF2. Average values; other columns, median valuee.

Table 34

Madras India (13.0PN, 80.2°E) January 1950 Tiruchy , India (10.8°S

Time * foF2 h'Fl foFl h'E foE fEs (H3000jF2 Time * f oF2

00 00 01 01 02 02 03 0-3 04 04 05 05 05 06 07 360 9.7 07 350 6.8 08 390 10.7 2.8 06 420 9.4 09 420 12.1 09 420 10.2 30 480 12.2 10 510 10.6 11 480 12,0 11 500 10.2 12 480 11,8 2.5 12 540 10.4 13 510 11.8 13 540 10.4 14 510 11.9 14 540 10.3 15 510 11.9 15 (SOj) (11.4) 16 540 12.2 2.8 16 590 11.2 17 510 12.2 17 600 11.2 18 510 32.0 18 600 io.e 19 520 12.0 19 600 10.1 20 430 (11.9) 2.6 30 600 10.2 21 — (11.5) 21 560 10,0 22 — (11.2) 22 _

23 23

Timet Local Time: Local.

January 1950

5s (M30QoTf2

Sweep: 1.8 Me to 16. •Height at 0.83 foF2.

Table Fribourg, ueraany (48.2°K# 7U8°S)

35 Daceinber 1949 Dakar, Fronca W®st Afrloa (14.6°H

Sabi» 36 17.4°W) December 1949

Time h’F2 foF2 h’Fl foFl h'E foE fEs (M3000)F2 Time h'?2 foF 2 h'Fl foFl h'E foE fEs (M3000)F2 00 290 3.7 2.2 2,7 00 255 01 310 3,7 2.1 2.7 01 250 02 310 3,8 2.2 2.8 02 240 (?.o) 03 290 3.7 2,8 03 255 6.8 04 275 3.6 2.0 2.9 04 280 6.2 05 250 3.4 1.9 3.0 05 280 4.7 3.3 06 235 3.2 2.1 2.9 06 290 6.6 — 4,0 07 240 3.9 2.9 07 255 10.2 — 140 2.3 4.1 08 230 7.8 — £ 2.3 3.4 03 270 13,9 255 _ 125 3.0 4.7 09 220 10.6 126 2.8 2.0 3.4 09 280 15.0 245 — 120 3,4 5.6 10 220 11.5 116 2.7 2,7 3.3 10 310 14.5 235 _ 120 3.7 5.0 11 S20 11.8 115 2.9 3.3 11 350 14.3 235 120 3,9 4.7 12 220 11.7 115 3.0 2.0 3.2 12 395 (>14.?) 250 _ 220 4.0 4.8 13 225 11.6 115 3.8 3.2 13 (380) 14.6 235 4.4 120 3. S 4.6 14 225 11.4 116 2.6 3.2 14 (415) (>14.3) 240 _ 120 3.7 4.6 15 220 11.0 120 2.2 8.4 3.3 IS (390) (>14.3) 350 120 3,4 4.8

220 9.9 5 2.2 3.3 IS 315 (>14.3) 270 320 2.9 4.6 17 215 8.3 2.0 3.3 17 260 (>14.3) _ 130 2.2 4.5 28 220 6.1 3,2 18 320 (>14.3) __ E 5.0 19 235 5.0 2.6 3.S 19 360 (>14.0) 4.0 30 240 4.2 2.1 3*1 ao 300 3.8 21 260 3.9 3.3 2.9 21 275 _ 3.9 23 290 3.8 2.8 22 260 __ 2.8 23 390 3.7 1.9 2,8 23 260

Tiaat Local. Time: Local. 1.6 Me to 17.6 Me in 10 minuted, automatic operation. Swept 1.35 He to 30.0 Me in 10 minut es, automatic operation.

Page 20: Ionospheric Data - NIST

!8

Fribourg, Germany (48.1°N, 7.8°S) November 1949 Dakar, JPimch West Africa (14,S°H, 17,4^) Eovember 1949

Time h'F2 f oF2 h1 FI foFl h'E foE fEs (M3000)F2 Time h'F2 foF2 h'FI foFl h'E foE fEs (M3000)F2

00 300 4.3 2.1 2.7 00 255

01 300 4.2 2.2 2.6 01 250 — 2.4

02 315 4.2 2.3 2.6 02 250 —

03 310 3.9 2.3 2.6 03 250 6,6

04 275 3.8 2.0 2.8 04 265 5.0

05 260 3.4 2,8 05 280 4.6

06 270 3.4 2.8 06 305 7.1 — — 3.8 07 240 6.0 _ B 2.9 07 280 12.4 135 3.6 4.0 08 230 9,1 125 1.9 3.0 3C 3 06 280 14.e 265 - 130 3.2 4.2 09 230 31.6 115 2.5 3.7 3.2 09 390 15,8 3S0 - 135 3.6 4.5 10 230 12.5 110 2,9 3.8 3.1 10 350 16.2 250 —- 130 3.9 4.6 n 325 12.9 no 3.1 3.8 3,1 11 (380) 16.5 250 - 130 4.1 4.6 12 225 12.8 no 3.1 3.3 3.1 12 (380) 15.4 250 - 130 4.1 13 230 12.6 no 3.1 2,7 3,0 13 400 (1S.S) 250 - 130 4.0 14 235 12.3 no 2.9 3.0 14 410 (16.3) 250 - 125 3.7 4.3 15 230 12.3 120 2.5 2.5 3,1 15 405 (17.0) 265 - 130 3.5 3.7 16 225 11.4 135 1,7 2 A 3.1 16 305 (IS.8) 270 - 130 3.0 4.5 17 215 9.7 2.3 3.1 17 300 — — 2.2 4.3 18 225 8.0 2.2 3.0 18 360 -. 4.2 19 230 6.4 1.7 3.0 19 400 — 4,0 20 240 5.4 2.2 2.9 20 320 — 3.0 21 270 4.8 2.2 2.8 21 295 — 3.9 22 285 4.5 2.1 2.7 22 270 — 3.6 23 305 4.2 2.6 23 250 — 3.2

Time: Local. Time: Local. Swap! 1.6 Me to 17.6 Me in 10 minutes automatic operation. Sweep: 1.35 Me to 30.C Me In 10 minutes, automatic operatIon.

Fribourg, Germany (48.1°J£» 7.8°E) Table 39

October 1949

Tabla 40 Dakar, French Went Africa (1.4.6°E, 1?,4°W) October 1949

00 01

02

03 04 05 06 07 08 09 10 n 32 13 14 15

16 17 18 19 20 21 22 23

h1 i'2 h'Fl (270) (266) (240) (265) (260) (250) (230) (250) (260) (300) (310)

(360) (380) (350)

(325) (280) (345) (370) (330) (300) (300) (270)

h »a foZ fEo (M3000)TS~~

(6.5) 4.9 8o0

12.6 14.9 16.0 16.6 17,0

(17.0) 17,0 16.8 16.8 16.7

(16.4) (15.8)

230 260

270 270

125 125 120

125 125 125 125 120 130 120

2.6

3.7

4,0 4.0 4.0

4.1 3.8 4.5 4.2 4.0 3.0 3.6

Sweep; 1.6 Me to 17.6 Me in 10 minutes, automatic operation. Time: Local. Sweep! 1.25 Me to 20.0 Me in 10 minutes, automatic operation.

Page 21: Ionospheric Data - NIST

19

< h-

< Q

<3" m

UJ i -J z CD z < S CL I o 1

1 2 CO

g or. Ld X

5 O

Man

ual □

Au

tom

ati

c

IS

Page 22: Ionospheric Data - NIST

20

Man

uol □

Auto

mati

c

ES

Page 23: Ionospheric Data - NIST

2

rO sj-

IjJ _I

CD

<

o Q

O

o cr> o Q. O

CL

O •o O

£T

Sw

eep_!_

0_M

c t

fi 25.0

Mr

In 0

25

min

Man

ual □

Auto

mati

c

IS

Page 24: Ionospheric Data - NIST

22

o O' o a o

CL

o ■D O q:

o

O

ro - CO

CO 00

CO

s

CT>

sc

cc>

CC <t

X

M3 *M

3:

*•» £ 0<

CO

n

§ <c

is <i CO

CM

X

<c

•o

n < <r <c < <M

< < < >

«M

X o >

*M

X o 5- 0

-Q >- Of

M3 <*3 c*

)C

c VS

rM

> Of

3: <3 «< •t

ic © <M et

cn

£5

S3

*X

<3

A

t o

ci CO

=c ■<3 A

X

<», •^

X

o

<t

*

<t OX

<3 <o

'M OJ

<3

<M <M Of

<3 n

^5 <* "t

o <o <M

ro <N

“O CM <X

X o CM

CM 0

M3 co

CM

<3 <3

<\

X "M3 Vf €M

<1

«M

to <3

Of

x Ck MX

r$

&

%rt

a <c

M3

o<

o Q o

-o

<3

-X Q

CO CM

X

CO MM

<c

•o «M <\

m: ■o O

TV <f

Ml

C'O <M

0 <J

X <3 n

-**1

a t

<r

<3 <M <M

<3

<X Of

•s) CM

3C

<V3 Of

MD

n A

'CM

n5 <M

tf> 0 M3

<3 MX s*

*x

X 3:

V.V

o X.

<Z> <3 ¥

a

X ■o CM

<^ c

© <M

<3 CO (X

C3 ■O

<3

«M

<3 <3 CM CM

X «3 <M ■CM <t

<3 <M MM

<3 Xr C3 <3

XV <3 M3 <*

<3 <M <V <M

»o <M

o <3 -f-

<M *M

U-l

o <3-

< o

■o o

3c

c ■>

X Ci «M

© •O <M

C3 °X

% "Ci

<3

^X

•O

-CM

3

CM

X

a CM

f

&

Vt ^3

J;X O <3

CM

^3 MM Of

0 C3

«M

K Mi M3

CM <r

Mi <3

<M

cn

ro

3:

0 <3 M3

t\ CJ

<3

■Y

<3

■5

j: <3

<s- <r 0 c <3 CO °c

X

<3 CM TM

% o

<r

© © <i

■CM

«C o ©

*X

<3 C3

CM

X o

<X

X

o( o

*

'M

0

M3

Mt <5 ©

*x <r

^3 M3 or

<1 C'l

CO <3

<3

Of

0

M3 or-

X

<3

* M3 <3l

nr C<

3 <3 *>o

<3

Ol c <

© ox

l^i

>«r

CM <

<D

< <

<3 o

*1

% CM

£1/

X o C3

CM

«*:

on CM

<

<3

n

-v •o

CM

XX

M3 <3

'CM

X

< <3

MM

5- M3

CM

•c

di

MC <

S3 <3

*M M

Y

<3 <3

cm

X © S3 ■^l

<3 <3 c -o

cc •—•

<i r%

<x

«M < Ci

<M <t <

<M •>/

s o

<M H c C3 C3

CM

X C3

X <3 M3

*M

*c

^3

CM

M3

Of

M

V Ti

o

© <3 <M

<

M3 <v

CM

M3 M3

^>- <t

O -o Mi

S3 ■<3 <i o< CM <c C

*S <5

<

3:^c

CM

V.

