investigations into petroleum source rocks within the

21
Invesgaons into Petroleum Source Rocks within the Mississippian Madison Group: Bluell Subinterval of Western McKenzie County Timothy O. Nesheim 1 , Stephan H. Nordeng 2 , and Chioma J. Onwumelu 2 1 North Dakota Geological Survey 2 University of North Dakota GEOLOGIC INVESTIGATION NO. 255 NORTH DAKOTA GEOLOGICAL SURVEY Edward C. Murphy, State Geologist Lynn D. Helms, Director Dept. of Mineral Resources 2021

Upload: others

Post on 18-Dec-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Investigations into Petroleum Source Rocks within the Mississippian Madison Group: Bluell

Subinterval of Western McKenzie CountyTimothy O. Nesheim1, Stephan H. Nordeng2, and Chioma J. Onwumelu2

1North Dakota Geological Survey2University of North Dakota

GEOLOGIC INVESTIGATION NO. 255NORTH DAKOTA GEOLOGICAL SURVEYEdward C. Murphy, State GeologistLynn D. Helms, Director Dept. of Mineral Resources2021

Table of Contents

Tables

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Stratigraphy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Previous Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Core Geochemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Lower Bluell Subinterval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Lower Bluell core Lithofacies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Wireline Log Signataure and Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Interpretations and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Thermal Maturity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Kerogen Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Additional Madison Source Beds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-10

Table 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-18

i

Figures

Figure 1. Map of western North Dakota showing the distribution of oil and gas productive Madison wells and the study area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Figure 2. Stratigraphic column of the Mississippian Madison Group section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2Figure 3. Study area map displaying the five study cores and structure contours of the Frobisher-Alida Interval top in feet below sea level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Figure 4. Wireline log cross-section of the lower Ratcliffe and upper Frobisher-alida subintervals with TOC-RockEval core data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Figure 5. Organic-richness plot of Madison core samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Figure 6. Modified Van Krevelen diagram with brown circles depicting samples from the lower Bluell subinterval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Figure 7. Tmax versus measured depth of Madison core samples color coated based upon NDIC well number and symbol shaped based upon Bluell versus non-Bluell subinterval . . . . . . . . . . . . . . . 6Figure 8. Core photographs from the lower Bluell subinterval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Figure 9. Isopach map of the gross thickness of the high TOC lower Bluell facies . . . . . . . . . . . . . . . . . . . . . . . . . 8

1

INTRODUCTIONMississippian Madison Group (Madison) reservoirs have combined to produce over 1 billion barrels of oil to date from over 6,000 vertical and horizontal wells within the Williston Basin of North Dakota (Fig. 1) (NDOGD, 2019). Cumulative production from the Madison is second only in the state to the prolific Bakken-Three Forks play. Prior to the emergence of the Bakken-Three Forks play (~2006), Madison reservoirs served as the primary target for hydrocarbon production in the state and accounted for approximately 64% of the state’s oil production through the end of 2005 (NDOGD, 2019).

Madison production began shortly after the discovery of oil in North Dakota during the early 1950’s. Through the 1980’s, exploration and development of the unit was completed using primarily vertical wells (LeFe-ver, 1992). Horizontal well drilling (non-hydraulically fractured) emerged in the Madison beginning in the late 1980’s to early 1990’s (LeFever, 1992). More re-cently, the Midale-upper Rival play of northern Burke County has transitioned into the first in-state Madison play undergoing unconventional-style development, horizontal drilling coupled with multi-stage hydraulic fracturing, and may hold potential for the drilling and completion of several hundred horizontal wells (Ne-sheim, 2018; 2019). The Midale-upper Rival play may represent the beginning of a transition of the greater Madison play into an unconventional, resource play that centers around targeting oil accumulations within tight, low porosity-permeability reservoirs.

Identifying and characterizing the petroleum source beds that have charged Madison reservoirs may serve as a key step in furthering exploration and develop-ment in the unit. Initial geochemical studies of pro-

duced oil and core extracts concluded that the Madison reservoirs were sourced by hydrocarbons generated and expelled by the underlying Bakken Formation (Dow, 1974; Williams, 1974; Thode, 1981; Leenheer and Zumberge, 1987). However, continued oil geochemical studies found that while some inter-mixing with Bakken oils occurs proximal to faulting/fracturing, Madison reservoir oils are distinct of Bakken oil and therefore, the Madison likely contains one or more organic-rich source bed horizon(s) (Price and LeFever, 1992; Osadetz and Snowden, 1995; Jarvie, 2001; Jiang et al., 2001). Organic-rich horizons have been described within the Mission Canyon and Lodge-pole Formations, which comprise the middle and lower portions of the Madison (Osadetz and Snowdon, 1995; Jar-vie, 2001; Jiang et al., 2001; Chen et al., 2009). However, limited information exists regarding the stratigraphic and vertical extent, organic-richness, and thermal maturity of prospective petroleum source beds within the Madison section. Therefore, the purpose of this report is to review TOC-RockEval analysis data from select Madison cores, in combination with wireline logs, to identify and evaluate prospective Madison source bed horizons.

STRATIGRAPHYThe Madison is predominantly a carbonate-evaporite unit that is subdivided into the Lodgepole, Mission Canyon, and Charles Formations in ascending order within the North Dakota portion of the Williston Basin (Fig. 2) (Murphy et al., 2009). The Mission Canyon and Charles Formations are further subdivided into the Tilston, Frobisher-Alida, Ratcliffe, and Poplar Intervals, from which the Frobisher-Alida and Ratcliffe Intervals contain the majority of oil producing reservoirs in the Madison section (Fig. 2) (LeFever and Anderson, 1986: Murphy et al., 2009).

The Frobisher-Alida Interval has been described as an upward-shoaling cycle which began with open-marine sedi-mentation that transitioned into widespread sabkha-saline evaporites (Petty, 1988). The Frobisher-Alida has been

Figure 1. Map of western North Dakota showing the distribution of oil and gas productive Madison wells (black dots) and the study area. County lines are shown as light gray lines.

2

subdivided into upwards of seven subintervals, which listed in ascending order consist of the Landa, Wayne, Glenburn, Mohall, Sherwood, Bluell, and Rival subintervals (Fig. 2) (LeFever and Anderson, 1986; Petty, 1996). The subintervals are defined by widespread marker beds, generally range from 30 to 100 feet (10 to 30 meters) in thickness and vary between different aggradation/progradation styles (Petty, 1996).

PREVIOUS WORKUsing early geochemical analysis techniques on both produced and core extract oil sam-ples, Williams (1974) concluded that Madison reservoir oils comprised of a unique oil family that was sourced from organic-rich shales in the underlying Bakken Formation (Fig. 2). Vertical oil migration from the Bakken shales to the overlying Madison reservoirs was hypothesized to have occurred along faulting/fracturing trends such as the Nesson anticline with lateral migration through intraformational porous and permeable carrier beds (Dow, 1974). Initial subsequent studies further examining both produced and core extract oil samples yielded similar interpretations about the Madison-Bakken Petroleum System (Thode, 1981; Leenheer and Zumberge, 1987).

However, as oil geochemistry studies continued in the Williston Basin, Bakken and Mad-ison oils have been found to be notably distinct from one another. Price and LeFever (1992) observed that Madison oils are more paraffinic and display higher gas chromato-gram peaks in the n-C20 to n-C30 range than Bakken oils, which conversely are less par-affinic and display higher gas chromatogram peaks in the n-C10 to n-C17 range. Fur-thermore, Madison reservoir oils are distinct from Bakken oils across the US Williston Basin based upon light hydrocarbon and C8+ fingerprints (Jarvie, 2001). Madison oils are commonly noted to have a C35 hopane predominance, which is limited to absent within Bakken oils (Osadetz and Snowden, 1995; Jarvie, 2001). Also, Madison reservoir oils have also been found to differentiate from Bakken oils in North Dakota and Montana based upon pristane-phytane ratios, where Madison oils have overall lower pristane-phytane ratios (Price and LeFever 1992; Jarvie, 2001). Similarly, oil extracts from Bakken shale core samples consistently have higher reported pristane-phytane ratios than oil extracts from organic-rich lime mudstone core samples from the Lodgepole Formation in southern Saskatchewan (Osadetz et al., 1992; Jiang et al. 2001). The organic-rich lime mudstone extracts also displayed a C35 hopane predominance and other factors that are indicative of a Lodgepole source for a portion of Madison reservoir oils (Osadetz et al., 1992; Jiang et al. 2001). Thus, while early geochemistry studies linked Madison reservoir oils to the Bakken shale, continued investigations have differentiated Madison and Bakken oils with some indications of the Madison source originating in the Lodgepole Formation.

Madison source beds may be comprised of differing kerogen type(s) dependent on stratigraphic positioning. Jarvie (2001) inferred two sets of Madison source beds using the methodology from Hughes et al. (1995): 1) carbonate source beds with higher sulfur content that have charged Madison reservoirs along the North Dakota-Montana northern tier counties, and 2) marly shale facies with lower sulfur contents that have sourced reservoirs within the central basin. The higher sulfur, carbonate-sourced oils were described to have lower API oil gravity and in-terpreted to have been generated at lower thermal maturity while the lower sulfur, marly shale-sourced oils have higher API oil gravities and are believed to be generated at higher thermal maturities (Jarvie, 2001). Lillis (2012) noted that most oils produced from reservoirs in the Frobisher-Alida Interval have high sulfur content, indicative of Type II-S kerogen which thermally matures at lower temperatures compared to Type I and regular Type II kero-gen. Meanwhile, oils produced from reservoirs in the Ratcliffe Interval (includes Midale), upper Rival subinterval (Nesson), Landa subinterval (basal Frobisher-Alida), and Tilston Interval were noted to contain mostly moderate to low sulfur concentrations, indicative of non-Type II-S kerogen (Lillis, 2012). Furthermore, Jarvie (2016) noted that Madison source rocks display variability in organofacies based upon light hydrocarbons and biomarker data from samples spanning the Ratcliffe, Frobisher-Alida, and Tilston Intervals. In summary, previous studies indicate that

Figure 2. Stratigraphic col-umn of the Mississippian Madison Group section. The dark blue portion rep-resents the section exam-ined in this report. Dev. = Devonian; Fm. = Forma-tion; Mbr. = Member; un-diff. = undifferentiated

3

Madison oils from differing stratigraphic intervals are from multiple source bed horizons with variable organofa-cies that range from Type II to Type II-S kerogen.