© <M

<c <3 <3

-CM <c

o <M <*M

O c^

c« «t <c <

3T C3 <3 •M

<3 <3 <x

X ■Q> O

X

<r © <3

OS

X ■M3

<3^ <3 Of

X

'f' © S3

<M MM

(?) O

<3 M3

Of

<i

* <v

<C

CM J

<x

CM *—1

<

«M <c < ■o < <

X

*0 CO

X o

Of

■o

<-*

<D

<M < <

<3 O Oj

* o

£S

< c <

X <3 C3

CM

o «3

Xx *3 <3

Of

X

<C <3

<o

X

© M)

Of

M3 M3 Of

X

M3 M3 ns

M3 M3 CM

M3 Of

*M

•2) O

<3

*M <m

<t

•ci

£

X Q

c.( «M

<3

3: •<3 -Mv <M

«=» Ol

<C

4—1

<r <o <M

3TM O

<o cy

X.

<o

«M

*

C3 <c •c

©

<M

\ o

5

c

M)

<M «*

X <3

<M

<3 *M

X* <3

CM

*

<K M3 'M Of

M3 CO

* <M

Ci

>cc

8 Of

%

&

MD CX Of

cM

N O

&

S3 CO Os

<3

Of

<3 n <%

*3

<Y

"3 CTV <t

<3 <3 <x

CC <

X o

•>• CM

X •o

CM <o o

<3

<M

<o

c\

■© <© CM

CT> © > CM

% <t

<3 -3~

<3

'CM

X3C <3

Ol <c <r

<0

MM

CM

Q Crj

Of

XX o

«N

<3 S3 C""')

Of

> «X

<d O

<M mm o <c

o

*o <3 CO Of

CO ■t o

<3 '•'•o •Of

<

X

<Q> "3 Of

X

Q *0

Cx

CO a xj-

<M CM

c < 1? ■a

* o

O -T <c Q

<M

OM

^r~

o •CO

■o

XX

<3

«M

X <3 IM

Oi o a

m CM o

-C3

b CM

«A

CM

v>

in o

o

ro

°

8 CM

1 °

5

o o

o Q

- CM ro mj- m CD h- 00 <T> o - CO to in CD C"-

1

CD (?) o| CO

C\J <Ni

ro CO

,^- CO

in CO

ID CO CJ

00 CVJ

0) CO s to

o T3

5

3 o O

Man

ual □

Au

tom

ati

c

QQ

Page 25: Ionospheric Data - NIST

23

s

! < I h_ S <£

° Q

M- m Q

LU I ^ —I 5 LlI CD X < s CL •“s CD

I o 5 o

oi m\ 0

>

3 X

o Q

1

1

1

!

1

|

..

i

£3

H

CM CM

CM

oz

]

O

X.

-4

! o -1 <c

We cr-

<■*> -i -i j 4 J J <

vc*

3" on

•K

cy> <V

o_*

Vo j -i

a

f> vn a 4

CL

<T* 4 <c < -4

3C

-4

vsif Vo to O -a 4 ~3

it

4 _i CO r-

b-

Q.

Vo X

* k>

X

a ers X

—/

«

>

CL

X

X

X

-3

X

ft.

■X V-/

X

-* cS >

*

X

vt

X

> >

X X

Xs

<^S 4 <V

X *o 4- 4

CO

X

CL

X vy

it

X

\A iC

X o X

X

Cl

C» >

<n X

it

<C ■CO

X X o

CO X

X

X ky

it

r- X

b>

Co

SO

v5

X < X

X

X

ex

VO

X*

X

■o

X

X

X ro

*

V

CV

X

u O

X *o x~ X

X ^>o

X X

X <

xS.

> X

it >s»

X

co*

X

X

V) X

X

X

a G5 4- •^4

X

oo

X

X

X

4-

Vo

X >

■O- fl

B X

o x

x

CO

c? X

/

V/i

r^1 X 'C

X ^*N b- X k4

O'

4h- >

*r

X X* X w

K

X X

X

X

3:

O' X

X

X

O'

X bo

X

X

'^y

a: ^~N V c') •—/

Vo

X

o

y>

V

VO

X

«iic

X

<

X v_y

Vi

Vo

£

Xs 4- cy

X

X

X

v9

X

N X X

cr «

V" “■

'Vi

X 0 'o

VO,

X

u.

x X

V-

X

S-

X

X V-

X-

<x-

>

bo

>

* X

X

w:

'O

X

SO

X w'

X

X X

X Vo X

X

X X

X Vn Vo 1—1

y

V

y

v

y

'Vl V>

X 0 Vo

X 0

VO

4-

X*

<y>

X

Vo

X vo

X **

IO x O

<r X

X X

X

CT X

CO

X X-' 'O

y

cJ

X

H r—i Oo >■ L-4

X* o X

it o X

X X

X X

bo

X

u» Vo

X

TC X X ^0

<4

v3 y? -S'

&

x VO

X

k* > X

0 X X 0

O y>

X Oo X y>

^_y

VO

X •v

CM <r~ X 0

'••o

V

y

CO

VO X k/

X Vo

X bo

k>

X X

OQ V40 X V-/

abkr Co

<5

*. x X

O' X

CL

X

<r P X i—i

u_

2j

V

s

•3- Vn

<4

'O

X

y

it

V)

X

LA*

Vi X

X

X <o

Vi

c< to

k* t^-

X

vo

X 'Oo

X •%

«o

=

r-

X X v—J

Q*'

X x-

x

X

r-

X l0

<r~ X

X \-J

<x

X

l-

X

*.

Vo X

Co

X

v

X

X

X o

X

u.

P'

X E?

uj

<x

^0 'J

X ri

,r>

<4

yj

<4

y>

*

*o

»A*

9> X v-y

it

r*

X

Q. Vo

X s—y

X X L4

ex

X

kx

X

X

X

X

Oo

X V m

O

T

X

Vo

X p X

X

r- X <

<D-

X

X <D bo

X X

X’

*:

X

X

it *o

X

X

X

X

X <r

u.

X X

•vS

X

'S'

X

■y

X X

T <—\ VO X c—1

X V

y

Xit

4“

Vo 'Sw/

vr>K

X- 4

»c •O

X

X

X v>

Cr-

-4- x L_J

X

X

Oo

X cyi

60

>>

X

r-

X

r--

X

<

X «—r

X c- X

x-

X

o

>

<3-

X <r

we

o<

X

X <o

X O

X X

X <c i

X

X

X

Vo

X

VO

X X Vo

X

it

*o X

V; <S X

it Vo X

Vi

X

4;

P' X

X

*

by X

> X

-3

X O

1 0

8

1

CL. b

CO 9s V

a.

f> >- Ss-»

a.

9^ x

X

to X

k> X

X

>

X

9> x

< •—V

X <—J

<C X

X X

■< V X

X X

\)

w

X

<>c

Xs X

X

VO

X

i\

X

CL '“N •- X •s^

y

X X

it

<X

X

it

X

*

V)

X n9

X N9

J-

y>

>

X* X X

b>

X y >

V n

07

y)

x ^4

a P' X V4

':> x

X CO

X <\

X «x X

a

v_y

X VO OV X

v x

at vj>

* X *v'

A. <s ^f- <c —1

CL

4^

a

1

CL

X <-i

X 4

*

X r~ rr)

*

c _j >

x*

X X

4 <v

X

a a

90

|

-j —l o

a.

<3-

a.

r* cS

ex V»

oS «c O _i c

u.*

<v

vx>c CO

<v

Vt

-J va «<S

a '/! ftS ~i -J

o -J 4

X

J

ic V

T>

it

-4 a O -j

a 4 y>

r*i o

05

|

04

|

03

0

2

o

| 0

0

o o

- CM ro cf in '0> Is- CO cr> o - CM rO m CD Is- 00 <T> o CM CM

CM CM

ro CM

't CM

m CM

CD CM

Is- CM

CO CM

Oi CM

o ro ro

o TD

5

c Z) o O

Sw

eep

—L

P_

Me

tn 2

5.0

Mr.

in

0 <

Man

ual □

Auto

mati

c

IS

Page 26: Ionospheric Data - NIST

24

Sw

eep

1,0

_M

e to 2

5.0

Me

In 0 2

5

mm

Man

ual □

Au

tom

ati

c

CS

Page 27: Ionospheric Data - NIST

25

Man

ual □

Au

tom

ati

c B

Page 28: Ionospheric Data - NIST

26

*•*

ME

DIA

N

fEs

LE

SS

TH

AN

ME

DIA

N

foE

, O

R

LE

SS

Sw

eep

' 0

Mc to 2

5.0

Me

In 0.2

5

min

TH

AN

LO

WE

R

FR

EQ

UE

NC

Y

LIM

IT

OF

RE

CO

RD

ER

Mon

uol □

Auto

mati

Page 29: Ionospheric Data - NIST

27

cn it

CD <

O

< H

< Q

O

cr LU x CL if) O

2

o

!'

23

1

to V

‘'A

to

si

N k

Oo

\

fs k

to \

k

to \

Qs

N

to "X

C:

tok.

O

/&

O

1

[~)W

V

V

to

(n\

to v\

k

k

Oo

X

to X

k

Oo

X Oc

X 0 ft

iVk

*3

'C

cok

2

t^k

to X

x_

to

^jc

to X

bjo

to

v>-

k

Oc

X

io ^

2 X

Oo X

to

to

bk

to

b

Oo'

X

2 ty 1

CVl CVJ

Oo

(-> *

o

7

k k

to to b>

Oo ? s

to X

<i

to Oo

kV to

*Tk tok

9 9

k

•oV

Oc

k

to

X

OX? "to

nk.

2

Cl

to

X

bk

Oc |->to

to

V-

to to

o

£bVt

C-

oik

to

Ol k

O ^X^

o>

to

to

o'

£

o

kVr

o

b

y to

So i

CVJ

b

to

Ci

to S

bVr

X

t. \

to

bk

to to to

X to X

to Uj

vk

o 1c

"to

xl

'ik

to

tok

to

* Oo X

to

to ^X

h

2

si

6

to

to

X X

rto \ V

to X

V

to X

&ik

cC

to-"

bw n

Oo X

to

b

to"

't V

to X

ft

to X

x_

co

O OJ

0 Q

7

kVr

Oc X

5 V

a

<s

ft

to < 3

to X

h

3

ji X

to^

to

•0 V;

O

,3

«ok

o 0

•u

t*

0

IS

bX

0 to

to ~K to X

o- X

ti

to

to

to ^X

*0

to

a

k

to X

kV to

X ft

bk

Cl

O

ri

to X

o

ft

to to

si

2

<0

c

j ft

** to to

s

b >0 "N to

>3 '

Q

Tr

to

s

wV

to

tok

to

V

to

x_

k

Q

*>

to X

Q 0

'fl

tok

Cs

<i to

tojb

Oa

X

k

O'

X

b

to

'l>

0

Ti

k

X

k v

to \

b to

X

0

i

to

V to to

X to X ro

00 to

\ to \

N

X

k X

'O' X

b

"3

n x> *

0

*s

to

X 0

1

C'

X

to

V

o to to V

o

S

0

Tr

0 \

to-

'S

to

X

c

r*

V to X

kV K v|

ki VJ

Q

7

0 0

%

k y-

k>

7s

Oq K 0 : (0

h- be

X k X

V

0<j to O' to \

O' \

to X

0

%

to \

V

to X

V

vft

\

V

\

to

X to o

Ti

Oo 0 Oo

to

to X

to to- to-

Vr

tx

X

o ^

NJ X a

to X

Q to k V

to to ft-

X

0 ro

to X

to s

k k

to

O

Q

7

to

s

3 to a

*8

to

to

Oc

V

to X

to-k

*<1 to

k to X

to

X to-

■> to X

to X

to to <r

to to

Ci

0

*8

V Oa

V

k "b

si

Oo X

0

%

to kk

2

^x

to

X

0-

ft

in b< 0

to <v

n

to X

to \

do to s

10

Co X

to X

V

Co X

V

<c

V

<2)

Oo

X Oo r> (X

X

<0

0

0

to V

to^

r- X

Oc -

«0 to N

k

V0 X

k

c

-A

-a

-v

b to

2

X Oo X

to

X

k V

to

X

to X X a

k CN

X 0 Oo

\' K 1

to

to

X V \ to X

k

•a

\

V s8

\

V

^0 to to 0® to

\

b w

2 X

to X

be to

S <£ Oo X

fto X

V

vs

X

Vr

V3 0 Co

u Q

7

kv

'<) be

X

(v

\ (N

ro \S N 0

On V

C>

\

-.3 X

to

< '.y V

to \

to v v)

Oo

V

V)

Vr

to to

X X to to to

k

to

X ft- to to

*

f>

X

V

0

Oft

X 0 <k> X

k

va \

b° X

6o c <1

CVJ

hvj

to \ 0

0

ft

V]

\

to

to

si

r

V

0

1

to N’

Oc \

k

k

X

X

V V~

\9

X

do X

b

5

■A <z

to

X

b

X

to

X to s

to

V

0 <3

V H to tx

X

to X

y

i X

Oc X

(So ly

= 5 0-

\ to \

Q

*8

to

to

y <c

5 A

to \

Q

k

to \

to

X CD

k

CD 7

k 'to to

<r

2 X

u

Oo X

0

*8

X 'V

X to

X

to

Cl

Oo

X

V

XI

X

V

'D rv X \

to X

Oo

X

V

f to X

to

X

o 10

o to

\ 0

1

to \

*

r-

c

to

to \ <C

Oo X

*

vO

*1

«<

ji k

*

tO to

X

to <r

•j

Q

'a

k X

v> \' X

to

V

k X

to

'V

b

2 X

Oo X

to X

V:

y to ft-

\ a

60

0*

C

0

1

b

5

Cl

to N

to, to \ T!

<c 3

-3 <c

V V

VD Q

u X 1

■j

c

8

Q

1

Q

ri!

sy

X

k

Oc X

k (X

s

k r>

X ^5

V

Oo

X ft

'b X

X-

to X

IV

3 (5a

\

to

X

r* 0

08

O' \

b b

C

ft to

\ to>

■ Ob X

f. s

to

k

X

'f)

to

*8

v v

> \

<3

a 0

>

to N

to

k

to

\ 0

*8

0

•8

^ V

Q

ft

to to

s> X ft

0

7

Q

75

vr

c

y

ft

0

ft 4

07

r*

\ 0

7)

k

O'

hn

\ to

■ O'

k 0 0

h

>

2 u.

■j

V M

V 0

Di i CD <r n

'll

to

s

to

X to to

I

Vr

to

V

to 7*

to

ft

to Oo

x"

V

to

V ft

to X

0* 1

1 0

6

0

1

to s'

ft

to to '

c

3

k

o

i

3

Or

k

V

h ■*

C5 t5

•k

7i

k

3

b

0

•s

k

i 3

Do X

k

to X Ti

0

*8

V

7

kk

to

V

ft,

ft

k

1 ft

to

ft

o

Cu ft -

05

to

X C

ft '

to

. O' N

k

C

?

k 0

1

l-A

Q

bk

Oo X

bk

-?

k Jc 0

Ti

to k

o

&

k k to N c

to s- X

k

'0

u

to \

«0

to

*o_^

3

-2

l>to

to

k v

0^

to o

7

k

v9 to X

0

7

k

to

b

O

y

0 0

"

04

Oc

C

to

k

to

7

b>

52 \

b

to

k

to ■

k

to X

k

Ox

b to

3

X

<0

Tl

k

to X

^ k to

A

V k k

o

*8 c

to. Ok

'i

i*. 0

IS

to

X

k

to X

k

to

X

k

to

Ci X

to X

V

to X

k to

<n

kto

Do

v

to K X

%

bk

to

vi

k

to y

fO

°

to

s

bjj.

c 0

to

3

,5

to

k

0* N

k

Vto \*

to X

to. X

k

to

k

to X

k V-

to

kk 'to

kV

Qo

X

k

0

*8

kk

to X

k

to X

k

to X

bk

k

k to

X

Kc

0

to

to

bw

U>\

v'2

k to kto

Oc X

k

to k

to X

h\ to

Vi

Q

i

^b

o

7 to X

02

bk

to toU.

5

c

■oii c

k

to X

Oo

N

k

to s

k

•*

l*> yj

to

Ci

Oo

X

It

0

*8

k^o

”3

Jc

k

k V

to X

“ V 6a

X

k

to \

bk

5

x

k

to N

k

to X

t7

c

X.

to X

k

to X

k

to s

to \

b to

5

\

k k

ir to X

bk

to 'Ci

k

to ft- Oo s

bk

2

C

to X 5

o

b n

to

bk

to

b k

to

•C

k

to s

N

tv s

k

0

7i

k

Oo X

to X

to

X

k

to

k

to X

x b

VI

V

Q 'ok

to

k

1

k

to

k

to X

to to to

k

to

to

Oq X

to X

3 V

S^

b k

.3

to^

^tto

to x

k

to X

k to

X

k

to

X

to X

k

to X

to X

ro

1 0

0

bk

o

-3

ok

to C

bk

do

k V

Oo to X

k

to X

k to

K

k

0 Oo

X

to

k

to X

k V

>9 \

bv

r

Ci

to

■4r^“

k

Oa t?k

3

c

k

to- to X

to X '>

Cl

'to

X

k

Oo

N

b_k

Ci

to

X

V

to

X

ok

vS

to l^

2

k

Oo X

bk

2

C

k

Dr

S to X

k v

Oo

X

Go

X

Day

- CVJ ro <fr in CD to CD CT> O - CVJ ro 't in CD h- 00 CD o CVJ CVJ

CvJ CvJ

ro CJ CVJ

m CvJ

tD CVJ

r- CVJ

00 CvJ

CD CVJ

o ro ro

c

■6

5

3 O o

Sw

eep_

LP

_M

e tn 25.0

Mr

in 0-2

5

mm

Man

ual □

Auto

mati

c

SI

Page 30: Ionospheric Data - NIST

28

o

Q

3

O § If) CD

UJ I _i i CD 2 < ? t— o

Sw

eep

10_M

e to 2

5 0

Me

in.0

-25

min

Man

ual □

Au

tom

ati

c

K)

Page 31: Ionospheric Data - NIST

29

Sw

eep

_L

-Q_

Me to

25-0

Mr.

In

0 2

5

min

Man

ual □

Auto

mati

c

S3

Page 32: Ionospheric Data - NIST

30

Man

ual □

Auto

mati

c

IS

Page 33: Ionospheric Data - NIST

31

Ionospheric itoralngg® at Washington,,

Day Ionospheric character® 00-12 OCT 12-24 OCT

Priseip&l Beginning

GOT

storms Ind GOT

Geomagnetic char&eter®* 00-12 GOT 12-24 GOT

1 2 3 m 0300 3 3 2 2 *** 2 2 3 1 3 2100 1 4 4 4 1 CTSMsaao 0600 4 3 5 1 3 3 3 6 1 2 3 3 7 1 1 2 3 8 2 1 2 2 9 2 1 3 2

10 1 2 2 3 11 1 3 1900 —- 2 4 12 4 # 6 3 13 4 4 — 5 3 14 4 2 — 1200 3 3 15 2 3 3 2 16 2 2 3 2 17 2 1 3 2 18 1 1 2 2 19 0 1 1 2 20 0 1 2 2 21 2 3 2 2 22 2 2 3 2 23 1 1 1 1 24 4 4 0500 —» 4 3 25 5 # 5 2 26 4 4 # 1 2 2? 3 2 2 3 28 2 2 2 2 29 2 0 2 2 30 2 4 1200 3 3 31 4 1 —— 0600 3 3

®I©a@@ph@r® eh&moter figure (X-figure) for ionospheric 8 tonal ness at Washington* D« C,# during 12-homr period* @a an arbitrary seal® ©f 0 t© 9* 9 representing th« greatest disturbance®

“"^Average for 12 hours of Cheltenham* Maryland, geomagnetic &-£ig- ur@s on aa arbitrary seal© ©f 0 to 9* 9 representing the greatest disturbance®

***10 readable record® Refer to table 42 for detailed explanation® -—-Dashes indicate continuing ©tom.

#lo I-figure ©wing to Insufficient data® Conditions probably disturbed®

of ending unknown because of lack of record® ###St©m began at 1500 OCT on June 29* 19S®-»

Page 34: Ionospheric Data - NIST

Table 54

Sudden Ionosphere Disturbances Observed at Washington, D, G. Hill 111 !!■ Ill II IIMI !■- - II I Ml 111 I III I III, I III III II II ~ - II I -" " - - ” - 1 ~ ~~ _

July 19 SO

1950 GOT Relative intensity

Day Beginning End Location cf transmitters at

minimum®

Other phenomena

July

12 1604 1700 Ohio, D. C.s England 0.0 T e rr. mag . pul s e1• *

15 1829 1905 Ohio, D. C.» England 0,1

1608-1620 Solar flare*** 1620

1? 1335 1400 Ohio, D. C., England 0.1 1? 16

2110 2120 1312 1340

Ohio, B. C. Ohio, D. C., England

0.2 0.1 Solar flare***

21 1315 1340 Ohio, D. C.» England 0.3

1320 Terr.mag, pulse**

22 1548 1605 Ohio, D. C., England 0.05

1313-1320 Solar flare***

1315 Solar flare***

29 1720 1840 Ohio, D. C., England 0.0 1550

•Ratio of received field intensity during SID to average field intensity before

and after, for station KQ2XAU (formerly W8XA1), 6080 kilocycles, 6CC kilometers distant.

**As observed on Cheltenham magnetogram of the United States Coast and Geodetic Survey.

•••Time of observation at the McM&th-Hulbert Observatory, Michigan,

Page 35: Ionospheric Data - NIST

33

Table ZZZ-— -it-ti- H- r-i ssfUtSfo

Sudden Ionosphere Disturbances Baported by liaglaeer-im-’Chlef,

Cable and Wireless. LtA„a as Observed in England

1950 OCT B©e©iviag Other Day Beginning End station location of transmitters phenomena

July 12 1610 1620 Brentwood Austria* Barbados, Canary I®.* Co- Terr.isag,pulse®

12 1610 1630 Somsrton

lombia, Hew fork® Portugal8 fk&il&ad, Uruguay, fsnesuela, Yugoslavia

Argentina® Brazil, Canada* lew York

1608-1620 Solar flare** 1620 Terr.sag, pulse*

21 131^ 1335 Soaerton Argentina* Brazil, Canada, Bew fork

1608-1620 Solar flare8** 1620 Terr.mag.pulae* 1313-1320 Solar flare** 1315

®Ab observed on Cheltenham magnetogmia of the United States Coast and Geodetic Survey.

‘'"’Time 6f observation at McMath-Hulbert Observatory, Pontiac* Michigan.