While the Madison appears to have one or more distinct sets of petroleum source beds based upon oil geochem-ical analysis data, there are areas in the basin which exhibit varying degrees of mixing between Madison and non-Madison sourced oils. Madison reservoir oils from the Richey and Cow Creek Fields of eastern Montana show evidence of mixing between Red River and Madison sourced oils (Jarvie, 2001). Furthermore, Madison reservoir oils from the Poplar Dome area of eastern Montana, as well as the McGregor and Beaver Lodge Fields located along the Nesson anticline of western North Dakota, display a mixed Bakken-Madison sourced signature (Jarvie, 2001: Jiang and Li, 2002). Both the Poplar Dome and Nesson anticline are prominent structural features within the basin where faults may have served as conduits for vertical oil migration (Orchard, 1987). Also, Bakken oil has sourced the Lodgepole mounds near Dickinson, North Dakota, localized reservoir features positioned in the basal Lodgepole Formation that directly overly the Bakken Formation (Jiang et al., 2002a). From the Canadian portion of the Williston Basin, Madison reservoir oils from fields located along regional inferred faulting-fracture trends exhibit geochemical signatures indicative of mixed Bakken and Madison derived oils (Jiang and Li, 2002; Chen et al., 2009). Therefore, some evidence remains of non-Madison sourced oils migrating into Madison reservoirs, par-ticularly along structures that exhibit substantial vertical faulting/fracturing.

Initial studies reported TOC values in the Madison Group consistently <1% (Williams, 1974; Osadetz and Snowdon, 1986). However, Osadetz et al. (1992) and Osadetz and Snowdon (1995) later published datasets (3 and 23 sam-ples) in which organic-rich Lodgepole samples from southern Saskatchewan averaged TOC values of 4.84% and 5.49% with corresponding average HI values of 594 and 401 mg HC/g TOC. Jiang et al. (2001) reported additional data from organic-rich Lodgepole lime mudstone samples (10 samples from 5 cores), also from southern Saskatch-ewan, that similarly averaged 5.3% TOC (2.1-10.3%) with an average hydrogen index of 591 mg HC/g TOC. Further-more, Jarvie (2001) reported three organic-rich horizons in the Mission Canyon Formation in one core from eastern Montana that averaged TOC values of 1.96%, 8.50%, and 1.92% with corresponding HI average values of 394, 300, and 274 mg HC/g. More recently, Jarvie (2016) reported that elevated TOC values (>1% present-day values) are present in multiple Madison subintervals spanning the Ratcliffe, Frobisher-Alida, and Tilston Intervals. While previous studies have differentiated Madison reservoir oils from Bakken oils over large portions of the Willis-ton Basin, limited published information exists on the stratigraphic positioning, lateral extent, and organic richness of petroleum source beds in the Madison.

METHODSFive Madison cores were selected for examination and sampling that extend through the upper portions of the Frobisher-Alida Interval in western McKenzie Coun-ty (Figs. 3 and 4). In addition to stratigraphic position-ing, each core was further selected based upon one or more of the following criteria: 1) previously completed

Figure 3. Study area map displaying the five study cores (col-ored-coded circles to match figure 7) and structure contours on the Frobisher-Alida Interval top in feet below sea level (grey lines). Small grey dots depict wireline log control wells for the structure contours. NDIC (North Dakota Industrial Commis-sion) well numbers are listed above each core location symbol with average reliable Tmax values from the Bluell subinterval below (Tmax value ranges underneath). Study area is depicted on the Figure 1 regional map. Red lines depict documented structures: a = Mondak monocline, b = Beaver Creek anticline, c = Red Wing Creek structure, d = Little Knife anticline

4

Figu

re 4

. Wire

line

log

cros

s-se

ction

of t

he lo

wer

Rat

cliff

e an

d up

per F

robi

sher

-Alid

a su

bint

erva

ls w

ith T

OC-

Rock

Eval

cor

e da

ta. T

OC

wt.

% (t

otal

org

anic

car

bon

by w

eigh

t per

cent

) is

disp

laye

d on

a

loga

rithm

ic s

cale

. Cro

ss-p

lots

of d

eep

resis

tivity

(LLD

) ver

sus

RHO

B (b

ulk

dens

ity),

NPH

I_LI

M (n

eutr

on p

oros

ity –

lim

esto

ne m

atrix

) and

DT

(Del

ta-T

= s

onic

trav

el ti

me)

are

plo

tted

to id

entif

y pr

o-sp

ectiv

e or

gani

c-ric

h ro

ck in

terv

als,

in w

hich

gre

y sh

adin

g in

dica

tes a

pos

itive

cro

ssov

er si

gnat

ure

(Pas

sey

et a

l., 1

990)

. Bro

wn

colo

r fill

in th

e lo

wer

Blu

ell d

enot

es w

here

cor

e an

d w

irelin

e lo

g da

ta

indi

cate

the

inte

rval

is o

rgan

ic ri

ch (≥

1% T

OC)

. ft. =

feet

; HI =

hyd

roge

n in

dex

(mg

HC/g

TO

C, m

illig

ram

s hyd

roca

rbon

s per

gra

m to

tal o

rgan

ic ca

rbon

): K.

B. =

Kel

ly B

ushi

ng e

leva

tion;

OI =

oxy

gen

inde

x (m

g HC

/g T

OC)

5

TOC-RockEval data indicative of organic-rich and oil-prone source rock (≥1-2% TOC, S2 versus S3 ratios of ≥3), 2) elevated core-plug oil saturations (≥40-60% So) within low-porosity core sections (≤2-3% ɸ), 3) darkly colored in-tervals observed through available core photographs, and/or 4) cores located within previously sampled/identified stratigraphic sections that yielded organic-rich samples.

Each core was examined, described, and correlated to corresponding wireline logs before being sampled. Geologic tops from the lower Ratcliffe (Midale subinterval) and upper Frobisher-Alida (Rival, Bluell, Sherwood, and Glenburn subintervals) Intervals were extracted from Petty (1988; 1996) and McClellan (1995) and subsequently correlated into and across the study area using wireline logs from available wells including the five cored wells of the study (Fig. 4).

TOC-RockEval samples were collected using a drill press that allowed for pinpoint sampling precision while creating a fine, powdered sample adequate for analysis while preserving the integrity of sampled cores. Samples collected from NDIC (North Dakota Industrial Commission) well permit #7228 are approximate 1-foot averages while the other four cores were sampled at specific depth points. Samples from all five cores represent both the darker colored and adjacent lighter colored core intervals. Sample analysis for TOC-RockEval data was completed using the Source Rock Analyzer available through the University of North Dakota.

The organic richness of the analyzed samples was evaluated through the combination of TOC and HI data. TOC values of 1% by weight or greater are generally considered good quality source rock (Peters and Cassa, 1994). Therefore, a 1% TOC threshold was used as a general cutoff to identify prospective, organic-rich, petroleum source rock horizons. HI is a measurement of milligrams of hydrocarbons (mg HC) per gram of total organic carbon (TOC) generated and measured during Rock-Eval pyrolysis. HI essentially represents the ratio of kerogen (organic carbon capable of converting to hydrocarbons) to that of TOC on a scale of 0–1200. HI and TOC both gradually decrease during thermal maturation of a given source rock as kerogen (oil-prone organic carbon) is converted into hydrocarbons and generated hydrocarbons are expelled from the source rock (Dembicki, 2009).

Thermal maturity was evaluated using Tmax generated from the RockEval Pyrolysis analyzes. Increased Tmax values indicate higher levels thermally maturity for sample with respect to hydrocarbon generation and the greater the percentage of original kerogen that has been converted into hydrocarbons (Peters, 1986). Pyrogram curves were visually examined to evaluate the S2 peaks used to determine the Tmax values. Tmax values were also plotted against PI values to determine if there were any notable variances between increasing PI with respect to changes to Tmax.

Core to log (wireline logs) adjustments were made comparing described core lithologies, core gamma-ray, and core-plug porosity data to corresponding wireline logs. The wireline-log signatures through organic-rich horizons identified through TOC-RockEval analysis (generally containing ≥1% TOC) were examined and utilized to correlate the horizons between non-cored and/or non-sampled wells.

RESULTSCORE GEOCHEMISTRYA total of 222 core samples were collected and analyzed for TOC-RockEval data. TOC values ranged from 0.21 to 17.02 % by weight with an average of 1.1% (Fig. 5, Table 1). While elevated TOC values (≥1%) were found intermittently throughout the various subintervals comprising lower Ratcliffe and upper Frobisher-Alida Intervals, the majority of higher TOC values of 1% or greater were from the lower half of the Bluell subinterval (lower Bluell) (Fig. 5). Examining HI versus OI, the composite Madison samples plot along a Type I/II to Type III/IV kerogen signatures on a modified Van Krevelen diagram, with higher TOC samples preferentially plotting more towards a Type I/II, oil-prone kerogen signature (Fig. 6).

Including the entire Madison dataset generated from all five cores, a total of 70 reliable Tmax values were identified based upon pyrogram S2 peaks and PI values. Out of those Tmax values, 46 were from the Bluell subinterval, which

6

Figure 6. Modified Van Krevelen diagram with brown circles depicting samples from the lower Bluell subinterval: small and light brown circles = <1% TOC, medium sized and colored = 1-2% TOC, large and dark brown = >2% TOC. Small white squares rep-resent non-lower Bluell Madison samples.

Figure 7. Tmax versus measured depth (below surface) of Madison core samples color coated based upon NDIC well number and sym-bol shaped based upon Bluell versus non-Bluell subinterval.

Figure 5. Organic-richness plot of Madison core samples. Brown cir-cles depict samples from the lower Bluell subinterval with size and color shading based upon cutoffs for good (>1%) and excellent (>2%) quality source rock (Dembicki, 2009). Small and light brown circles = <1% TOC, medium sized and colored = 1-2% TOC, large and dark brown = >2% TOC. Small white squares represent non-lower Bluell Madison samples.

7

ranged from 437.0 to 456.0 °C and averaged 446.8 °C (Table 1). Overall, the Bluell and other Madison Tmax values increase with depth but with a non-linear relationship that varies from one core data set to another (Fig. 7). Spatially, the Bluell Tmax values increase east-southeast across the study area (Fig. 3).

LOWER BLUELL SUBINTERVALSamples with ≥1% TOC in the lower Bluell vertically span upwards of approximately 15 to 20 feet in gross thickness within three of the study cores located in the central to western portions of the study area (Figs. 3 and 4 – wells #6414, #7228, and #6747). In those cores, the lower Bluell averages approximately 1-2% TOC, but with highly variable organic-richness in which individual sample TOC and HI values range from upwards of 6% and ≥200 mg HC/g TOC down to <0.5% and ≤50 mg HC/g TOC (Figs. 4-6). In the northern most study core (Figs. 3 and 4 - well #6839), a few of the lower Bluell samples contained ~1% TOC with higher HI (100-200 mg HC/g TOC), but most of the samples of the subinterval were relatively organic-lean with either <1% TOC and/or low HI (<100 mg HC/g TOC). The fifth and eastern most core (Figs. 3 and 4 - well #6718) was not sampled for TOC-RockEval analysis due to the lithological makeup of the lower Bluell which is reviewed below.

LOWER BLUELL CORE LITHOFACIESIn conjuncture with sampling for TOC-RockEval analysis, each study core was logged (described) and correlated to wireline logs for preliminary, regional stratigraphic correlations. Examining the lithological trends of the five study cores, the lower Bluell is primarily comprised of medium brown to very dark grey fossil lime wackestone within the four more westerly cores in the study area (Fig. 8A and 8B, Plate I). The higher TOC values (≥1%) correspond-ed with dark to very dark grey/black, moderately to well laminated, fossil lime wackestone containing relatively abundant brachiopod shells and crinoid stem fragments (Fig. 8A, Plate I). Meanwhile, the lower TOC values (<1%) corresponded with medium brown, poorly laminated, fossil lime wackestone to floatstone, in which tabulate and/or rugose corals where present in addition to brachiopod and crinoids (Fig. 8B, Plate I). In the fifth and eastern most core examined, the lower Bluell consists primarily of light to medium brown, oolitic-peloidal lime grainstone (Fig. 8C, Plate I), a high energy carbonate facies.

WIRELINE LOG SIGNATURE AND MAPPINGUnlike typical organic-rich petroleum source beds, such as the Upper and Lower Bakken shales, the higher TOC (≥1%) facies of the Bluell cannot readily be differentiated from the lateral or vertically adjacent, lower TOC (<1%)

Figure 8. Core photographs from the lower Bluell subinterval. A) Dark grey to black, laminated, fossil lime wacke-stone, B) medium brown to dark grey, poorly laminated, fossil lime wackstone, and c) medium tan/brown, laminated, oolitic-peloidal lime grainstone. NDIC (North Dakota Industrial Commission) well number and core depth interval in the bottom left corners and one-inch scale bars in the bottom right corners of each photograph.

8

strata using the gamma-ray wireline log signature. Instead, the high TOC Bluell facies has to be identified on wire-line logs using cross-plots of deep resistivity versus sonic travel time, neutron porosity, and bulk density logs (Fig. 4 – cross-section) (Passey et al., 1990). The high TOC Bluell facies appears to correspond with where all three cross-plots display a positive deep resistivity cross-over in which deep resistivity values are above 200 ohmmeters (Fig. 4).

The lower Bluell high TOC facies was first correlated across the study area starting with the core-control wells and their corresponding digitized logs followed by additional available digital wireline logs. Next, raster logs were used to further correlate the lower Bluell high TOC facies. While the raster logs did not allow for wireline log cross-plots, a combination of gamma-ray and resistivity wireline logs along with neutron-density porosities and/or sonic travel time appear adequate for correlation when compared to the digital logs of previously correlated wells.

Overall, the high TOC facies of the lower Bluell ranged from being absent, particularly towards the east-southeast parts of the study area, to reaching gross thicknesses of upwards of 30 ft. towards the northwest, and generally ranges from 10 to 20 ft. thick when present (Fig. 9). As the high TOC facies of the lower Bluell thins and disap-pears in the subsurface, the thickness of the Bluell interval does not appear to substantially thin or thicken (Fig. 4). Instead, based on both log and core data, the high TOC facies of the lower Bluell laterally grades into either organic-lean fossil lime wackestone or oolitic-peloidal lime grainstone. Also, the gross-thickness of the high TOC Bluell facies decreases to becomes absent proximal to structures, which mostly trend northwest-southeast across the study area (Fig. 9). INTERPRETATIONS AND DISCUSSIONTHERMAL MATURITYTmax values indicate that the high TOC facies of the lower Bluell has reached the early to late stages of oil genera-tion within the study area. The early, peak, and late oil generation windows are typically represented by Tmax val-ue ranges of 435-445 °C, 445-450 °C, and 450-470 °C (Peters and Cassa, 1994). The individual reliable Bluell Tmax values ranged from 437 °C to 456 °C, while the core data set averages ranged from 441°C to 453 °C (Fig. 7, Table 1), indicative that the Bluell is within the early to late oil generation windows. However, as previously noted, oils produced from the Frobisher-Alida reservoirs are commonly en-riched in sulfur, which is indicative of Type II-S ker-ogen that thermally matures at lower temperatures (Lillis, 2012). Jarvie (2016) assumed a Tmax of 427 °C to mark the beginning of the oil generation win-dow for Madison source bed samples. Therefore, the lower Bluell may be within the peak to late oil generation window dependent upon the type(s) of kerogen present.

Figure 9. Isopach map of the gross thickness of the high TOC lower Bluell facies. Contours are in 5-foot intervals and the brown contour fill is in 10-foot intervals. Small light grey circles are the wireline log well control and the large black circles are the core control wells. Study area is depicted on the Figure 1 regional map. Red lines depict documented structures: a = Mondak monocline, b = Beaver Creek anticline, c = Red Wing Creek structure, d = Little Knife anticline

9

KEROGEN TYPERegarding kerogen type(s) within prospective Madison source beds, a few general comments/conclusions can be drawn. First, if the lower Bluell and adjacent strata are within the peak to late mature stages of the oil generation window, the majority (≥50%) of the original kerogen has likely been converted into hydrocarbons and the current kerogen signature based on HI versus OI ratios is not fully reflective of the original kerogen signature (Dembicki, 2009). Secondly, Frobisher-Alida reservoirs are primarily known to produce oil with gas as a secondary component. This means any substantial prominence of Type III gas-prone kerogen within Madison source beds is unlikely, and therefore the original kerogen was likely oil-prone Type I, Type II, and/or Type II-S.

ADDITIONAL MADISON SOURCE BEDSWhile this report focused on the Bluell because of the prominence of elevated TOC values, core samples with elevated TOC, coupled with increased HI, extended stratigraphically well beyond the Bluell. Furthermore, wireline log cross-plots of deep resistivity versus bulk density, neutron porosity, and sonic velocity in numerous wells examined indicate additional prospective organic-rich horizons of various thicknesses and lateral distributions that are present in both subintervals above and below the Bluell.

CONCLUDING REMARKS• The Bluell subinterval, particularly the lower Bluell, contains the most prominent vertical and lateral

distribution of high TOC values (≥1%) within the sampled cores spanning the upper Frobisher-Alida and lower Ratcliffe intervals.

• Wireline log cross-plots of deep resistivity versus bulk density, neutron porosity, and sonic travel time are useful when combined to identify prospective organic-rich carbonate rock within the Madison Group.

• Core data, combined with wireline log cross-plot mapping, demonstrates the lower Bluell is comprised of upwards 20-30 ft. (gross thickness) of organic-rich carbonate rock along western McKenzie County.

• Tmax values indicate that the lower Bluell within western McKenzie County and any stratigraphically adjacent Madison petroleum source beds range from the early to late, or peak to late mature stages of oil generation depending upon the type(s) of kerogen present.