Tabl'S 56

sudden ionosphere Diaturbances Reported by BSA Coaigmnicationsii

as Observed at Point leyes, California

1950 GCT Day Beginning Snd Location of transmitters

July- 13 0200 ©hO© Australia, China® French Indo-Chins, Hawaii®

19 0040 0100 Japan® Java, Philippine Is. Australia® China, Hawaii® Japan, Jfeya8 Philippine Is#

Page 36: Ionospheric Data - NIST

3*

Bablc^Z

Sadden Ionosphere Disturbaneoe leported by Engineer-in-Chie£

Cabl® and Wireless, Ltd,,* a a Observed at Colombo. Ceylon

1950 OCT Other Bay Beginning lad Location of transmitters phenomena

3 0940 1035 England Solar flare*

5 0615 0650 China, England

0950 Solar flare** 0956

22 0945 1030 England Solar flare**1*

0937

¥im® of observation* *M®u&©n Observatory, Fmse®,

’’Stockholm Observatory, Sweden, ***Pmgu© Qbservai©rye Chechoslovakia,

Bisturbaac©!^ Exported by BSA Comamni eat Ions» lac..

as Observed at Biyerhead, lev York

195© OCT Other Bay loginning Sad Location of transmitter* phenomena

July 12 1608 1640 irg®ntina8 California, Canada^

land, Italy, Morocco, Panasia Tesr,®ag.pulse* 1608-1620 Solar flare** 1620

®Ae observed ©a Cheltenham sagneogram of the United States Coast and Oeodetic Survey*

••Time ©f observation at MeM&th-Kulbeft Observatory, Pontiac, Michigan,

Page 37: Ionospheric Data - NIST

35

fable 59

Sadden loaosphere Disturbances Esported by Institut fur lomspharenforechung# !—ii.■...,■,■■■»■.—... , .1 ,.i»r^TO.»CT_.-Tm-.,'7^m^->. g'.T ■■ ■ — ■ n»~ n ' -n ■ ■ i .’i»rm«g.rfgl^

aa Observed at IiB&auB Sara# Germany

Day GOT

Location of transmitters

Relative intensity

at minimum*

Other phenomena Beginning Sad

June 1

8

20

950

1200 1210

1230 1300

Lindau**®# Mtiachea*®

Liadau*®*# Munches®1®1

0,2

0,1

•Batlo of received field intensity during SID to average field intensity before and after* for station Voice of America* 60?8®9 kilocycle@8 ^00 kilo¬ meters distant,

••Station Voice of America* 6078,9 kilocycles® •••Lindau station* I78O kilocycles# pulse# transmitter and receiver at

Lindau,

Sots: Observers are Invited to send to the CBPL information on time® of beginning and end of sudden ionosphere disturbances for publication a® above. Address letters t© the Central B&di© Propagation Laboratory, National Bureau of Standards# Washington 2S» 2)® C.

Page 38: Ionospheric Data - NIST

36 Table 60

Provisional Radio Propagation Quality Figures

(Including Comparisons with CRPL Warnings and Forecasts)

June 1950

North CRPL* CRPL** North Geo

Atlantic Warning Forecasts Pacific mag-

quality (J-reports) quality netic

Day figure figure ACh Half day Half day Half day Half day Scales:

GCT GCT GCT GCT Quality Figures

(1) (2) (1) (2) (1) (2) (1) (2) (1) - Useless

(2) - Very poor

(3)- Poor

1 5 5 5 6 3 3 (4)- Poor to fair

5 - Fair

2 6 6 7 6 3 2 - Fair to good

3 6 6 X 7 6 2 3 7 - Good

4 5 6 X 7 7 3 2 8 - Very good 9 - Excellent

5 7 7 7 6 3 2

(4) (5) (4)

Geomagnetic - 0 to 9,

9 representing the greatest

6 5 W 6 6 disturbance; Kch*4 indicates

7 5 6 U 8 7 1 2 significant disturbance.

8 7 6 8 7 1 3 enclosed in ( ) for emphasis.

9 6 5 w w 7 6 (4) 3 10 (4) 5 0 7 7 3 3

Symbols:

.V Disturbed conditions

expected

11 6 6 7 7 2 2 12 7 7 7 7 2 2

u Unstable conditions

expected

13 7 6 7 7 2 2 14 6 7 7 7 2 2 N No disturbance expeoted

15 7 6 X 6 6 2 1 X Probable disturbed date

16 8 6 X 7 7 1 3 Scoring:

17 6 6 u X 7 6 3 3 H Storm (Q£ 4) hit

18 6 6 U (D) X 7 6 3 2 (M) Storm severer than

predicted 19 7 6 8 7 1 2 20 7 6 8 7 1 2

M Storm missed

21 7 6 8 7 2 2 G Good day forecast

22 6 6 8 6 3 3 23 6 5 X 8 7 3 (4)

0 Overwaming

24 (3) 5 w w 7 6 (6) 3 Scoring by half day according

25 5 5 u 6 5 3 2 to following tables

Quality Figure

*3 4 5 » 6

26 6 5 6 6 3 2 W H H 0 0

27 7 7 7 6 1 2 28 7 6 7 7 2 1 U (M) H H 0

29 7 5 7 6 2 (4) N M M G G

30 (3) (4) w w 6 6 (3) 3 X H H 0 0

Score: Warning Forecast N.A. N.P. N.A. N.P.

a 6 0 0 0 (M) 0 0 0 0

U 1 0 6 0 G 46 47 41 46 0 7 13 14 14

•Broadcast on WWV, Washington, D. C, Times of warnings recorded to nearest half day as broadcast, ( ) broadcast for one-quarter day. Blanks signify H.

*®In addition to dates marked X, the following were designated as probable disturbed days on fore¬ cast more than eight days in advance of said dates* June 19, 20, and 2A.

Page 39: Ionospheric Data - NIST

37

Table 6l

American and Zurich Provisional Beiatlve Sunspot Summers

July 1950

♦Combination of reports from 43 observers; see page 8.

♦♦Dependent on observations at Zurich Observatory and its

stations at Locarno and Arose,

Page 40: Ionospheric Data - NIST

fry 2**

Coronal observations at Climax, Colorado (5303A). east limb

Table 63s

Coronal observations at Climax, Colorado (6374A). east limb

Date Degrees north of the solar equator 0° Degrees south of the solar equator GCT 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

1950

Jul. 1.6 6 6 6 - 11 6 3 3.6 4 4 4 4 5 4 2 4.7 2 13 9 11 10 5.7 3 6 3 3 6.6 5 5 7 9.9

10.6 8 12 10 9 8 4 5 - - 3 3 2 11.7 X X X X X X X X 4 4 6 - - - - - - 3 - - - - X X X X X X X X X 12.6 - 2 1 - 1 1 1 3 3 3 1 3 2 3 1 4 6 4 - - - - - 4 4 5 2 - - 3 - 3 - - - 2 2 13.6 - “ - 3 - 1 3 4 3 2 2 3 3 2 3 6 10 6 6 10 - 3 1 - 3 4 3 4 - 2 - - 1 1 - 3 2 14.7a 3 6 6 7 14 11 4 3 3 15.8 1 7 8 6 12 4 - 3 8 X X X X X X X X 16.7a 2 5 9 3 4 4 10 17.6a X X X X X X X 2 6 13 4 5 9 11 8 6 3 2 - - - X X X X X X X X 18.6a 2 3 3 3 3 - - 4 2 3 2 9 13 5 12 13 14 10 10 5 3 2 2 3 19.6 3 3 2 2 3 3 10 4 12 19 14 13 9 3 3 - - 4 3 3 - - - - -

20.8 8 9 3 4 4 11 14 8 8 5 21.6 2 2 2 4 6 3 3 4 6 8 8 2 2 22.6 4 7 4 6 3 - 4 3 3 3 3 23.8 5 10 7 3 - 6 9 4. 24.6 4 12 10 3 - - 9 7 3 26.6 3 5 5 3 3 3 4 7 12 5 3 3 3 2 2 26.6 3 3 3 - - - 10 3 3 4 3 2 5 5 5 27.6 3 9 4 3 3 3 7 3 4 4 4 28.7a “ - 2 2 2 a 6 10 8 9 6 3 4 4 2 3 29.6 2 2 2 4 2 3 2 3 - 5 4 2 3 12 10 8 4 4 2 - 2 30.8 X X X X X X 3 4 5 X X X X X X X X X 31.7 2 2 2 3 5 5 4 2 2 3 5 10 13 9 4 2 2 2 2 2 2 3 3

Page 41: Ionospheric Data - NIST

39 gable 6gb

Coronal observations at Climax, Colorado (?,30^A). west limb

Date GCT

Degrees south of the solar equator 0°

Degrees north of the solar equator 90 85 30 75 70 6T60 55 50 45 40 35 30 25 20 15 10 5 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

2 3 4 6 6 6 3 9 13 13 11 10 8 4 4 3 5 5 2 3 3 4 2 4 6 10 13 12 9 10 11 16 16 19 12 8 9 7 6 4 3 3 2 - - - - -

4 6 9 12 13 11 7 11 13 13 16 14 12 8 8 6 10 3 - X X X X X X X - X X X X X X X - - - - - 3 3 5 7 4 4 5 4 5 6 3 3 3 - - - - X X X X X X -

2 3 4 9 10 8 5 7 10 11 13 10 8 5 6 7 6 7 4 3 3 3 3 4 3 4 8 6 4 3 4 8 9 8 5 2 1 1 - - - X X X X X -

3 5 6 7 7 7 6 7 11 15 15 13 9 7 7 11 11 4

X. X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X A - - - 1 1 2 - - 1 1 1 2 4 10 7 5 6 7 14 j 8 25 31 34 17 13 10 8 9 10 8 3 1 1 - • -

_ - - - - 2 1 2 1 1 2 3 3 3 4 5 b b 12 16 21 22 32 18 15 9 5 7 9 4 4 2 - 1 1 - 1 2 3 3 3 2 4 5 16 13 13 12 10 4 5 3

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X - - - - - 3 3 2 5 4 6 8 9 8 4 3 8 10 2 5 4 5 7 10 5 4 3 3

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X - - - - - 5 5 4 2 5 10 12 13 20 19 IS 10 8 4 4 4 4 7 9 10 8 6 4 3 2 2 - - - - 3 3 3 4 2 4 10 10 13 17 20 18 10 5 5 6 7 8 9 11 12 9 9 4 2 4 2 - - - - -

4 4 11 15 15 15 10 4 4 5 4 7 8 7 8 9 4 4 4 2 - - - - - -

3 5 10 15 14 14 14 10 5 9 10 13 14 17 13 12 11 6 4 4 4 2 - - - - -

- - - - - 3 3 3 2 3 6 7 9 10 11 12 12 9 5 5 9 10 13 16 11 10 6 4 4 5 3 3 4 9 6 8 10 11 9 9 6 4 9 16 14 13 9 4 4 3 3 3 5 - - - - -

3 4 3 3 5 5 7 5 5 6 9 9 13 13 12 11 3 3 4 b 6 7 6 6 10 12 13 13 12 10 8 6 3

3 3 3 i 3 3 4 6 9 11 12 13 8 6 4 2 5 4 3

X X X X X X - - 2 3 3 3 - 3 4 4 5 4 6 9 13 9 5 3 - 2 3 3 3

2 4 4 6 8 7 9 9 9 14 18 17 10 5 3 2 1 3 4 2 3 2 - - - 2

3 7 9 10 10 13 10 12 11 12 16 17 16 9 4 4 3 2 2

5 10 10 14 12 7 6 5 7 8 8 6 3 4

3 8 11 14 20 15 16 15 27 30 18 14 12 9 9 10 7 4 3

1950 Jul. 1.6

3.6 4.7 5.7 6.6 9.9

10.6 11.7 12.6 13.6a 14.7 15.8 16.7 17.6 18.6a 19.6 20.8 21.6 22.6 23.8 24.6 26.6 26.6 27.6 28.7 29.6 30.8 31.7

Note: Observation low weight: July 14.7 at S45-S90 and N50-N90.