REFERENCESChen, Z., Osadetz, K.G., Jiang, C., and Li, M., 2009, Spatial variation of Bakken or Lodgepole oil in the Canadian Williston Basin:

American Association of Petroleum Geologists Bulletin, v. 93, p. 829-851.Dembicki, H., 2009, Three common source rock evaluation errors made by geologists during prospect or play appraisals: American

Association of Petroleum Geologists Bulletin, v. 93, p 341-356.Dow, W. G., 1974, Application of oil-correlation and source-rock data to exploration in Williston Basin: American Association of

Petroleum Geologists Bulletin, v. 58, p. 1253-1262.Hughes, W.B., Holba, A.G., and Dzou, L.I., 1995, The ratios of dibenzothiophene and pristane to phytane as indicators of depositional

environment and lithology of Petroleum source: Geochimica et Cosmochimica Acta., vol. 59, no. 17, 3581-3598.Jarvie, D.M., 2001, Williston Basin Petroleum Systems: Inferences from oil geochemistry and geology: The Mountain Geologist, vol.

38, no. 1, p. 19-41.Jarvie, D.M., 2016, Madison Group source rocks, Williston Basin, USA: American Association of Petroleum Geologists Annual

Convention and Exhibit, Calgary, Oral Presentation PowerPoint, 22 slides.Jiang, C., Li, M., Osadetz, K.G., Snowdon, L.R., Obermajer, M., Fowler, M.G., 2001, Bakken/Madison petroleum systems in the

Canadian Williston Basin. Part 2: molecular markers diagnostic of Bakken and Lodgepole source rocks: Organic Geochemistry, vol. 32, p. 1037-1054.

Jiang, C., and Li, M., 2002, Bakken/Madison petroleum systems in the Canadian Williston Basin. Part 3: geochemical evidence for significant Bakken-derived oil in Madison Group reservoirs: in Organic Geochemistry, vol. 33, p. 761-787.

Leenheer, M. J., and Zumberge, J. E., 1987, Correlation and thermal maturity of Williston Basin crude oils and Bakken source rocks using Terpane Biomarkers: in Williston Basin: Anatomy of a Cratonic Oil Province, p. 287-298.

LeFever, J.A, and Anderson, S.B., 1986, Structure and stratigraphy of the Frobisher-Alida and Ratcliffe Intervals, Mississippian Madison Group, north-central North Dakota: North Dakota Geological Survey, Report of Investigation No. 84, 17 pp. and 14 pl.

LeFever, J.A., 1992, Horizontal drilling in the Williston Basin, United States and Canada: Rocky Mountain Association of Geologists, Geological Studies Relevant to Horizontal Drilling: Examples from Western North Dakota; edited by J.W. Schmoker, E.B. Coalson, and C.A. Brown, p. 177-197.

Lillis, P. G., 2012, Review of oil families and their petroleum systems of the Williston Basin: The Mountain Geologist, vol. 50, no. 1, p. 5-31.

McClellan, W. A., 1995, Sherwood subinterval of the Mission Canyon Formation in central western North Dakota, North Dakota Geological Survey, Report of Investigation No. 97, 11 pp. and 7 pl.

Murphy, E.C., Nordeng, S.H., Junker, B.J., and Hoganson, J.W., 2009, North Dakota stratigraphic column: North Dakota Geological Survey Miscellaneous Series 91.

Nesheim, T.O., 2018, Spatial distribution of elevated oil saturations within the Midale subinterval (Mississippian Madison Group), Burke County – North Dakota: North Dakota Geological Survey, Geological Investigation No. 213, 18 p.

Nesheim, T.O., 2019, Review of the emerging Midale-upper Rival (Mississippian Madison Group) unconventional-style play, northern Burke County: North Dakota Department of Mineral Resource, Geo News, vol. 46, no. 1, p. 4-6.

North Dakota Oil and Gas Division (NDOGD), 2019, North Dakota cumulative oil production by formation through December 2019: https://www.dmr.nd.gov/oilgas/stats/2019CumulativeFormation.pdf (retrieved September 30th, 2020).

Thode, H.G., 1981, Sulphur isotope ratios in petroleum research and exploration: Williston Basin: in American Association of Petroleum Geologists Bulletin, vol. 65, p. 1527-1535.

Orchard, D. M., 1987, Structural history of Poplar Dome and the Dissolution of Charles Formation salt, Roosevelt County, Montana: in C.G. Carlson and J.E. Christopher eds., 1987, Fifth International Williston Basin Symposium, Saskatchewan Geological Society, p. 169-177.

Osadetz, K.G., Brooks, P.W., and Snowdon, L.R., 1992, Oil families and their sources in Canadian Williston Basin, (southeastern Saskatchewan and southwestern Manitoba): Bulletin of Canadian Petroleum Geology, vol. 40, no. 2, p. 254-273.

Osadetz, K.G., and Snowdon, L.R., 1986, Petroleum source rock reconnaissance of southern Saskatchewan: in Current Research, Pat A, Geological Survey of Canada, Paper 86-1A, p. 609-617.

Osadetz, K.G., and Snowdon, L.R., 1995, Significant Paleozoic petroleum source rocks in the Canadian Williston Basin: Their distribution, richness, and thermal maturity (southeastern Saskatchewan and southwestern Manitoba): Geological Survey of Canada, Bulletin 487, 60 p.

Passey, Q. R., Creaney, S., Kulla, J. B., Moretti, F. J., Stroud, J. D., 1990, A practical model for organic richness from porosity and resistivity logs: American Association of Petroleum Geologists Bulletin, vol. 74, p. 1777-1794.

Peters, K.E., 1986. Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG (Am. Assoc. Pet. Geol.) Bull. 70 (3), 318–329.

Peters, K.E., and Cassa, M.R., 1994, Applied source rock geochemistry, in Magoon, L.B., and Dow, W.G., eds., The petroleum system—From source to trap: Tulsa, Okla., American Association of Petroleum Geologists Memoir 60, p. 93-117.

Petty, D.M., 1988, Depositional facies, textural characteristics, and reservoir properties of dolomites in Frobisher-Alida Interval in southwest North Dakota: AAPG Bulletin, vol. 72, no. 10, p. 1229-1253.

Petty, D.M., 1996, Regional stratigraphic and facies relationships in the Mission Canyon Formation, North Dakota portion of the Williston Basin: in M.W. Longman and M.D. Sonnenfeld eds., 1996, Paleozoic Systems of the Rocky Mountain Region, Rocky Mountain Section, SEPM (Society for Sedimentary Geology), p. 193-212.

Price, L.C., and LeFever, J.A., 1992, Does Bakken horizontal drilling imply a huge oil-resource base in fractured shales?, in LeFever, J.A., eds., Geological Studies Relevant to Horizontal Drilling: Examples from Western North America: Rocky Mountain Association of Geologists, Denver, CO, p. 199-214.

Williams, J. A., 1974, Characterization of oil types in Williston Basin: American Association of Petroleum Geologists Bulletin: v. 58, p. 1243-1252.

10

11

SRA

Tmax

Tmax

Calc

.S1

/TO

CM

adis

onTo

pBa

seTO

C(°

C)Q

ualit

y%

Ro

*100

Subu

nit

6414

3305

3007

3900

0092

921.

630.

962.

160.

3844

41

0.83

133

235.

759

0.31

R (u

n)64

1433

0530

0739

0000

9293

.80.

910.

330.

810.

2544

51

0.84

8927

3.2

360.

29R

(un)

6414

3305

3007

3900

0092

951.

220.

481.

920.

3044

21

0.80

157

256.

439

0.20

R (u

n)64

1433

0530

0739

0000

9296

0.95

0.18

0.37

0.53

440

30.

7739

560.

719

0.33

R (u

n)64

1433

0530

0739

0000

9305

1.06

0.22

0.38

0.50

439

30.

7436

470.

821

0.37

R (u

n)64

1433

0530

0739

0000

9310

.85

0.85

0.84

0.75

0.40

438

30.

7288

471.

999

0.53

R (u

n)64

1433

0530

0739

0000

9311

.80.

540.

250.

310.

2544

43

0.83

5746

1.2

460.

45R

(un)

6414

3305

3007

3900

0094

010.

620.

860.

610.

4044

13

0.77

9865

1.5

139

0.59

FA (B

l)64

1433

0530

0739

0000

9402

1.18

1.19

1.16

0.48

441

20.

7898

412.

410

10.

51FA

(Bl)

6414

3305

3007

3900

0094

031.

050.

630.

840.

3344

73

0.88

8031

2.5

600.

43FA

(Bl)

6414

3305

3007

3900

0094

040.

660.

410.

400.

3244

23

0.79

6148

1.3

620.

51FA

(Bl)

6414

3305

3007

3900

0094

050.

330.

120.

130.

2943

33

0.64

3988

0.4

360.

48FA

(Bl)

6414

3305

3007

3900

0094

160.

691.

630.

720.

3743

83

0.72

104

541.

923

60.

69FA

(Bl)

6414

3305

3007

3900

0094

171.

680.

661.

080.

4443

73

0.71

6426

2.5

390.

38FA

(Bl)

6414

3305

3007

3900

0094

181.

940.

701.

250.

4643

93

0.75

6424

2.7

360.

36FA

(Bl)

6414

3305

3007

3900

0094

191.

000.

561.

050.

3044

72

0.89

105

303.

556

0.35

FA (B

l)64

1433

0530

0739

0000

9420

0.87

0.59

0.80

0.31

448

20.

9092

362.

668

0.42

FA (B

l)64

1433

0530

0739

0000

9421

1.18

0.34

0.83

0.38

448

20.

9070

322.

229

0.29

FA (B

l)64

1433

0530

0739

0000

9422

.20.

700.

200.

250.

3544

83

0.91

3650

0.7

290.

44FA

(Bl)

6414

3305

3007

3900

0094

230.

870.

400.

490.

3344

62

0.86

5638

1.5

460.

45FA

(Bl)

6414

3305

3007

3900

0094

241.

040.

530.

860.

2945

12

0.96

8328

3.0

510.

38FA

(Bl)

6414

3305

3007

3900

0094

251.

450.

302.

070.

3144

82

0.91

143

216.

721

0.13

FA (B

l)64

1433

0530

0739

0000

9426

0.65

0.24

0.33

0.32

450

30.

9451

491.

037

0.42

FA (B

l)64

1433

0530

0739

0000

9427

.20.

850.

160.

700.

3044

31

0.82

8235

2.3

190.

19FA

(Bl)

6414

3305

3007

3900

0094

281.

070.

650.

940.

3545

33

0.99

8833

2.7

610.

41FA

(Bl)

6414

3305

3007

3900

0094

291.

010.

251.

040.

3344

61

0.86

103

333.

225

0.19

FA (B

l)64

1433

0530

0739

0000

9430

.21.

190.

491.

120.

4144

61

0.88

9434

2.7

410.

30FA

(Bl)

6414

3305

3007

3900

0094

310.

800.

370.

560.

3444

42

0.83

7043

1.6

460.

40FA

(Bl)

6414

3305

3007

3900

0094

321.

220.

431.

360.

3544

31

0.82

111

293.

935

0.24

FA (B

l)64

1433

0530

0739

0000

9433

0.56

0.28

0.30

0.33

447

30.

8954

590.

950

0.48

FA (B

l)64

1433

0530

0739

0000

9434

0.43

0.22

0.20

0.27

443

50.

8147

630.

751

0.52

FA (B

l)64

1433

0530

0739

0000

9435

0.95

0.24

0.63

0.29

448

10.

9166

312.

225

0.28

FA (B

l)

S2/S

3PI

S1S2

S3HI

OI

Core

Dep

th (f

t.)N

DIC

#AP

I Num

ber

Tabl

e 1

12

SRA

Tmax

Tmax

Calc

.S1

/TO

CM

adis

onTo

pBa

seTO

C(°

C)Q

ualit

y%

Ro

*100

Subu

nit

6414

3305

3007

3900

0094

361.

650.

451.

840.

3144

61

0.87

112

195.

927

0.20

FA (B

l)64

1433

0530

0739

0000

9437

0.56

0.30

0.25

0.28

452

30.

9745

500.

954

0.55

FA (B

l)67

1833

0530

0824

0000

9416

.82.

061.

182.

500.

4944

82

0.91

121

245.

157

0.32

FA (R

i)67

1833

0530

0824

0000

9429

3.25

0.89

5.89

0.37

453

21.

0018

111

15.9

270.

13FA

(Bl)

6718

3305

3008

2400

0094

303.

641.

317.

650.

3645

32

0.99

210

1021

.336

0.15

FA (B

l)67

1833

0530

0824

0000

9431

2.94

0.94

4.75

0.41

451

20.

9616

214

11.6

320.

17FA

(Bl)

6718

3305

3008

2400

0094

3217

.02

6.70

38.0

10.

7245

62

1.04

223

452

.839

0.15

FA (B

l)67

1833

0530

0824

0000

9433

0.60

0.15

0.18

0.33

441

30.

7830

550.

525

0.45

FA (B

l)67

1833

0530

0824

0000

9466

1.31

0.54

0.90

0.51

446

30.

8769

391.

841

0.38

FA (S

h)67

1833

0530

0824

0000

9467

.20.

540.

200.

280.

2444

83

0.90

5244

1.2

370.

42FA

(Sh)

6718

3305

3008

2400

0094

74.2

0.48

0.09

0.13

0.35

451

30.

9527

730.

419

0.41

FA (S

h)67

1833

0530

0824

0000

9475

.50.

880.

310.

480.

3044

73

0.89

5534

1.6

350.

39FA

(Sh)

6718

3305

3008

2400

0094

76.1

0.74

0.34

0.47

0.29

446

30.

8664

391.

646

0.42

FA (S

h)67

1833

0530

0824

0000

9479

.40.

330.

190.

230.

2445

73

1.06

7073

1.0

580.

45FA

(Sh)

6718

3305

3008

2400

0094

80.8

50.

990.

440.

670.

3445

23

0.97

6834

2.0

440.

40FA

(Sh)

6718

3305

3008

2400

0094

82.2

0.89

0.29

0.44

0.31

451

20.

9649

351.

433

0.40

FA (S

h)67

1833

0530

0824

0000

9482

.80.

920.

290.

480.

1645

62

1.05

5217

3.0

320.

38FA

(Sh)

6718

3305

3008

2400

0094

86.6

0.61

0.16

0.19

0.23

464

51.

1931

380.

826

0.46

FA (S

h)67

1833

0530

0824

0000

9487

.90.

680.

130.

120.

2445

04

0.94

1835

0.5

190.

52FA

(Sh)

6718

3305

3008

2400

0094

89.3

0.79

0.28

0.34

0.24

451

30.

9543

301.

435

0.45

FA (S

h)67

1833

0530

0824

0000

9496

.51.

690.

470.

670.

4544

33

0.82

4027

1.5

280.

41FA

(Sh)

6718

3305

3008

2400

0095

01.2

0.92

0.28

0.42

0.25

453

20.

9946

271.

730

0.40

FA (S

h)67

1833

0530

0824

0000

9501

.71.

080.

390.

710.

2645

22

0.98

6624

2.7

360.

35FA

(Sh)

6718

3305

3008

2400

0095

07.4

0.78

0.26

0.40

0.26

453

21.

0051

331.

533

0.39

FA (S

h)67

1833

0530

0824

0000

9514

.10.

630.

210.

240.

2044

63

0.87

3832

1.2

330.

47FA

(Sh)

6718

3305

3008

2400

0095

16.5

0.65

0.25

0.26

0.32

452

40.

9840

490.

838

0.49

FA (S

h)67

4733

0530

0827

0000

9312

.21.

030.

480.

620.

3045

13

0.96

6029

2.1

470.

44FA

(Ri)

6747

3305

3008

2700

0093

12.5

0.82

0.33

0.36

0.29

451

30.

9644

351.

240

0.48

FA (R

i)67

4733

0530

0827

0000

9313

0.77

0.36

0.61

0.39

452

20.

9879

511.

647

0.37

FA (R

i)67

4733

0530

0827

0000

9313

.30.

630.

300.

350.

3045

33

0.99

5648

1.2

480.

46FA

(Ri)

6747

3305

3008

2700

0093

20.6

0.80

0.33

0.47

0.30

455

31.

0359

381.

641

0.41

FA (B

l)67

4733

0530

0827

0000

9320

.81.

180.

490.

870.

2645

52

1.03

7422

3.3

420.

36FA

(Bl)

NDI

C #

API N

umbe

rCo

re D

epth

(ft.)

S1S2

S3HI

OI

S2/S

3PI

Tabl

e 1

conti

nued

13

SRA

Tmax

Tmax

Calc

.S1

/TO

CM

adis

onTo

pBa

seTO

C(°

C)Q

ualit

y%

Ro

*100

Subu

nit

6747

3305

3008

2700

0093

21.4

0.95

0.28

0.63

0.25

451

20.

9666

262.

529

0.31

FA (B

l)67

4733

0530

0827

0000

9346

0.29

0.11

0.17

0.24

451

30.

9659

830.

738

0.39

FA (B

l)67

4733

0530

0827

0000

9347

1.01

0.40

0.92

0.43

452

20.

9891

432.

140

0.30

FA (B

l)67

4733

0530

0827

0000

9348

0.64

0.33

0.48

0.30

459

31.

1175

471.

652

0.41

FA (B

l)67

4733

0530

0827

0000

9349

0.84

0.80

0.72

0.53

453

30.

9986

631.

495

0.53

FA (B

l)67

4733

0530

0827

0000

9350

.35.

197.

109.

290.

8345

12

0.96

179

1611

.213

70.

43FA

(Bl)

6747

3305

3008

2700

0093

50.5

2.79

2.38

3.94

0.88

453

20.

9914

132

4.5

850.

38FA

(Bl)

6747

3305

3008

2700

0093

50.8

3.43

2.21

6.54

0.42

453

20.

9919

112

15.6

640.

25FA

(Bl)

6747

3305

3008

2700

0093

513.

942.

097.

910.

3945

22

0.98

201

1020

.353

0.21

FA (B

l)67

4733

0530

0827

0000

9351

.53.

650.

653.

890.

4845

32

0.99

107

138.

118

0.14

FA (B

l)67

4733

0530

0827

0000

9352

3.89

1.92

7.42

0.39

454

21.

0019

110

19.0

490.

21FA

(Bl)

6747

3305

3008

2700

0093

52.5

2.98

1.30

5.58

0.40

451

20.

9518

713

14.0

440.

19FA

(Bl)

6747

3305

3008

2700

0093

531.

261.

121.

280.

4544

63

0.87

102

362.

889

0.47

FA (B

l)67

4733

0530

0827

0000

9354

1.28

0.51

0.51

0.43

449

30.

9340

341.

240

0.50

FA (B

l)67

4733

0530

0827

0000

9354

.61.

620.

851.

100.

5344

73

0.89

6833

2.1

520.

44FA

(Bl)

6747

3305

3008

2700

0093

550.

670.

320.

390.

3245

73

1.07

5848

1.2

480.

45FA

(Bl)

6747

3305

3008

2700

0093

55.5

1.90

0.94

2.51

0.50

447

20.

8913

226

5.0

490.

27FA

(Bl)

6747

3305

3008

2700

0093

560.

420.

130.

110.

2646

03

1.13

2662

0.4

310.

54FA

(Bl)

6747

3305

3008

2700

0093

570.

960.

460.

630.

3445

23

0.98

6635

1.9

480.