Table 63b

Coronal observations at Climax, Colorado (6374A), wejt limb

Date Degrees south of the solar equator 0° Degrees north of the solar equator GCT 90 85 80 75 70 65 60 55 50 X5 40 35 30 25 20 15 10 5 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

1950

Jul. 1.6 2 4 4 6 3 12 16 10 9 3 3.6 4 5 7 13 13 - 9 13 12 7 3 - -

4.7 3 11 17 11 11 9 4 12 7 5 4 X X X X X X X 5.7 - X X X X X X X 10 8 4 - - 5 10 7 X X X X X X - 6.6 2 4 8 4 4 - 2 4 2 9.9 3 2 - - - 8 - - 4 4 2 X X X X X •

10.6 6 4 - - 7 - - 2 10 10 3 9 11.7 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 12.6 1 1 1 1 - - 2 1 1 3 4 4 4 8 7 5 11 9 4 2 14 16 15 4 3 - - 1 - 2 3 2 - - - 2 - 13.6a 2 2 1 2 2 2 3 2 3 2 3 3 4 7 5 4 5 7 5 4 9 13 12 5 2 14.7 4 9 12 16.8 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 16.7 2 - 5 8 10

17.6 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 18.6a 4 4 4 3 6 9 13 10 9 3 - - - 4 4 5 4 4 - 3 - - 2 - - - 2 2 2

19.6 - - - 3 5 3 - 4 5 5 4 4 4 5 5 9 4 3 2 - - - 2 5 5 5 2 2 2 2 - - - - 2 2 2 20.8 4 4 2 - - 4 11 2 3 2 21.6 2 4 2 - - - 3 8 8 5 3 - 4 10 9 7 4

22.6 3 2 2 2 4 2 - 2 5 10 8 8 5 4 9 12 12 13 23.8 4 5 4 3 2 5 13 8 12 4

24.6 2 2 2 2 - - 3 4 6 8 4 2 4

25.6 4 5 3 - » - 4 14 10 4 3 5

26.6 13 10 4

27.6 X X X X X X 3 3 8 4 4

28.7 3 3 2 2 4 3 - 4 11 13 6 10 8 3 . - 29.6 3 3 4 9 9 10 6 5 5 4 5 5 3 5 4 2 2 2 2 2 30.8 3 3 11 5 4 4 4

31.7 3 3 2 2 2 4 5 4 3 2 2 5 6 9 15 20 18 11 12 11 2 2 2

Note: Observation low weight: July 14.7 at S45-S90 and N50-N90

Page 42: Ionospheric Data - NIST

40 fable 6ka

Coronal observations at Climax, Colorado (67Q2A) „ e^st limb

Date Decrees north of the solar equator 0d

Degrees south of the solar equator

GCT 90 85 80 75 70 65 6o 55 50 45 40 35 30 25 20 15 10 5 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

I960

Jul. 1.6 2 3 4 4 5 3 2

3.6 2 3 3 2 2 2 4.7 1 2 2 3 3 5.7 3 2 2

6.6 1 1 1 1 - - - - 2 3 2 2

9.9 2 3 4 3 3 2

10.6 2 4 4 3 1 - - - - 2 2 3 1 11.7 X X X X X XXX - - - 1 3 3 3 2 3 - X X X X X X X X X X 12.6 1 2 2 2 4 3 - - 2 i 13.6 1 2 3 4 4 2 2

14.7a 2 3 15.8 16.7a

Z * 1 i 3 3 3 5 X X X X X X X X

17.6a X X X X X XX- - - - 2 2 - 2 1 1 2 i - 2 - 3 3 2 - - * “ X X X X X X X X 18.6a 3 2 2 2 3 4 4 4 4 4 3 3 3 2 3 19.6 3 2 - - 2 2 2 - 2 2 3 3 2 20.6 2 3 3 3 2 - - - 2 3 2 21.6 2 2 2 2 2 3 2 22.6 2 3 3 3 3 3 2 2 3 3 4 3 3 23.8 z 2 4 2 2 - - - - 2 3 3 2 24.6 25.6 - 2 2 2 4 4 4 4 3 3 3 2 2 26.6 2 1 2 3 3 - 2 2 2 2 27.6 4 4 3 4 3 3 28.7a 2 2 2 3 3 3 4 5 4 4 3 3 3 2 1 29.6 2 2 3 3 2 2 3 3 4 4 4 3 3 2 3 4 30.8 X X X X X X - - X X X X X X X X X 31.7 2 2 1 1 2 3 2 1 2 2 3 2 1 1

Table 65a

Coronal observations at Sacramento Peak, Hew Mexico, (5303A) east limb

Date Degrees north of the solar equator 0°

Degrees south of the solar equator GCT 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

1950 Jun. 2.8 10 10 10 11 12 12 23 30 35 38 36 25 20 9

6.0 8 8 9 11 13 17 25 20 16 12 10 5.6 ----- 4 5 5 8 12 14 15 18 27 34 39 41 38 25 14 18 15 12 12 10 9 8 8 6 £ 4 4 3 - ...

6.8 8 10 12 18 24 24 27 31 25 18 12 10 9 8 10 14 9 8 7.7 7 7 9 16 14 16 16 18 16 11 10 9 6 13 15 14 13 11 12 10 7 4 - 7 7 5 3 - - 8.6 - - - - 3 3 3 b 9 11 10 12 14 16 17 15 14 13 10 10 9 8 14 13 14 11 15 14 7 7 6 7 8 4 - - - 9.8 4 6 9 10 11 13 15 15 16 13 13 11 12 10 10 11 25 24 19 16 17 14 11 9 5 4 4 8 - - -

10.7 3 8 9 5 10 11 12 16 15 13 12 10 10 12 16 24 22 18 15 10 8 4 3 - - 3 3 3 - - 11.8 4 5 6 6 7 9 12 18 17 12 10 9 5 6 13 17 25 13 11 10 9 5 3 12.8 5 6 8 9 9 11 13 23 25 20 14 15 11 9 14 16 27 20 14 15 10 8 3 13.8 2 3 5 6 7 9 14 23 22 21 18 17 18 9 9 11 15 16 14 13 9 3 14.7 3 3 3 - - 6 16 16 14 13 12 12 11 10 10 13 12 11 8 8 3 15.7 5 6 18 15 16 18 17 13 12 12 12 12 11 10 6 - 16.7 3 6 9 9 8 11 12 13 18 20 17 15 13 12 10 9 10 9 3 - 17.7 3 3 5 10 9 9 11 13 14 17 16 18 17 13 12 10 11 10 10 10 3 18.9 4 4 5 6 10 10 11 13 12 12 10 10 9 10 11 10 8 - 20.8 6 7 9 11 13 14 17 33 37 34 31 26 18 12 11 13 12 9 5 21.9 5 7 7 10 11 11 12 14 15 18 20 23 13 10 9 10 6 23.8 5 10 13 12 12 10 9 8 14 13 12 9 9 10 9 7 6 - 24.7 2 4 7 17 17 15 14 13 13 14 22 19 17 16 20 15 13 10 9 8 7 3 28.7 8 13 14 12 13 18 22 20 26 Z4 22 23 18 5

Page 43: Ionospheric Data - NIST

Table 64b 41

Coronal observations at Climax, Colorado~(67U2A), west lime

Date Degrees south of the solar equator ' 0°

Degrees north of the solar equator GCT 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

1950

Jul. 1.6 2 2 3 3 3 3 2 3.6 1 2 2 3 3 2 1 - - 2 3 2 2 4.7 2 2 - 2 i - - 1 3 2 X X X X X X

5.7 - X X X X X X X X X X X X X X - 6.6 2 1 1 1 1 - - - 1 1 9.9 X X X X X -

10.6 3 2 2 11.7 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X A X X X X X X

12.6 2 1 - - 1 3 7 4 11 6 3 3 2 2 1 2

13.6a 14.7

2 2 3 3 10 5 3 2

15.6 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X •

16.7 -

17.6 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

18.6a 2 3 4 5 6 19.6 1 3 5 4 5 3 - - - - - 2 3 2 2 2 20.8 2 3 3 3 3 3 - - - 3 4 4 3 2 2 21.6 2 3 3 3 4 2 - - 2 2 3 3 2 22.6 2 3 3 3 4 2 3 2 2 3 3 3 4 3 2 23.8 2 4 3 2

24.6 3 3 3 2 2 2 25.6 3 2 3 2 3 26.6 27.6 X X X X X X 28.7 “

29.6 2 3 4 5 2 3 30.8 -

31.7 2 2 3 3 4 3 3 4 2

Note: Observation low weight: July 14.7 at S45-S90 and N50-NSQ.

Table 65b

Coronal observations at Sacramento Pealc, New Mexico (63U3A), west limb

Date Degrees south of the solar equator 0°

Degrees north of the solar earn tor GCT 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

1950 Jun. 2.8 5 7 10 14 21 21 22 21 16 31 31 30 17 13 12 5 6 7 10 5

5.0 8 10 15 12 10 10 10 11 11 12 12 11 10 8

5.6 5 8 11 16 28 30 21 15 13 16 20 25 35 28 21 21 22 23 16 14 7 4 * “ “

6.8 13 14 16 13 - 14 15 18 21 26 20 17 16 15 15

7.7 3 7 9 11 14 12 13 15 17 27 25 25 24 19 20 22 20 18 14 10

8.6 _____ 4 5 5 - - - _ 4 10 10 10 11 11 12 17 22 30 30 28 25 24 25 25 23 22 15 12 5 - ~ '

9.8 8 10 11 12 13 12 12 ii 12 22 19 14 15 19 17 16 16 17 10

10.7 _ _ 2 3 - - - - - 3 6 9 13 13 12 11 n 13 14 13 14 14 14 13 14 13 4 3 - * "

11.8 5 7 9 13 13 15 12 12 13 14 13 13 12 12 12 12 12 9 3 " - - - “

12.8 5 9 13 15 17 26 25 23 19 26 23 20 14 8 12 14. 14 12 7

13.8 4 5 10 13 14 19 125 24 26 22 23 16 9 5 13 15 10

14.7 3 5 7 13 26 28 26 23 24 23 18 13 9 8 10 12 5

15.7 3 4 9 8 6 16 27 33 30 30 33 18 14 11 8 15 12 5

16.7 4 10 16 23 23 40 37 28 13 13 11 10 10 10 5

17.7 3 5 5 8 9 16 20 38 30 22 17 10 9 7 6 4 3

18.9 8 9 12 17 15 14 14 13 9 5

20.8 3 4 3 4 9 12 13 13 23 26 17 13 9 9 8 8 12 17 15 19 13 12 12 11 10 7 3 - - -

21.9 7 8 9 12 13 14 12 11 5

23.6 - - - 3 5 10 13 12 16 17 16 14 12 5 - 6 11 13 10 10 8 6 4 3 3 - - ” “

24.7 3 4 4 6 9 14 19 20 30 35 38 17 11 12 12 13 15 22 25 17 14 13 12 ii 12 11 3 - - -