42FA

(Bl)

6747

3305

3008

2700

0093

580.

830.

390.

760.

6935

35

-1.0

092

831.

147

0.34

FA (B

l)67

4733

0530

0827

0000

9358

.51.

430.

421.

750.

3544

82

0.90

122

245.

029

0.19

FA (B

l)67

4733

0530

0827

0000

9359

0.91

0.25

0.64

0.27

448

20.

9170

302.

427

0.28

FA (B

l)67

4733

0530

0827

0000

9360

1.13

0.37

1.51

0.24

447

20.

8813

421

6.3

330.

20FA

(Bl)

6747

3305

3008

2700

0093

611.

320.

821.

210.

4045

12

0.96

9230

3.0

620.

40FA

(Bl)

6747

3305

3008

2700

0093

620.

610.

330.

410.

3846

03

1.12

6762

1.1

540.

45FA

(Bl)

6747

3305

3008

2700

0093

830.

540.

280.

320.

3844

93

0.92

5970

0.8

520.

47FA

(Sh)

6747

3305

3008

2700

0093

83.5

1.31

1.16

1.24

0.58

450

30.

9395

442.

189

0.48

FA (S

h)67

4733

0530

0827

0000

9384

0.40

0.35

0.27

0.27

447

30.

8868

681.

088

0.56

FA (S

h)67

4733

0530

0827

0000

9384

.50.

690.

400.

580.

3745

23

0.97

8454

1.6

580.

41FA

(Sh)

6747

3305

3008

2700

0093

850.

470.

300.

290.

3544

53

0.84

6274

0.8

640.

51FA

(Sh)

6747

3305

3008

2700

0093

85.5

0.43

0.23

0.24

0.26

456

31.

0556

600.

953

0.49

FA (S

h)67

4733

0530

0827

0000

9386

0.36

0.15

0.19

0.26

447

30.

8953

720.

742

0.44

FA (S

h)

S3HI

OI

S2/S

3PI

NDI

C #

API N

umbe

rCo

re D

epth

(ft.)

S1S2

Tabl

e 1

conti

nued

14

Tabl

e 1

conti

nued

SRA

Tmax

Tmax

Calc

.S1

/TO

CM

adis

onTo

pBa

seTO

C(°

C)Q

ualit

y%

Ro

*100

Subu

nit

6747

3305

3008

2700

0093

86.5

1.65

0.90

1.80

0.43

445

20.

8410

926

4.2

550.

33FA

(Sh)

6747

3305

3008

2700

0093

870.

620.

190.

180.

2744

53

0.84

2944

0.7

310.

51FA

(Sh)

6747

3305

3008

2700

0094

091.

931.

131.

800.

3544

92

0.93

9318

5.1

590.

39FA

(Sh)

6747

3305

3008

2700

0094

101.

280.

570.

750.

4444

53

0.86

5934

1.7

450.

43FA

(Sh)

6747

3305

3008

2700

0094

150.

480.

240.

200.

3244

73

0.88

4267

0.6

500.

55FA

(Sh)

6747

3305

3008

2700

0094

19.3

1.76

0.54

2.43

0.28

448

20.

9013

816

8.7

310.

18FA

(Sh)

6747

3305

3008

2700

0094

200.

640.

330.

420.

2845

13

0.97

6644

1.5

520.

44FA

(Sh)

6747

3305

3008

2700

0094

22.3

0.72

0.43

0.48

0.22

451

30.

9567

312.

260

0.47

FA (S

h)68

3933

0530

0855

0000

9153

0.66

0.38

0.70

0.37

442

10.

8010

656

1.9

580.

35R

(Be)

6839

3305

3008

5500

0091

560.

940.

630.

600.

4144

33

0.81

6444

1.5

670.

51R

(Be)

6839

3305

3008

5500

0091

57.4

1.29

0.44

0.79

0.48

439

20.

7461

371.

634

0.36

R (B

e)68

3933

0530

0855

0000

9158

.22.

491.

684.

550.

8244

11

0.78

183

335.

567

0.27

R (B

e)68

3933

0530

0855

0000

9163

0.50

0.20

0.16

0.31

439

40.

7532

620.

540

0.56

R (B

e)68

3933

0530

0855

0000

9165

0.27

0.08

0.02

0.22

429

40.

567

810.

130

0.80

R (B

e)68

3933

0530

0855

0000

9215

1.50

0.60

1.30

0.36

440

10.

7787

243.

640

0.32

R (M

i)68

3933

0530

0855

0000

9217

1.04

0.46

0.47

0.47

430

30.

5845

451.

044

0.49

R (M

i)68

3933

0530

0855

0000

9218

1.26

0.61

0.77

0.71

427

30.

5261

561.

148

0.44

R (M

i)68

3933

0530

0855

0000

9219

0.82

0.25

0.35

0.29

440

20.

7543

351.

230

0.42

R (M

i)68

3933

0530

0855

0000

9221

0.93

0.45

0.33

0.46

436

30.

6935

490.

748

0.58

R (M

i)68

3933

0530

0855

0000

9222

1.06

0.44

0.35

0.67

426

30.

5133

630.

542

0.56

R (M

i)68

3933

0530

0855

0000

9223

1.13

0.85

0.99

0.65

424

50.

4788

581.

575

0.46

R (M

i)68

3933

0530

0855

0000

9223

.11.

490.

530.

830.

9542

43

0.47

5664

0.9

360.

39R

(Mi)

6839

3305

3008

5500

0092

250.

680.

370.

350.

4443

13

0.59

5165

0.8

540.

51R

(Mi)

6839

3305

3008

5500

0092

270.

850.

560.

830.

7842

55

0.50

9892

1.1

660.

40R

(Mi)

6839

3305

3008

5500

0092

290.

790.

360.

400.

6342

53

0.50

5180

0.6

460.

47R

(Mi)

6839

3305

3008

5500

0092

310.

650.

360.

410.

6142

53

0.49

6394

0.7

550.

47R

(Mi)

6839

3305

3008

5500

0092

31.7

1.24

0.46

0.64

0.91

427

30.

5252

730.

737

0.42

R (M

i)68

3933

0530

0855

0000

9233

0.35

0.23

0.06

0.30

439

40.

7417

860.

266

0.79

R (M

i)68

3933

0530

0855

0000

9235

0.53

0.22

0.35

0.30

442

20.

8066

571.

242

0.39

R (M

i)68

3933

0530

0855

0000

9250

2.04

0.74

0.77

0.70

431

30.

6038

341.

136

0.49

FA (R

i)68

3933

0530

0855

0000

9250

.22.

261.

181.

661.

4142

15

0.41

7362

1.2

520.

42FA

(Ri)

6839

3305

3008

5500

0092

520.

620.

220.

210.

3043

84

0.72

3448

0.7

350.

51FA

(Ri)

S3HI

OI

S2/S

3PI

NDI

C #

API N

umbe

rCo

re D

epth

(ft.)

S1S2

15

Tabl

e 1

conti

nued

SRA

Tmax

Tmax

Calc

.S1

/TO

CM

adis

onTo

pBa

seTO

C(°

C)Q

ualit

y%

Ro

*100

Subu

nit

6839

3305

3008

5500

0092

540.

530.

450.

260.

4043

44

0.64

4975

0.7

850.

63FA

(Ri)

6839

3305

3008

5500

0092

560.

591.

130.

590.

4243

14

0.59

100

711.

419

20.

66FA

(Ri)

6839

3305

3008

5500

0092

580.

980.

440.

470.

3943

93

0.74

4840

1.2

450.

48FA

(Ri)

6839

3305

3008

5500

0092

600.

600.

270.

260.

2943

93

0.75

4348

0.9

450.

51FA

(Bl)

6839

3305

3008

5500

0092

621.

110.

400.

420.

3644

13

0.78

3832

1.2

360.

49FA

(Bl)

6839

3305

3008

5500

0092

640.

920.

560.

520.

5443

93

0.74

5759

1.0

610.

52FA

(Bl)

6839

3305

3008

5500

0092

660.

290.

280.

170.

2543

24

0.62

5986

0.7

970.

62FA

(Bl)

6839

3305

3008

5500

0092

800.

730.

400.

370.

5442

15

0.42

5174

0.7

550.

52FA

(Bl)

6839

3305

3008

5500

0092

821.

430.

910.

960.

7443

63

0.69

6752

1.3

640.

49FA

(Bl)

6839

3305

3008

5500

0092

840.

370.

320.

330.

2842

25

0.43

8976

1.2

860.

49FA

(Bl)

6839

3305

3008

5500

0092

84.8

1.43

0.81

0.71

0.83

428

30.

5450

580.

957

0.53

FA (B

l)68

3933

0530

0855

0000

9286

1.36

0.52

0.41

0.71

424

30.

4730

520.

638

0.56

FA (B

l)68

3933

0530

0855

0000

9288

0.28

0.20

0.13

0.23

441

40.

7846

820.

671

0.61

FA (B

l)68

3933

0530

0855

0000

9290

0.41

0.41

0.17

0.37

445

40.

8641

900.

510

00.

71FA

(Bl)

6839

3305

3008

5500

0092

921.

670.

500.

710.

5543

63

0.68

4333

1.3

300.

41FA

(Bl)

6839

3305

3008

5500

0092

940.

460.

150.

170.

2644

64

0.86

3757

0.7

330.

47FA

(Bl)

6839

3305

3008

5500

0092

960.

210.

110.

130.

1344

34

0.81

6262

1.0

520.

46FA

(Bl)

6839

3305

3008

5500

0092

980.

280.

170.

200.

1745

94

1.10

7161

1.2

610.

46FA

(Bl)

6839

3305

3008

5500

0093

000.

390.

310.

230.

1745

24

0.98

5944

1.4

790.

57FA

(Bl)

6839

3305

3008

5500

0093

021.

180.

481.

820.

2044

62

0.87

154

179.

141

0.21

FA (B

l)68

3933

0530

0855

0000

9304

0.26

0.17

0.20

0.23

451

30.

9577

880.

965

0.46

FA (B

l)68

3933

0530

0855

0000

9306

0.35

0.21

0.26

0.21

445

30.

8674

601.

260

0.45

FA (B

l)68

3933

0530

0855

0000

9308

0.28

0.17

0.23

0.18

445

30.

8582

641.

361

0.43

FA (S

h)68

3933

0530

0855

0000

9310

0.60

0.26

0.39

0.18

453

30.

9965

302.

243

0.40

FA (S

h)68

3933

0530

0855

0000

9312

0.81

0.80

0.71

0.28

446

30.

8688

352.

599

0.53

FA (S

h)68

3933

0530

0855

0000

9314

0.24

0.23

0.19

0.22

448

30.

9079

920.

996

0.55

FA (S

h)72

2833

0530

0959

0000

8982

.10.

900.

350.

460.

5343

53

0.67

5159

0.9

390.

43R

(Be)

7228

3305

3009

5900

0089

85.0

1.19

0.46

0.59

0.79

440

40.

7550

660.

739

0.44

R (B

e)72

2833

0530

0959

0000

8987

.089

88.0

1.06

0.79

0.92

0.46

438

30.

7387

432.

075

0.46

R (M

i)72

2833

0530

0959

0000

8990

.089

91.0

0.92

0.67

0.68

0.55

430

40.

5974

601.

273

0.50

R (M

i)72

2833

0530

0959

0000

8990

.80.

720.

710.

770.

6943

75

0.71

107

961.

199

0.48

R (M

i)72

2833

0530

0959

0000

8996

.089

97.0

0.91

0.43

0.79

0.67

439

30.

7487

741.

247

0.35

R (M

i)

S3HI

OI

S2/S

3PI

NDI

C #

API N

umbe

rCo

re D

epth

(ft.)

S1S2

16

Tabl

e 1

conti

nued

SRA

Tmax

Tmax

Calc

.S1

/TO

CM

adis

onTo

pBa

seTO

C(°

C)Q

ualit

y%

Ro

*100

Subu

nit

7228

3305

3009

5900

0089

99.0

9000

.00.

820.

490.

540.

6543

33

0.63

6679

0.8

600.

48R

(Mi)

7228

3305

3009

5900

0090

00.5

1.22

0.55

1.14

0.62

437

30.

7193

511.

845

0.33

R (M

i)72

2833

0530

0959

0000

9002

.090

03.0

0.64

0.28

0.43

0.54

426

40.

5067

840.

844

0.39

R (M

i)72

2833

0530

0959

0000

9005

.090

06.0

1.05

0.44

0.51

0.66

426

30.

5149

630.

842

0.46

R (M

i)72

2833

0530

0959

0000

9005

.11.

090.

550.

670.

6543

53

0.66

6160

1.0

500.

45R

(Mi)

7228

3305

3009

5900

0090

06.7

1.18

0.54

0.67

0.75

433

30.

6357

640.

946

0.45

R (M

i)72

2833

0530

0959

0000

9008

.090

09.0

0.84

0.31

0.44

0.60

428

30.

5452

710.

737

0.41

R (M

i)72

2833

0530

0959

0000

9011

.090

12.0

0.60

0.34

1.41

0.56

392

5-1

.00

235

932.

557

0.19

R (M

i)72

2833

0530

0959

0000

9051

.890

52.8

2.17

0.98

2.71

0.58

440

10.

7612

527

4.7

450.

27FA

(Bl)

7228

3305

3009

5900

0090

52.5

9053

.01.

900.

623.

650.

5344

41

0.83

192

286.

933

0.15

FA (B

l)72

2833

0530

0959

0000

9053

.090

54.0

1.13

0.50

1.29

0.50

445

10.

8411

444

2.6

440.

28FA

(Bl)

7228

3305

3009

5900

0090

54.0

9055

.00.

870.

330.

710.

4644

41

0.83

8253

1.5

380.

32FA

(Bl)

7228

3305

3009

5900

0090

55.0

9056

.00.

920.

390.

780.

4444

82

0.90

8548

1.8

420.

33FA

(Bl)

7228

3305

3009

5900

0090

56.0

9057

.01.

400.

420.

890.

5144

31

0.81

6436

1.7

300.

32FA

(Bl)

7228

3305

3009

5900

0090

57.0

9058

.00.

810.

360.

650.

3744

61

0.87

8046

1.8

440.

36FA

(Bl)

7228

3305

3009

5900

0090

58.0

9059

.00.

570.

280.

680.

3144

32

0.81

119

542.

249

0.29

FA (B

l)72

2833

0530

0959

0000

9059

.090

60.1

1.14

0.32

0.80

0.42

445

10.

8570

371.

928

0.29

FA (B

l)72

2833

0530

0959

0000

9060

.190

61.0

0.76

0.30

0.71

0.33

446

20.

8793

432.

239

0.30

FA (B

l)72

2833

0530

0959

0000

9061

.090

62.0

0.85

0.36

0.92

0.42

446

10.

8610

849

2.2

420.

28FA

(Bl)

7228

3305

3009

5900

0090

62.0

9062

.90.

550.

220.

440.

4144

22

0.79

8075

1.1

400.

33FA

(Bl)

7228

3305

3009

5900

0090

62.9

9063

.80.

700.

260.

470.

3444

62

0.86

6749

1.4

370.

36FA

(Bl)

7228

3305

3009

5900

0090

63.8

9064

.50.

860.

330.

780.

4244

32

0.82

9149

1.9

380.

30FA

(Bl)

7228

3305

3009

5900

0090

64.5

9065

.01.

190.

401.

130.

4944

11

0.78

9541

2.3

340.

26FA

(Bl)

7228

3305

3009

5900

0090

65.0

9065

.80.

900.

390.

720.

4744

41

0.83

8052

1.5

430.

35FA

(Bl)

7228

3305

3009

5900

0090

65.8

9067

.40.

570.

320.

490.

4343

83

0.72

8675

1.1

560.

40FA

(Bl)

7228

3305

3009

5900

0090

67.4

9068

.50.

770.

420.

670.

4145

01

0.94

8753

1.6

550.

39FA

(Bl)

7228

3305

3009

5900

0090

68.5

9069

.01.

560.

592.

120.

5144

21

0.79

136

334.

238

0.22

FA (B

l)72

2833

0530

0959

0000

9069

.090

70.0

0.81

0.47

0.84

0.42

441

20.

7810

452

2.0

580.

36FA

(Bl)

7228

3305

3009

5900

0090

70.0

9071

.70.

770.

400.

730.

4744

72

0.88

9561

1.6

520.

35FA

(Bl)

7228

3305

3009

5900

0090

71.7

9072

.00.

890.

430.

890.

5843

72

0.71

100

651.

548

0.33

FA (B

l)72

2833

0530

0959

0000

9121

.091

22.0

0.81

0.50

0.50

0.50

436

30.

6962

621.

062

0.50

FA (S

h)72

2833

0530

0959

0000

9121

.30.

850.

590.

960.

5544

43

0.84

113

651.

769

0.38

FA (S

h)

S3HI

OI

S2/S

3PI

NDI

C #

API N

umbe

rCo

re D

epth

(ft.)

S1S2

17

Tabl

e 1

conti

nued

SRA

Tmax

Tmax

Calc

.S1

/TO

CM

adis

onTo

pBa

seTO

C(°

C)Q

ualit

y%

Ro

*100

Subu

nit

7228

3305

3009

5900

0091

25.0

9126

.00.

680.

390.

790.

4243

63

0.70

116

621.

957

0.33

FA (S

h)72

2833

0530

0959

0000

9125

.50.

560.

280.

380.

3544

03

0.77

6863

1.1

500.

42FA

(Sh)

7228

3305

3009

5900

0091

35.8

0.92

0.33

1.17

0.40

444

10.

8412

743

2.9

360.

22FA

(Sh)

7228

3305

3009

5900

0091

36.0

9137

.00.

490.

180.

340.

4144

22

0.80

6984

0.8

370.

35FA

(Sh)

7228

3305

3009

5900

0091

36.3

1.02

0.37

1.74

0.50

440

10.

7617

149

3.5

360.

18FA

(Sh)

7228

3305

3009

5900

0091

64.7

2.38

2.06

2.19

0.70

435

30.

6892

293.

187

0.48

FA (u

n)72

2833

0530

0959

0000

9165

.091

66.0

0.78

0.32

0.36

0.51

438

30.

7346

650.

741

0.47

FA (u

n)72

2833

0530

0959

0000

9166

.00.

460.

190.

100.

5042

74

0.52

2210

90.

241

0.66

FA (u

n)72

2833

0530

0959

0000

9170

.091

71.0

0.62

0.21

0.16

0.47

435

40.

6726

760.

334

0.57

FA (u

n)72

2833

0530

0959

0000

9176

.091

77.0

0.81

0.43

0.45

0.44

436

40.

7056

541.

053

0.49

FA (u

n)72

2833

0530

0959

0000

9176

.51.

210.

580.

620.

6143

74

0.70

5150

1.0

480.

48FA

(un)

7228

3305

3009

5900

0091

78.0

9179

.00.

640.

300.

280.

4943

44

0.65

4477

0.6

470.

52FA

(un)

7228

3305

3009

5900

0091

80.0

9181

.00.