28.7 4 5 7 9 13 9 9 14 13 13 15 14 16 16 17 8 4

Page 44: Ionospheric Data - NIST

42 fable 66a

Coronal observations at Saorasento ^eatc, Sew Mexico. (63?4&)» s&st li®^

Date Degrees north of the solar 0QU3 tor — 0° Degrees south of the solar

55 6o enuator

80 GCT 00 55 16 75 70 6*Tocr 55 50 45 40 35 30 25 20 15 10 5 5 10 16 20 25 30 35 40 45 50 05 70 75 85 VO

1960

Jun. 2.8 4 7 11 0 6 12 15 14 8 4 3 5 4

5.0 5.6 2 - - - - 2 3 4 5 2 - - - 3 6 11 9 12 6 3 12 5 2 z 3 2 2

5.8 4 9 10 12 2 3 5 4 3 3 2

7.7 3 9 7 3 - - i 10 4 3 1 - - - » - 1 1 i 1 1 -

8.6 3 1 1112 1 1 1 1 1 1 1 1 i 3 4 1 2 - - • 8 4 2 4 3 2 l l - - i 1 1 i

9.8 1 1 1 - - - 1 1 4 7 5 1 1 - - 1 12 5 y 1 - 1 1 i

10.7 1 3 3 20 8 - 1 1 2 6 9 b 4 3 2 2 1 1 11.8 1 3 17 7 “ - 1 2 ii 0 4 i - - 1 i l

12.8 - - - - 1 1 3 12 17 16 12 7 6 “ n 9 5 13.8 - - - - 1 1 1 1 - - - - - 4 5 10 13 12 8 3 • 6 8 14.7 2 4 9 n 3 2 3 2 2 15.7 1 3 - - 5 14 1 1 « “

16.7 - - - 2 2 2 1 1 - - 2 17 2 1 - - 2 1 17.7 1 1 - i 3 11 18.9 2 5 8 2 20.8 _ - 4 - i 17 13 12 20 b - 3 6 7 4 i 4k i l - - ™ - -

21.9 5 12 13 17 26 10 - ~ 23.8 9 1 1 24.7 1 1 1111 1 - - 1 2 1 - - - 3 - 3 - - 2 10 - 1. 1 1 - 1 i l i 28.7 10 9 9 4 1

Table 67a

Coronal observation^, at oacramento Peak, New Mexico, (6702a), east limb

Date GCT

1950

Degrees north of the solar eouator 10 g5"80 75 70 65 60~55 50 45 40 35 30 25 20 15 10 5

0° _Degrees south of the solar equator _ _ 5 10 15 20 25 30 35 4045 50 55 60 65 70 75 fa 65 90

Jon. 2.8

5.0

5.6

6.6 7.7

8.6 9.6

10.7

11.8 12.6 13.8

la.7

la.7

16.7

17.7

18.S

20.8 21.9

23.8

24.8 n o n

- - 4 4

-444 3 3 4 5

2 3 3 3

1111 1111

1111 111- 1111

1 1 1 - - 1 2 1 1

12 2

5 5 4--

4 2 - -

3 2--

1111

1

111- 2 2 1-

2 6 3 -

1 1

1

1

1

1

1

1

1

1

1 .1

Page 45: Ionospheric Data - NIST

&ibl» _66b 43

Coronal observations at Sacramento Peak, New Mexico, (6374A), west limb

Date GCT

Degrees south of the solar equator 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5

1950 Jun. 2.8

5.0 5.6

6.8 7.7 8.6 9.8

10.7 11.8 12.8 13.8 14.7 15.7 16.7 17.7 18.9 20.8 21.9 23.8 24.7 28.7

4 4

. 4.4 10 12 6 8

..6 10 968 -.---17 11 8 1111111111111-4 10'88 -------111.81

- 1 1 5 4 - - - 12 13 1112 4 5 4 1 5 4 10 2 2 1 2 2 2

1 9 9 12 5 11 1 8

- 3 - - 1 21 10 6 - - - - 1 12 8 10

1 1 1 5 14 8 12

_Degrees north of the solar equator_ 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 K>

6 7 15 3 5 6 6 8 5 4 11 12 12 4 3 3 - - - - 2 4 4 3 2 9 7 - 8 8 6 3 4 3 -

12 10 16 13 14 1 13 16 20 2 9 1 1 - » 1 - - - 1 2 3 4 3

1 - 10 17 10 14 1 - 1 1 - - - - - 2 z 1 1 2 4 3 5 1 1 2 5 1 8 10 17 5 14

10 8 y 10 12 15 10 9 8 4 1 11 12 12 12 7 1 - - - - 12 2 2 2 3 3 - - 1 8 12 12 1 - - 10 13 7

8 10 1 3 3

- 522 13 8431--- - - 1 111 2 - 10 11 1-------------

Tabla 67b

Coronal observations at Sacramento Peak, New Mexico, (6702A), we3t limb

Page 46: Ionospheric Data - NIST

1

3 4 5 7 8 8

10 11

11

12 12 12 12 12 12 12

13 13 13 13 13 13 13 13 13 13 14- 14 l4 14 14 14 14 14 14 15 l6 16 20 21 22 26 26 26 26 26 26 27

Q-ate tending Solar flares. April 19S0

Time Ohs erred

Begin- EncU ning ing (OCT) (GOT)

J>ure- tion

(Min)

Area (Mill) (of ) (Sun1 s) (Disk)

-Position Long- iAti- itude tude

(Deg) (Deg)

.Time of Maxi¬ mum (GOT)

Int. of Maxi¬ mum (GOT)

Rela¬ tive Area of Max (Tenths)

.Import¬ ance

-SID Obser¬ ved

40 530 Nl4 E36 l6l6 10 3 Yes

2005 N28 ¥38 2 Yes

35 220 S06 ¥33 2118 12 5 40 6l0 N29 ¥22 1710 20 4 Yes 10 260 N02 S73 1922 15 6

054g 0633 873** N13 E70 0551 1-2 1510 N15 e6s i*

45 ■ 400 N18 Bk3 1935 15 3 <35 380 HI 8 E4-3 0000 10 3 200 940 N15 526 2020 20 4 Yes

<25 2200 N15 526 0003 15 3 H56 1605 69 1600 NO 6 eoo 1487 30 4 Yes 1550 1611 27 200 Nil E07 1555 10 2

1608 19k** N17 ei6 1556 1

1713 1739 20 396 N13 E08 1724 15 3 IS hi 2303 259 2800 Nik ei4 1856 25 6 Yes 2345 24.05 20 15l Nl6 eo6 2350 20 3 1515 1528 13 265 N14 E05 1521 5 2 1605 1623 18 135 N09 E01 1614 9 0 1724 1737 13 70 Nik E00 1726 7 0 Yes"t 1729 1740 11 75 N13 E07 1731 8 8 Yes/ 1752 180 h 12 140 N12 E03 1754 8 3 IS50 1912 22 176 N15 E02 1856 8 0 2008 2020 12 176 N18 E04 2012 6 0 2009 2054 45 180 H12 E00 2029 12 1 YesTL 2029 2054 25 320 NOS EOk 2030 9 0 YesJ

2159 2222 23 430 Nil B01 2202 10 1 Yes 1433 1456 770 N13 ¥11 1433 10 2 1527 1552 25 95 Nl6 ¥13 1530 7 5 1605 1620 15 115 Nl6 ¥15 1607 6 3 1649 1719 30 200 N14 ¥12 1652 8 1 Yes 1652 1720 28 150 H13 ¥12 1700 6 0 1756 1801 5 66 Nil ¥11 1758 5 0 Yes-x 1800 1811 11 150 N14 W12 1800 8 2 Yes J 1814 18 36 12 110 N13 wn 1814 6 0 1857 1923 26 66 N15 m3 1905 9 5

1442 N19* E58* I- 2237 2246 9 135 N07 W53 2237 5 0 2240 2245 5 45 Nik W4l 2241 7 3 1805 1900 55 858 S04 ¥07 1825 8 1 1J?5 1744. 19 220 SI 7 E48 1739 6 0 0614 0626 12 291** Sib E47 0618 1 1528 1537 11 100 Sll El 6 1530 8 0 1615 1619 4 154 Sll E04 l6l6 6 0 1619 1626 7 130 S12 E15 1622 5 0 1632 l640 8 165 Sll E15 1634 10 0 — 1644 145** Sll El 4 1633 1 1747 1758 11 304 Sll EI5 1750 20 1 Yes 1625 1640 15 770 S15 ¥2 6 1633 10 1 Yes

ude of calcium plage in \diich solar flare was observed. foreshortening.

Page 47: Ionospheric Data - NIST

45

Table 69

Indices of

Preliminary -values of mean K-indices, Kw, from 34 observatories$ Preliminary values of international character-?igures, C;

Geomagnetic planetary three»hour=range indices, Kpj Magnetically selected quiet and disturbed days

Gr. Day 1950

Values Kw Sum

1 G

r Values Kp Sum

Final Sel. Days

1 2.5 2.7 2.1 3.2 2.5 3.9 1.9 3.4 22.2 0.8 2+3o2+4” 3“5“2»4” 24o Five 2 4.1 4.0 2.0 1.9 1.2 2.7 2.5 3.9 22.3 1,0 4+4+2+2- l“3“3o5~ 24- Quiet 3 2.6 2.5 1.8 3.4 3.4 3.4 3.1 2.2 | 22.4 0.8 3o3“’2»4“ 4o4“3o3“ 24+ 4 1.9 2.7 1.7 0.9 2.1 2.3 1.2 1.1 13.9 0,4 i 2+3o2ol« 2o2+lolo 14+ 7 5 2.6 2.1 2.3 2.0 1.8 1.8 1.9 1.9 16.4 0,5 1 3«2+3‘“2o 1+2c2“2» 16+ 13

15 6 3.7 4.6 3.9 3.6 4.4 4.9 3.2 2.5 30.8 1.3 4”5+4+4o 5+603+3® 35™ 19 7 1.9 0.9 0.8 1.6 1.9 1.8 0.9 0.7 10.5 0,2 2ol-l-l+ 202-1-1- 10- 20 8 0.9 0.6 0.8 1.6 1.9 2.0 2.3 3.6 13.7 0.5 l-0+lol+ 2-2c2o4o 13o 9 3.9 4.3 2.5 3.4 3.6 2.6 2.6 2.9 25.8 1.0 5-5+3-40 4o3o3o3+ 30o

10 3.7 3.7 2.8 3.4 3.1 2.7 2.8 2.7 24.9 0,8 4o4-3+4o 3+3“3+3o 27+

11 3.1 1.5 1.4 1.7 1.8 1.8 1,5 2.2 15.0 0.5 3o2-2ol+ 2o2»lo2+ 15o Five 12 2.2 1.2 2.2 1.9 2.1 1.6 2.1 1.8 15.1 0.4 24-1+3-20 2ol+2+2- 16- Dists 13 1.1 0.9 1.2 1.1 1.2 0.8 1.0 0.8 8.1 0,0 lol-l+lo loO+l-l- f7,so 14 1.3 1.9 1.9 1.6 1.7 1.6 1.2 0.8 12.0 0,2 lo2o2ol+ 2-l+lolo 11+ 6

15 1.4 1.1 1.1 1.2 1.0 0.8 0.8 0.9 8.3 0.0 I+I0I0I+ loOKML- 7o 9 O/

16 0.5 0.4 0.4 1.1 1.5 2.5 2.9 1.6 10.9 0.4 O+O0O0I0 2-3-4-1+ 11“ 29 17 2.2 3.6 2.9 2.2 2.1 2.9 2.5 2.1 20.5 0.6 2+4o3o2+ 2+3o3o3- 23- 30 18 1.7 2.2 2.3 2.1 1.1 1.7 1.4 0.6 13,1 0.4 2o2+3©2+ 1o2-1+1o 15- 19 1.6 1.6 0.7 0.8 0.9 1.6 1.6 1.0 9.8 0.2 2-2-1-1- 1-1+2-1- 9o 20 0.6 0.9 0.8 1.1 1.6 1.8 1.7 1.2 9.7 0.2 O+lol-lo 2-2o2-l+ lO6® Ten

Quiet 21 0.8 1.2 0.7 1.2 1.1 3.0 2.2 2.7 12.9 0.4 l-2-O+lo l©3+2+3+ 14“ 22 1.7 2.7 2.1 2.9 3.1 2.4 2.0 2.3 19.2 0.6 2«3o2o3o 4“2+2o2+ 20o 7 23 2.8 2.4 1.5 2.1 2.0 2.0 4.7 4.5 22.0 1.2 3+3ra2-2+ 2o2o6»5+ 25o 13 24 4.3 5.3 4.8 4.6 4.0 2.4 3.6 2.9 31.9 1.6 5«=6+6o 50 5“2+4o3o 360 14 25 3.1 2.1 3.3 3.6 2.6 1.6 2.4 3.6 22.3 0.9 3+24-4-5- 301+3-4- 25- 15

16 26 3.6 2.9 1.5 2.0 2.0 1.2 1.7 1.6 16.5 0.7 4o3o2o2-° 2+1-1+1+ 16+ 18 27 1.1 0.9 1.1 1.2 1.8 2.3 1.8 1.8 12.0 0.3 lolol+lo 2-202-2- 11+ 19 28 2.1 1.2 1.2 1.7 1.1 0.8 1.1 1.3 10.5 0.2 2ol+lo2" loG+l-lo 9o 20 29 0.8 1.1 1.8 2.4 4.0 5.2 4.9 4.7 24,9 1.5 loi+2-2- 5-60606“ 28o 27 30 4.9 5.6 2.8 2.8 3.1 3.5 2.9 3.4 29.0 1.4 6o7-3o3+ 4-4o3+4- 34- 28

Mean 2.29 1.88 2.19 2.21 2.19 0.63 2.29 2.14 2.32 2.22

Page 48: Ionospheric Data - NIST

46 GRAPHS OF IONOSPHERIC DATA

Fig I WASHINGTON, D C

38.7°N, 77 l°W JULY 1950

-LIMITING FREQUENCY = 3 Me.

-LIMITING FREQUENCY = 5 Me.

-LIMITING FREQUENCY = 7 Me

Fig 2 WASHINGTON, D C JULY 1950

-LIMITING FREQUENCY = 3 Me.

-LIMITING FREQUENCY = 5 Me.

-LIMITING FREQUENCY = 7 Me.

Fig. 4 OSLO, NORWAY JUNE 1950

Page 49: Ionospheric Data - NIST

47

00 02 04 06 08 10 12

400

300

200

100

0

100

18 20 22 00

~T

F2j

7T v.

I- A 2 <n Ll) Ui

Q-P

LOCAL TIME

h ✓ \’ /

7 / \

V / r"'

I 7

\) / 1 I 1 / >

\ / r l \ v

1 A

\ 1 \ \ \

f t

V / \ /

V \ / V

\ / 7

V

\ / \ / \ \ i

\ . x \ 7 7 \ /

00 02 04 06 08 10 12

-LIMITING FREQUENCY = 3 Me

-LIMITING FREQUENCY = 5 Me

-LIMITING FREQUENCY = 7 Me

Fig 6 SAN FRANCISCO, CALIFORNIA

16 18 20 22 00

JUNE 1950

Page 50: Ionospheric Data - NIST

48

-LIMITING FREQUENCY = 3 Me.

-LIMITING FREQUENCY=5 Me

-LIMITING FREQUENCY = 7 Me.

Fig. 10 BATON ROUGE, LOUISIANA JUNE 1950

-LIMITING FREQUENCY = 3 Me.

-LIMITING FREQUENCY = 5 Me.

-LIMITING FREQUENCY = 7 Me

Fig. 12 MAUI, HAWAII JUNE 1950

Page 51: Ionospheric Data - NIST

49

-LIMITING FREQUENCY = 3 Me.

-LIMITING FREQUENCY = 5 Me

-LIMITING FREQUENCY = 7 Me

Fig. 16. TRINIDAD, BRIT. WEST INDIES JUNE 1950

Page 52: Ionospheric Data - NIST

50 00 02 04 06

^ 300

0

100

>- 80 UJ o 22 — UJ 1-3 70 jO

I— ct

o“- 60 U.Z oc so

IU« 0- o

18 20 22

p7

✓ 2 7,

[EJ

/ ;

LOCAL TIME

/ .V "\\ / 4 l \ \/ \ / 7

7 r. i / A \ -

1 T \ / l / // \ \

J / “1

/ / / \ I /

J / j / \

\ £ X 1 / z / V \ / \! ~ \ 4 7

\ \

-LIMITING FREQUENCY = 3 Me.

-LIMITING FREQUENCY = 5 Me.

-LIMITING FREQUENCY = 7 Me.

Fig 18 HUANCAYO, PERU JUNE 1950

Page 53: Ionospheric Data - NIST

51

00 02 04 06 08 10 12 14 16 18 20 22 00

2 400

H ^ 300 o UJ

1 200

0

100

> 80 UJO 52

El

— FT

- HI

JL

'D _j O <UJ

LOCAL TIME

o - 1 1 1

_

f \ J \ V

r \ /I \ L i \ Y

jH 1 V / r s. H L r.

/ I 1 L

\ / i /

Z’1 £ f' % V. \

r 17 / L \.J > z \L-J \ " n 00 02 04 06 08 10 12 14 16 18 20 . 22 00

-LIMITING FREQUENCY = 3 Me

-LIMITING FREQUENCY = 5 Me

-LIMITING FREQUENCY = 7 Me

Fig. 2 2. UNDAU/HARZ, GERMANY MAY 1950

00 02 04 06 08 10 12 14 16

400

300

200

100

0

100

90

>* 80

18 20 22 00

F2

N v

|M

IS'

jO

LOCAL TIME

1 ^

\ V

/ \ / V

/ \ V \ \ / \ / \ \ / \ w.. i '

j

*\ I \

i i \ ( /

s 1 V

/

00 02 04 06 08 10 12

-LIMITING FREQUENCY = 3 Me.

-LIMITING FREQUENCY = 5 Me.

-LIMITING FREQUENCY = 7 Me.

Fig. 24. FORMOSA, CHINA

IS 20 22 00

MAY 195 0

Page 54: Ionospheric Data - NIST

52

Page 55: Ionospheric Data - NIST

53

Page 56: Ionospheric Data - NIST

54

Fig. 33. TOKYO, JAPAN

35.7°N, I39.5°E APRIL 1950

-—- LIMITING FREQUENCY * 3 Me.

-—-LIMITING FREQUENCY = 5 Me.

— LIMITING FREQUENCY » 7 Me.

Fig. 34. TOKYO, JAPAN APRIL 1950

—-LIMITING FREQUENCY « 3 Me.

-LIMITING FREQUENCY = 5 Me.

-LIMITING FREQUENCY • 7 Me.

Fig 36 YAMAGAWA, JAPAN APRIL 1950

Page 57: Ionospheric Data - NIST

55

-LIMITING FREQUENCY =■ 3 Me.

-LIMITING FREQUENCY « 5 Me

-LIMITING FREQUENCY = 7 Me.

Fig. 38 FORMOSA, CHINA APRIL 1950

00 02 04 06 08 10 12 14 16 18 20 22 00

2 *

2 400

H* I 300 o UJ

1 200

<

P? 100 cr > o

n k- _ —

100

90

. 80 uj o 22 — UJ 1-3 70 jO «Ld 1— ct gu- 60

U-2 Op 50

wi o —. < 40 H A

Ld UJ Oh- 30

Err Q-P

^ 20

10

LOCAL TIME

/• k

T s >

\

L

V / i\ \ f

f — _ i

1 i x T\ \ t t / \ H /

k" .. t V s r

\r X H

T 7 7

\ / V \\

/ y V J V / z

00 02 04 06 08 10 12 14 16 18 20 22 00

-LIMITING FREQUENCY = 3 Me.

--LIMITING FREQUENCY = 5 Me.

-LIMITING FREQUENCY = 7 Me.

Fig 40 WATHER00, W. AUSTRALIA APRIL 1950

Page 58: Ionospheric Data - NIST

56

00 02 04 06 08 10 12 14 16 18 20 22 00

ID JO

H A Z </> Ll) UJ

200

100

0

100

90

> 80

70

60

50

40

30

20

10

tl

FT

LOCAL TIME

k 7 \

A \ L\ / V < — ■'

7 \ \7 N / \ \ / s

\ A \ — -• — -

00 02 04 06 08 10

--LIMITING FREQUENCY = 3 Me.

-LIMITING FREQUENCY = 5 Me

-LIMITING FREQUENCY = 7 Me.

Fig 42. CHRISTCHURCH, N Z APRIL 1950

-LIMITING FREQUENCY = 3 Me

-LIMITING FREQUENCY = 5 Me.

-LIMITING FREQUENCY = 7 Me.

Fig 44 RAROTONGA I MARCH 1950

Page 59: Ionospheric Data - NIST

57

00 02 04 06 08 10 12 i4 16 18 20 22 00

2 X.

2 400

OJ u_ o 300

fO

00 200

I UJ5 o-.

I- A

100

0

100

9 9

80

70

60

50

40

30

20

10

.

n E J

LOCAL TIME

” .

In D D at;

-

1 00 02 04 0 6 08 10 12

-LIMITING FREQUENCY = 3 Me.

-LIMITING FREQUENCY = 5 Me

-LIMITING FREQUENCY = 7 Me

Fig 46 DELHI, INDIA

14 16 18 20 22 00

FEBRUARY 1950

00 02 04 06 08 10 12 14 16 18 20 22 00

- 400 (XI u.

° 300

fO 00

6 200

^ 100

hr X 9 0 LJ X

100

90

> 80 LUO 52 - UJ l"O70 jO

Op 50

wi CD —. < -1 40 £ A 2 uj LULU

30 CC „ '

Z / f

- — INTERPOLATED f2~ LAYER VALUE

LOCAL TIME —r —i—

— ~ ...

INO DAT A|

GO 02 04 06 08 10 T2 14 16 IB 20 22 GO

—-UMITING FREQUENCY = 3 Me.

=** LIMITING FREQUENCY = 5 Me

-LIMITING FREQUENCY = 7 Me

Fig. 48. BOMBAY, INDIA FEBRUARY 1950

Page 60: Ionospheric Data - NIST

58

00 02 04 06 08 10 12 14 16 18 20 22 00

- 400 OJ u_ o

300 rO CO

6 200 h- < 100 h- X e> UJ 0 X

100

-Jp

I- A 2 </> UJ UJ

LOCAL TIME

In 0 D AT/ \\

-LIMITING FREQUENCY = 3 Me

-LIMITING FREQUENCY = 5 Me

-LIMITING FREQUENCY = 7 Me.

Fig. 50. MADRAS, INDIA FEBRUARY 1950

UJ X

-LIMITING FREQUENCY = 3 Me

-LIMITING FREQUENCY = 5 Me.

-LIMITING FREQUENCY = 7 Me

Fig 52 TIRUCHY, INDIA FEBRUARY 1950

Page 61: Ionospheric Data - NIST

59

Fig 55 AKITA, JAPAN

39.7°N, 140 l°E JANUARY 1950

-LIMITING FREQUENCY = 3 Me

-LIMITING FREQUENCY = 5 Me

-LIMITING FREQUENCY = 7 Me.

Fig. 54. WAKKANAI, JAPAN JANUARY 1950

-LIMITING FREQUENCY - 3 Me.

-LIMITING FREQUENCY = 5 Me.

-LIMITING FREQUENCY = 7 Me.

Fig. 56. AKITA, JAPAN JANUARY 1950

Page 62: Ionospheric Data - NIST
Page 63: Ionospheric Data - NIST

61

Fig 61 DELHI, INDIA

_28.6°N, 77 l°E_JANUARY 1950

-LIMITING FREQUENCY = 3 Mc.

-LIMITING FREQUENCY = 5 Me

-LIMITING FREQUENCY = 7 Me.

Fig 62. DELHI, INDIA JANUARY 1950

Ixl

-LIMITING FREQUENCY = 3 Me.

-LIMITING FREQUENCY = 5 Mc.

-LIMITING FREQUENCY = 7 Me.

Fig 64 BOMBAY, INDIA JANUARY 1950

Page 64: Ionospheric Data - NIST

62

00 02 04 06 08 10 12 14 16 18 20 22 00

6001 1 1 ' ' ' ..hi l~T7f

•-3 jO < UJ

r:

zr

LOCAL TIME

|N 0 D AT »l

00

-LIMITING FREQUENCY = 3 Me

-LIMITING FREQUENCY = 5 Me.

-LIMITING FREQUENCY = 7 Me.

Fig 68 TIRUCHY, INDIA JANUARY 1950

Page 65: Ionospheric Data - NIST

63

00 02 04 06 08 10 12 14 16 18 20 22 00

IS - 400 h- ^ 300 cD lal

X 200 J < UJ jE 100

>

100 LOCAL TIME

90 / V 7 ’ \

T \ 1 \

, ,>-80 LlJ o

t V

\ j — UJ •— => 70 jO

/ / X

\ /

r \ / /

\j ] ui Ol. gu- 60

Ho u- Z ro

/ 'nJ ✓

/

Ixli o -

/ \ V

- 1 t

/ ,\ ./ N / T K A

/ / 1 i+ ( \ ! r

LD UJ O^- 30

£(r

1 r - T T1 \

N / / / \ 1 \ i 1 t /

CL O U- 20

V —1 /T X 7 V V- V \ /

7 T X — V

/ \ 10 / / \ \

V V 00 02 04 06 08 10 12 14 16 18 20 22 00

Fig. 72.

— LIMITING

— LIMITING

— LIMITING

DAKAR,

FREQUENCY = 3 Me

FREQUENCY = 5 Me

FREQUENCY =7 Me

FRENCH WEST AFRICA DECEMBER 1949

Page 66: Ionospheric Data - NIST

64

-LIMITING FREQUENCY = 3 Me

-LIMITING FREQUENCY = 5 Me

-LIMITING FREQUENCY = 7 Me

Fig.76. DAKAR, FRENCH WESTAFRICA NOVEMBER 1949

Page 67: Ionospheric Data - NIST

6 5

ioI —————IUJ——LUWL— .1——LJJ—-——— 00 02 04 06 08 10 12 14 16 18 20 22 00

Fig. 77. FRIBOURG, GERMANY

48. I°N, 7. 8°E_OCTOBER 194 9

00 02 04 06 08 10 1 2 14 16 18 20 22 00

VIR

TU

AL

HE

IGH

T

IN

KM

_

ro

oj

^

o

o

O

o

5 0

0

0

0 EE

V LLL

If

_ - IN TEF ?P0 LAT ED F2 -L AYE R /AL JL - INTERPOLATED FI-LAYER VALUE

PE

RC

EN

TA

GE

OF

TO

TA

L T

IME

F

OR

f Es >

LIM

ITIN

G

FR

EQ

UE

NC

Y

_ro

w-f»

(ji<

n^ia)0

0

ooooooooooc

LOCAL TIME

\ N

r / f\

\ \

1 7 V 1 T A A

/ A

./ — \\ U

\ / 1 V 4 /

\\ 1 1 \ T 1 I 1 1 \ L /r \ ~r \

\ / '

s' T s \ \

L— 1 \

V 1 I] V "7

00 02 04 06 08 10 12 14 16 18 20 22 00

-LIMITING FREQUENCY = 3 Me.

-LIMITING FREQUENCY = 5 Me

-LIMITING FREQUENCY = 7 Me.

Fig.80.DAKAR, FRENCH WEST AFRICA OCTOBER 1949

Page 68: Ionospheric Data - NIST

Index ©f Tables and Graphs of Ionospheric Data

in GHPL-J72

Akita* Japan April 1950 ........ January 195©.

Baton long©® Louisiana Jna® 1950 ........

Bombay® India February 1950 ...... January 195® ......

Capetown* Union of S. Africa May 1950 .........

Christchurch® lew Zealand April 1950 ........

Dakar, French W9 Africa December 1949 ...... ioveaber 1949 ...... October 1949 .......

De Bili® Holland May 1950 .... .

Delhi® India February 1950 .. January I95O .......

Formosa* China May 1950 ......... April 1950 ........

Fribourg® Germany December 1949 ...... Icvember 1949 ...... October 1949 .......

Uumn Ia May 1950 . ....... .

Huane&yo® Peru June 1950 ........

Johannesburg® Union of S. Africa May 1950 .........

Lin&au/Harg® Q-emany May I950 .........

Madras® India February 1950 ...... January 1950 .......

Maui® Hawaii June 1950 ........

fable page gljggSjeage

. . 14 53 59

48

57 61

53

56

63 64 65

50

. . 15 5? 61

51 55

63 64 65

52

50

52

51

58 62

48

Page 69: Ionospheric Data - NIST

6?

Index (CBPL-T72. continued)

Table page Figure sage

Oslo® Horway June 1950 . ..

Barofcong© I. 46

gfereh 1950 .. Saa Francisco© California

56

Jun® 1950. San Juan* Puerto Rico

4?

June 1950 . . . .. Tiruchy, India

49

February 1950 . ... . . . 58 January 1950 . ... . . .

Tokyo@ Japan 62

April 1950 . . . 54

January 1950 . Trinidad, British West Indies

60

June 1950 .... Wakkaaaie Japan

49

January 195© . Washington, B. G«

59

July 1950 » » . . . . W&theroo® W, Australia

.... 12 46

April 2950 . Whit® Sands9 Hew Mexico

55

Jua© 1950 ® ... X&m&gawa, Japan

.... 12 4?

Anril 1950 . 54 January 1950 ....... 0 .. . 60

Page 70: Ionospheric Data - NIST
Page 71: Ionospheric Data - NIST

CRPL and IRPL Reports [A list of CRPL Section Reports is available from the Central Radio Propagation Laboratory upon request]

Daily: Radio disturbance warnings, every half hour from broadcast station WWV of the National Bureau of Standards. Telephoned and telegraphed reports of ionospheric, solar, geomagnetic, and radio propagation data.

Weekly: CRPL-J. Radio Propagation Forecast (of days most likely to be disturbed during following month).

Semimonthly: CRPL-Ja. Semimonthly Frequency Revision Factors for CRPL Basic Radio Propagation Prediction Reports.

Monthly: CRPL-D.

CRPL-F.

Basic Radio Propagation Predictions—Three months in advance. (Dept, of the Army, TB 11-499-. monthly supplements to TM 11-499; Dept, of the Navy, DNC-13-1 ( ), monthly supplements to DNC-13-1.)

Ionospheric Data.

Quarterly: ♦IRPL-A. Recommended Frequency Bands for Ships and Aircraft in the Atlantic and Pacific. *IRPL-H. Frequency Guide for Operating Personnel.

Circulars of the National Bureau of Standards: NBS Circular 462. Ionospheric Radio Propagation. NBS Circular 465. Instructions for the Use of Basic Radio Propagation Predictions.

Reports issued in past: IRPL-C61, Report of the International Radio Propagation Conference, 17 April to 5 May 1944. IRPL-G1 through G12. Correlation of D. F. Errors With Ionospheric Conditions. IRPL-R. Nonscheduled reports:

R4. Methods Used by IRPL for the Prediction of Ionosphere Characteristics and Maximum Usable Frequencies R5. Criteria for Ionospheric Storminess. R6. Experimental Studies of Ionospheric Propagation as Applied to the Loran System. R7. Second Report on Experimental Studies of Ionospheric Propagation as Applied to the Loran System. R9. An Automatic Instantaneous Indicator of Skip Distance and MUF. RIO. A Proposal for the Use of Rockets for the Study of the Ionosphere.

§R11. A Nomographic^ Method for Both Prediction and Observation Correlation of Ionosphere Characteristics. §R12. Short Time Variations in Ionospheric Characteristics. R14. A Graphical Method for Calculating Ground Reflection Coefficients.

§R15. Predicted Limits for F2-Layer Radio Transmission Throughout the Solar Cycle. §R17. Japanese Ionospheric Data—1943. R18. Comparison of Geomagnetic Records and North Atlantic Radio Propagation Quality Figures—October

1943 Through May 1945. §R21. Notes on the Preparation of Skip-Distance and M.UF Charts for Use by Direction-Finder Stations. (For

distances out to 4000 km.) §R23. Solar-Cycle Data for Correlation with Radio Propagation Phenomena. R24. Relations Between Band Width, Pulse Shape and Usefulness of Pulses in the Loran System.

§R25. The Prediction of Solar Activity as a Basis for the Prediction of Radio Propagation Phenomena. R26. The Ionosphere as a Measure of Solar Activity. R27. Relationships Between Radio Propagation Disturbance and Central Meridian Passage of Sunspots Grouped

by Distance From Center of Disc. §R30. Disturbance Rating in Values of IRPL Quality-Figure Scale from A. T. & T. Co. Transmission Disturbance

Reports to Replace T. D. Figures as Reported. R31. North Atlantic Radio Propagation Disturbances, October 1943 Through October 1945.

§R33u Ionospheric Data on File at IRPL. §R34. The Interpretation of Recorded Values of fEs. R35. Comparison of Percentage of Total Time of Second-Multiple Es Reflections and That of fEs in Excess of

3 Me. IRPL-T. Reports on tropospheric propagation:

Tl. Radar operation and weather. (Superseded by JANP 101.) T2. Radar coverage and weather. (Superseded by JANP 102.)

CRPL-T3. Tropospheric Propagation and Radio-Meteorology. (Reissue of Columbia Wave Propagation Group WPG-5.)

^,1 terns bearing this symbol are distributed only .by U. 8. Navy. They are issued under one cover as the DNC-14 series. §put of print; information concerning cost of photostat or microfilm copies is available from CRPL upon request.

Page 72: Ionospheric Data - NIST