560.

260.

380.

3743

44

0.66

6866

1.0

460.

41FA

(un)

7228

3305

3009

5900

0091

83.0

9184

.00.

880.

270.

210.

4543

84

0.72

2451

0.5

310.

56FA

(un)

7228

3305

3009

5900

0091

83.6

4.14

2.05

5.12

0.90

441

10.

7712

422

5.7

500.

29FA

(un)

7228

3305

3009

5900

0093

30.4

0.66

0.24

0.34

0.77

441

30.

7852

117

0.4

360.

41FA

(un)

7228

3305

3009

5900

0093

32.5

9333

.50.

430.

120.

190.

3742

64

0.51

4486

0.5

280.

39FA

(un)

7228

3305

3009

5900

0093

33.0

0.35

0.15

0.28

0.36

423

40.

4680

103

0.8

430.

35FA

(un)

7228

3305

3009

5900

0093

70.0

9370

.50.

520.

250.

250.

4643

84

0.73

4888

0.5

480.

50FA

(un)

7228

3305

3009

5900

0094

15.0

9415

.30.

510.

390.

420.

4844

24

0.80

8294

0.9

760.

48FA

(un)

7228

3305

3009

5900

0094

18.0

9419

.00.

530.

310.

470.

4244

03

0.76

8979

1.1

580.

40FA

(un)

7228

3305

3009

5900

0094

19.1

1.29

0.59

1.26

0.89

436

30.

6998

691.

446

0.32

FA (u

n)72

2833

0530

0959

0000

9429

.40.

520.

280.

380.

3644

04

0.76

7369

1.1

540.

42FA

(un)

7228

3305

3009

5900

0094

44.0

9445

.00.

540.

230.

210.

5643

04

0.59

3910

40.

443

0.52

FA (u

n)72

2833

0530

0959

0000

9448

.094

49.0

0.60

0.45

0.44

0.57

436

40.

6973

950.

875

0.51

FA (u

n)72

2833

0530

0959

0000

9457

.094

58.0

0.76

0.44

0.53

0.42

439

40.

7470

551.

358

0.45

FA (u

n)72

2833

0530

0959

0000

9457

.30.

670.

380.

420.

4743

44

0.66

6370

0.9

570.

48FA

(un)

7228

3305

3009

5900

0094

60.0

0.23

0.13

0.09

0.35

474

41.

3739

152

0.3

570.

59FA

(un)

7228

3305

3009

5900

0094

61.0

9462

.00.

670.

480.

450.

5642

34

0.45

6784

0.8

720.

52FA

(un)

7228

3305

3009

5900

0094

61.6

1.07

0.65

0.71

0.70

423

40.

4666

651.

061

0.48

FA (u

n)72

2833

0530

0959

0000

9462

.01.

291.

040.

931.

0642

24

0.44

7282

0.9

810.

53FA

(un)

7228

3305

3009

5900

0094

78.5

9479

.50.

600.

810.

380.

4143

74

0.71

6368

0.9

135

0.68

FA (u

n)

S3HI

OI

S2/S

3PI

NDI

C #

API N

umbe

rCo

re D

epth

(ft.)

S1S2

18

Tabl

e 1

conti

nued

SRA

Tmax

Tmax

Calc

.S1

/TO

CM

adis

onTo

pBa

seTO

C(°

C)Q

ualit

y%

Ro

*100

Subu

nit

7228

3305

3009

5900

0094

79.3

0.70

0.36

0.42

0.47

437

40.

7060

670.

951

0.46

FA (u

n)72

2833

0530

0959

0000

9484

.01.

070.

490.

670.

5244

13

0.77

6349

1.3

460.

42FA

(un)

*Tm

ax Q

ualit

y: 1

= e

xcel

lent

, 2 =

goo

d, 3

= q

uest

iona

ble,

4 =

que

stio

nabl

e/un

relia

ble,

5 =

unr

elia

ble

*Mad

ison

subu

nits

:R=

Ratc

liffe

Inte

rval

;FA

=Fr

obish

er-A

lida;

Bl=

Blue

llsu

bint

erva

l;M

i=M

idal

esu

bint

erva

l;Sh

=Sh

erw

ood

subi

nter

val;

Be=

Bere

ntse

n su

bint

erva

l; Ri

= R

ival

subi

nter

val;

un =

und

iffer

entia

ted

*Abb

revi

atio

ns:C

alc.

=Ca

lcul

ated

;ft.

=fe

et;H

I=Hy

drog

enIn

dex

(mg

HC/g

TOC)

;OI=

Oxy

gen

Inde

x(m

gCO

2/g

TOC)

;PI=

Prod

uctio

nIn

dex;

SRA

=So

urce

Roc

k An

alyz

er; T

OC

= To

tal O

rgan

ic C

arbo

n (b

y w

eigh

t per

cent

);

S3HI

OI

S2/S

3PI

NDI

C #

API N

umbe

rCo

re D

epth

(ft.)

S1S2

20

10

00

30

Gamma Ray

Caliper

0.3 -0.1

Density Porosity0.3 -0.1

Neutron Porosity0.2 2000

Resistivity

9,40

09,

425

0 50

6 16

#671833-053-00824-00-00

Pennzoil Co. and DepcoFederal #22-32K.B. = 2,196 ft

70

60

50

40

80

9,45

09,

475

9,47

5

A

A

L

L

L

LL

LL

LL

h

h

h

WR

?

?

?

Lam

inae

Geo

met

ry

Colo

r

Mudst.

Wackest.

Packst.

Grainst.

FossilsSed.Str.

40

30

20

Gamma Ray

Core GR

0.3 -0.1Density Porosity

0.3 -0.1Neutron Porosity

0.2 2000Resistivity

9,32

59,

350

9,30

0

0 100

100 300

#674733-053-00827-00-00

Shell Oil Co.Mitten #12-10K.B. = 2,270 ft

90

80

70

60

50

9,37

59,

400

core + 2 �. = ~logcore - 3 �. = ~log

00

L

LL

LL

LL

LL

LL

h

h

h

Lam

inae

Geo

met

ry

Colo

r

Mudst.

Wackest.

Packst.

Grainst.

FossilsSed.Str.

9,27

5

core - 12 �. = ~log

60

50

40

9,45

0

30

20

10

00

90

9,40

09,

425

80

70

60

50

40

9,35

09,

375

TS

TS

TS

TS

TS

TS

TS

TS

TS

TS

TS

TS

TS

TS

TS

TS

TS

TS

TS

TS

TS

TS

TS

L

L

L

L

WR

A

A

Mid

ale

subi

nter

val

Riv

al su

bint

erva

l

Fro

bis

her

-Ali

da

In

terv

al

Rat

cliff

e In

terv

alB

luel

l sub

inte

rval

Sher

woo

d su

bint

erva

l

Lam

inae

Geo

met

ry

Colo

r

Mudst.

Wackest.

Packst.

Grainst.

FossilsSed.Str.

Caliper0.3 -0.1

Density Porosity0.3 -0.1

Neutron Porosity

0.2 2000Resistivity

Core GR

6 16

Gamma Ray0 100

100 450

#641433-053-00739-00-00

Shell Oil Co.USA 21-8

K.B. = 2,334 ft

core + 4 �. = ~log20

10

00

9,32

59,

300

9,35

0

80

70

60

50

90

9,27

59,

250

30

20

40

9,22

5

L

L

L

TS

TS

TS

TS

TS

TS

Gamma Ray

Caliper

0.3 -0.1Density Porosity

0.3 -0.1Neutron Porosity

0.2 2000Resistivity

0 75

6 16

#683933-053-00855-00-00

Shell Oil Co.USA #43-11

K.B. = 2,065 ft

Lam

inae

Geo

met

ry

Colo

r

Mudst.

Wackest.

Packst.

Grainst.

FossilsSed.Str.

010

20

0

0

0

10

200010

10

101020

0

10

202030

30

2020

00

20

0

0

20

20

20

0 4Miles

c

b

a

d

A’

A

#6747

#6839

#7228

#6414

#6718

- styolitic

- contorted lam./bedding

- lithoclast/s

- nodule/s

- pyrite

- lag

- wave ripple laminae

- microbiolites

Sedimentary/Core Symbols:

- breccia

- rip up clasts

- Ooids

- Oncolite

- peloids

L

- scouring

- burrows

S

- Brachiopod

- Shells

- Crinoid/s

- Gastropod/s

- Ostracod/s

- Bryzoan

- Solitary (rugose) Coral

- Tabulate Coral

- Cross-bedding

- anhydrite nodule/sA

- horizontal burrowsh

L

WR

- Fossil bed/laminae

- LimestoneCore Lithology:

- Dolomi�c Limestone

- Argillaceous Limestone

- Dolostone

- Calcareous Dolostone

- Anhydrite

- Dolomi�c anhydrite

- Birdseye structure

- Mud cracks

North Dakota Geological Survey Geological Investigations No. 255 - Plate I

Edward C. Murphy - State GeologistLynn D. Helms, Director Dept. of Mineral Resources

Explanation: Stratigraphic cross-section (above) of the Sherwood, Bluell, Rival, and Midale subintervals of the Mississippian Madison Group with wireline logs and core description illustrations. Isopach map (left) of the gross thickness of the high TOC lower Bluell facies. Contours are in 5-foot intervals and the brown contour fill is in 10-foot intervals. Small light grey circles are the wireline log well control and the large black circles are the core control wells. See Figure 1 for study area location. Red lines depict documented struc-tures: a = Mondak monocline, b = Beaver Creek anticline, c = Red Wing Creek structure, d = Little Knife anticline

Stratigraphic Cross-SectionPlate I: