investigation of particulate impaction i/i ...rd-r145 784 an investigation of particulate impaction...

84
RD-R145 784 AN INVESTIGATION OF PARTICULATE IMPACTION ON SPHERICAL i/i AND CYLINDRICRL TAiRGETS(U) DEFENCE RESEARCH ESTABLISHMENT SUFFIELD RALSTON (ALBERTA) UNLSSFE J AL ARL UG 84 DRES-MEMO-1102 F/G 15/2 N !77mmhmhh mmmhmhmhhmhlm Ehhmmhhhhmhmhum mhhhhohhEEmhEE mohhhhhhmohhlm mommomosomm7

Upload: others

Post on 07-May-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

RD-R145 784 AN INVESTIGATION OF PARTICULATE IMPACTION ON SPHERICAL i/iAND CYLINDRICRL TAiRGETS(U) DEFENCE RESEARCHESTABLISHMENT SUFFIELD RALSTON (ALBERTA)

UNLSSFE J AL ARL UG 84 DRES-MEMO-1102 F/G 15/2 N

!77mmhmhhmmmhmhmhhmhlmEhhmmhhhhmhmhummhhhhohhEEmhEEmohhhhhhmohhlm

mommomosomm7

liii Ifq IA 328 M*2

11111.5I 2

MICROCOPY RESOLUTION TEST CHARTNATION4AL BUREAU Of STANDARDS- 1963-A

National Denso UNCLASSIFIEDDefence nationale

@O@*O0O @000000000000000000 00

.SUFFIELD MEMORANDUM=

00 NO. 1102

Ln

AN INVESTIGATION OF PARTICULATE IMPACTION

I ON SPHERICAL AND CYLINDRICAL TARGETS (U)

by

Q..

Jeffery L. Hall and Stanley B. Mellsen

LJ

L*L~ PCN No. 13E10

SEP 18 1984ILAugust 1984E

I i 'DIINCI RHAICa IIALIHDITlMqLD : RALSTON: ALNERA

I P I..tjqI

Canad6 -this oI I pr ed 0Canad 84a09 . 081 09 17 017

UNCLASSIFIED

DEFENCE RESEARCH ESTABLISHMENT SUFFIELD

RALSTON ALBERTA

SUFFIELD MEMORANDUM NO. 1102

AN INVESTIGATION OF PARTICULATE IMPACTION

ON SPHERICAL AND CYLINDRICAL TARGETS (U)

by

Jeffery L. Hall and Stanley B. Mellsen

PCN 13E10

_,J0VARNJI

l~ o ~ ~ h rand .- m uu)~

UNCLASSIFIED

-- o

UNCLASSIFIED

DEFENCE RESEARCH ESTABLISHMENT SUFFIELD

RALSTON ALBERTA

S

SUFFIELD MEMORANDUM NO. 1102

0

AN INVESTIGATION OF PARTICULATE IMPACTION ON

SPHERICAL AND CYLINDRICAL TARGETS (U)

by

Jeffrey L. Hall and Stanley B. Mellsen

ABSTRACT -

his project was a theoretical investigation of particulate

impaction on spheres and cylinders. The motion model developed was

implemented on a computer and yielded results focused on two main goals: pfirst, the net effect of gravity on particulate impaction was determined;

and second, a man simulation was conducted. This simulation calculated to

a first approximation the amount of chemical that would impact on a man

subjected to a chemical attack -

UNCLASSIFIED• .•.,

UNCLASSIF!IED

TABLE OF CONTENTS

Page No.

Abstract

List of Symbols

INTRODUCTION ............................................. 1

BACKGROUND THEORY ............................................... 2

COMPUTER PROGRAMS........................................ .14

RESULTS........................................................ 17

DISCUSSION................................................ 19

CONCLUSIONS ............................................. 26

REFERENCES ..................................................... 27

TABLES

FIGURES

APPENDIX A: LISTING OF PROGRAM AEROSOL-B

APPENDIX B: LISTING OF PROGRAM AEROSOL-6

cc P,:s on For

rr

3A ',, CodeSa rnd/or

UNCLASSIFIlED

UNCLASSIFIED

LIST OF SYMBOLS

b - constant

CD - drag coefficient

F - Froude number

Fd - drag force

F - gravity force

g - acceleration of gravity

g9 - non-dimensional gravity

G - ground fraction

K - inertia parameter

L - target radius

m - particle mass

r - distance from the origin

rp - particle radius

Re - local Reynold's number

Re0 - free stream Reynold's number (based on particle size)

t - time

u - local fluid velocity

u- non-dimensionalized local fluid velocity

U - free stream velocity (synonymous with windspeed)

v - particle velocity

vs - non-dimensionalized particle velocity

v - terminal velocityo - rotation angle of frame 1 re frame 0

y - rotation angle of frame 2 re frame 0

a - position angle in frame 0

Pa - air density

p p - particle density

P- air viscosity

UNCLASSIFIED

UNCLASSIFIED

DEFENCE RESEARCH ESTABLISHMENT SUFFIELD

RALSTON ALBERTA

SUFFIELD MEMORANDUM NO. 1102

AN INVESTIGATION OF PARTICULATE IMPACTION ON

SPHERICAL AND CYLINDRICAL TARGETS (U)

by

Jeffrey L. Hall and Stanley B. Mellsen

INTRODUCTION

1. In assessing the hazard to troops from attacks with chemical

agents in aerosol form, it is important to be able to predict the motion of

the chemical agents as they disperse through the atmosphere and impact onvarious target objects (Figure 1). This project was conducted to

investigate the impaction aspect of the overall motion problem specifically

to provide an answer to the question, "How much chemical will hit a

target.

UNCLASSIFIED

UNCLASSIFIED /2

2. Some theoretical studies have been performed in this area of

aerosol impaction1 . This project sought to upgrade the theoretical models

used through the inclusion of the gravity force into the problem; in fact,

the secondary purpose of the project was to quantify the error incurred

when gravitational effects are ignored. The primary purpose of the project

was to develop a model which would calculate the amount of chemical that a

man received in relation to how much the ground received.

3. The complex nature of this fluid mechanical problem required

a number of simplifying approximations in order to be tractable.

Consequently, the results obtained are first approximations only,

calculated on the basis of a theoretical model which required computer

programs for implementation. The project results are seen as a

foundation upon which to conduct experimental and/or improved theoretical

research.

4. The project evolved significantly durings its lifetime. The

initial phases were very much a learning phase during which the model was

continuously tested and changed. Spherical targets were used for these

initial tests, tests which also provided much data on the effect of gravity

on the problem. This initial phase ended with the study of cylindrical

targets during which the last gravity effect calculations were performed.The final phase of the project dealt with the man-target simulation.

BACKGROUND THEORY

Fundamentals of Particulate Motion

5. The derivation of the aerosol particle motion equation follows

directly from Newton's Second Law2 . There are two forces present, namely

gravity and aerodynamic drag:

UNCLASSIFIED

UNCLASSIFIED /3

F d CD% (1r2) ( P4U 112)[1

F =m 2]

The particles are assumed to be spherical because of their small size(42000 jo radius). The resulting equation of motion is therefore:

m;v =%(irrp2)( ipa [1 - 12) + nM. [3]

Noting that;

4M r p3P [4]

2r pPa [

Re =- - I

we can re-arrange equation [31 to produce:

3uCDRe(U - V)

- 16r p2 P [6

6. Equation [61 can be non-dimensionalized by using the free stream* velocity U and the characteristic target length L:

V, U-Iv [7]=LU-

2 ; [8 1*U = U'1u [9] -

t tUL-1 [101

L' = 2Uj [11]

UNCLASSIFIED

UNCLASSIF IED /4

If we define:

2P rpp

K [12]9 uL

U2 :F [13]

Lg

then equation [6] can be written in the following non-dimensional form:

CDRe(U'-v') 1V= +__ _ -1]..

24 K F

7. Clearly, the problem can be solved by either equation [6] or

equation [14]. Traditionally, these problems have been solved in non-

dimensional form resulting in graphs of collection efficiency vs. inertia

parameter for various Reynold's numbers (Collection efficiency is explained

in the next section). In this problem, however, the inclusion of gravity

adds another parameter, namely the Froude number. The graphical presenta-

tion of non-dimensional results now becomes quite complicated, and the

physical interpretation of such results becomes obscure. It was felt that

superior physical insight and applicability would result from analysis of

the restricted case of motion in air under representative experimental

situations. Equation [61 was therefore used in the model.

8. In reference frame 1 (Figure 2), equation [6] can be resolved

into the following scalar equations:

;x bCDRe (N " vx) [15]

y bCoRe (Uy vy) [16]

;z =bCDRe (Uz - v z) g [17]

UNCLASSIFIED

UNCLASS IF IED /5

where 3pb - [18]

16r 2 p

9. The drag coefficient for spheres is defined in terms of the

Reynold's number by the following equations 3:

For Re4, CDRe2

Re - 2.3363x10-4(CDRe2)+2.0154x10-6(CDRe2)3

24 - 6.9105xi0-9(CDRe2)4 [19]

For 34Re410 4, loglo Re = 1.29536 + 9.86 x 10- 1(logoCDRe2)- 4.6677x 10-2 (logl 0 CDRe 2) + 1.1235 x 10- 3 (log1 o CDRe 2)3 [20]

10. Two assumptions were made regarding the initial condition of the

aerosol particle. First, it was assumed that the particle was moving

horizontally at the free stream velocity and that a starting position

upstream would experience negligible flow perturbations caused by the

target. Second, the particle was defined to be falling at its terminal

velocity, because small aerosol particles quickly attain that speed.

Consequently, the particle initially possessed a velocity given by its

terminal velocity (vZ ) and the free stream velocity, with a direction

defined by the angle y eo the x-axis:

0 [21]y =tan- 1 :

The terminal velocity was calculated by setting ,-=0 and U, 0 in

equation [17], and solving for vo. The result was:

UNCLASSIFIED

• . .. ." ..

UNCLASSIFIED /6

.8r pg 1/2 [

VZ p [221

11. Therefore, simultaneous solution of [5], [221 and one of [19] or[20] yielded the terminal velocity.

12. The flow equations will be derived in paragraphs 15-24 for thevarious target geometries. All such equations were inviscid fluid

equations. These were deemed applicable to the problem because real fluidflow is virtually ideal on the leading face of an object, which was the

only face of interest in this particle impaction problem. It was also

assumed that the chemical particles themselves did not perturb the fluid

flow.

Collection Efficiency

13. The concept of a collection efficiency is the primary means of

quantifying the amount of chemical which impacts on a target (Figure 3).

The collection efficiency is a number ranging from zero to one, and is

defined by equation [23]: .

Collection = Cross-sectional area of the envelope [23]

Efficiency Cross-sectional area of the targetThe envelope is that region on the starting plane in which initial particle

placement results in a trajectory which hits the target. Clearly, the

absence of the fluid medium would result in a collection efficiency of one,

because the particles would travel in straight lines, and massless

particles would have a collection efficiency of zero, because the particles

would follow fluid streamlines around the target without impaction. .

14. The task at hand is to calculate the collection efficiency for

any given test situation. This is done using a half-interval method to

UNCLASSIFIED

UNCLASSIFIED /7

find the boundaries of the envelope. A series of particles are considered, 5

each of which begins on the starting plane with the same initial velocity

(Figure 4). Two initial particle positions are required to start the

procedure: an 'inside' one that results in target impaction (P2) and an'outside' one that results in target miss (Pl). A third position (P3) iscalculated such that it lies halfway between the first two points; this

particle is then tracked to the target. If it misses, the (P3) becomes the

new 'outside' position and a new starting position is chosen at (P4). If

it hits, then (P3) becomes the new 'inside' position, and a new starting •

position is chosen at (P5). The distance between the inside and outsidepositions is successively reduced by half, and it asymptotes to the

envelope boundary. In this manner, the envelope boundary is defined,allowing its area to be calculated for use in equation [23]. Note that the

boundary is generally a two-dimensional curve on the starting plane whichrequires a large number of boundary points before an accurate estimation of

its shape and size can be made.

Target Geometry For Spheres

-.. . .... --

15. The fluid velocity field around a sphere is given in terms ofpolar coordinates 4 : o

Ur =U cos e [24] 0

U = -U sin 0 L + 1/2 [251

These equations are valid for any plane passing through the origin of the

sphere and parallel to the x-axis of Frame 1. Let us designate such aplane as Frame 0 with x, n, i axes; Frame 1 is related to Frame 0 by the

UNCLASSIFIED

UNCLASSIFIED /8

rotation angle a about the x-axis (Figure 5). In terms of Frame 0 0

cartesian coordinates, equations [24] and [25] become:

Ux = Ucos2 e + Usin 2 I + 112 _ [26]

-3U /L\Un 2 crCos o sin e [27] 0

U -0 [28]

Equation [28] is obtained by inspection. These three equations can be used

to specify the velocity field at any point in space in Frame 1 via a

suitable rotation of Frame 0 to align it with the position of interest. In

matrix notation, the required velocity components are generated as PP

follows:

U 1100 UxU = 0 cosa - sino Un [29]

60 sin cosa U A.

Upon evaluation we get:

Ux = U cos 2 0 + U sin 2e + [30]

-3U /L 3 L _

UY= 2()3 cos 0 sin e cos 8 [31]

UNCLASSIFIED

• " - 2 . i . -. . .. . '-0

. . .. . . . . . . . .

S

UNCLASSIFIED /9

-3U(L,\3 Uz= cos o sine sin B [32]

By definition, we obtain these auxiliary equations:

r = (x2 + y2 + z2)1/2 [33]

rZ \

ycos 8 + z sinae tan- [35]

xp

16. Due to the wide range of initial particle velocities angles y, it

was decided that calculations would be simplified if done in a reference

frame aligned at y to Frame 1. Consequently, Frame 2 was defined for each

particle test such that the starting plane was perpendicular to the initial ji

particle direction (Figure 6). All transformed into this frame by means of

the following rotation matrix:

C2= cos y 0 -sin y S

0 1 0 [36]sin y 0 cos y

17. The collection envelope for this sphere geometry was necessarily S

two-dimensional. Essentially, the half-interval method was used to

calculate z' boundary values for a series of y coordinates; the y'boundaries themselves were also calculated by means of the half-interval

method. The set of boundary points (y', z') were then connected by cubic

splines and then the enclosed envelope area calculated.

UNCLASSIFIED

..

UNCLASSIFIED /10

Target Geometry For Horizontal Cylinders

18. In reference Frame 1 (previously defined for spherical geometry)

the fluid velocity field is given by the following equations5 :

1 L2(X 2 - Z 2) ' ,'Ux = U [37] "

r4

Uy =0 [38]

-2UxzL2

uz =[39]r4

where r = (x2 + z2)1/2 [40]

It is readily deduced from these equations that the particle motion will be

confined to the x-z plane provided that the initial particle velocity in

the y direction is zero. That velocity was set to zero in accordance with

the previously stated initial conditions; therefore, this problem was two-

dimensional.

19. As with the spherical geometry, Frame 2 was defined and used as

the main frame in which all motion and envelope calculations were made.

Due to the planar motion, the envelope was only one-dimensional, requiring

only an 'upper' and a 'lower' boundary to be calculated (Figure 7). This

case is consequently very much simpler than that of the spheres.

Target Geometry For Vertical Cylinders

20. The theory here is essentially the same as in the horizontal

UNCLASSIFIED

UNCLASSIFIED /11

cylinder case. The only change involves the flow field which was changed

to the x-y plane from the x-z plane in Frame 1 (Figure 8). The flow

equations are:

mU"L2 (X2 - 2)

-u u - • [40]

-2UxyL2

Uy= - [41]y r4

Uz :0 [42]

where r = (x2 + y2)1/2 [43]

21. The combination of an infinite vertical cylinder with the

required five target radii starting position from the cylinder, removed the

usefulness of Reference Frame 2. Therefore, Frame 1 was chosen as the

frame for motion and envelope calculations. Due to the motion symmetry

about the x-axis and the z-axis, only a y-boundary needed to be calculated

for the envelope; clearly, any z-coordinate starting position will result --

in a similar trajectory that differs only by a fixed z-direction

displacement.

Target Geometry For Man Simulation

22. This simulation was rather crude, and it comprised many

simplifying approximations (Figure 9). First, a vertical cylinder of

approximate man dimensions was used since the determination of the flow

field around a man was much too complicated a proposition for this project.

Second, the flow field of an infinitely long cylinder was used because a

calculation of end flow conditions around a finite cylinder was deemed too

complicated for a first approximation model like this one. Third, theparticles which impacted on the top of the cylinder were ignored.

UNCLASS IF IED

UNCLASSIF IED /12

23. A major component of this model was the inclusion of a wind

gradient to mimic the Earth's own boundary layer. Essentially, the

horizontal windspeed is a function of height above the ground. The

equation used was:

UI(Z) = U1 (zl' [44]

The base point (Z, UI) scales the curve; for this application, the basis

used was:

Z, = 5.0 m [45]

U' = 1.0, 1.5, 2.5, 5.0 and 7.5 m/s [46]

Therefore, five tests were conducted at five different reference

windspeeds.

24. The flow equations for vertical cylinders, equations [40] to [42]

were modified for this simulation by replacing the factor U with U(Z) as

defined in equation [44]. The resulting flow equations were: --

1 / 7 L2(x2 y2jUx U 5 )' r1 4 [47]

UY 1 , .2L2 [48]

Uz =0 [49]

UNCLASSIFIED

i..

UNCLASSIFIED /13

25. As for the vertical cylinders, Reference Frame 1 is used for all

motion and envelope calculations. The presence of the wind gradient

destroys the problem symmetry in the z-direction; therefore, the envelope

on the starting plane was necessarily two-dimensional. Its calculation was

quite similar to that of the spherical targets. Specifically, the bounds

in the z-direction were found by the half interval method, then the y-

bounds were calculated for eleven equally spaced z-coordinates over this

interval. The resulting boundary points (z,y) were then integrated to

yield the enclosed envelope area.

26. In order to relate the chemical concentration on a man to that

which falls on the ground, an extra number was introduced, termed the

ground fraction (G). It was defined by equation [50]:

Man Concentration = Ground Concentration x G [50]

(This man concentration is based on frontal cross-sectional area, not

surface area.)

Calculation of G combined the factors of collection efficiency with the

relative areas of impact regarding the target and the corresponding ground;

the equation was:

Collection Efficiency

tan

In this equation, a is a representative trajectory angle of all particles

in the envelope; note that the trajectories are not straight lines because

of the wind gradient. The angle a is that between the horizontal and the

line connecting the top of the 'man' to the top of the envelope.

UNCLASSIFIED

UNCLASSIFIED /14

Computer Programs

27. During the course of the project, several computer programs were

written. Four collection efficiency programs were written; one for each

geometrical case. Two programs were written to tabulate and plot chemical

particle trajectories for the sphere and horizontal cylinder cases; these

programs were used primarily for verification of the motion model. Final-

ly, a number of utility programs were written to tabulate and graph

results. All programs were written in the Honeywell FORTRAN-77 language

and executed on the Honeywell CP-6 computer at DRES.

28. The collection efficiency and trajectory plotting programs shared

many features, most importantly, the initial condition and motion

calculations. This redundancy, coupled with space limitations, has limited

the program listing in this report to just two representative programs:

AEROSOL-8 which performed the man simulation (Appendix A), and AEROSOL-6,

which performed the trajectory plotting for horizontal cylinders (Appendix

B). The only real difference between these programs and their sister

programs was in geometry; different target geometries required different

envelope calculations and sometimes different reference frames, as has been

illustrated in the previous section. Implementation of the background

theory on the computer was quite similar for the different geometries, and

will now be explained in detail for programs AEROSOL-8 and AEROSOL-6.

29. AEROSOL-8 was designed to accommodate five sets of test

conditions (the '700 loop', commencing line 50). The test conditions,

namely windspeed, target radius and chemical particle density, were

obtained from the data file AEROINFO. The program then proceeded to

calculate collection efficiencies for a range of particle sizes which were

stored in the array SIZE(1O). This loop (the '650 loop', commencing line

63) comprised four main sections: calculation of initial conditions (lines

UNCLASSIFIED

UNCLASSIFIED /15

68-83), calculation of the z-direction envelope boundaries (lines 86-138),

calculation of the y-direction envelope boundaries (lines 141-161) and

calculation of resulting collection efficiency (lines 164-172). The

implementation of the background theory in these sections was relatively

straightforward except for the following points. First, in order to 0

implement the half-interval method, a starting position which results in

particle impact must be found; in the z-direction, it was searched for

(the '200 loop', commencing line 95), but in the y-direction it was assumed

that y=O resulted in impact since it lay on the target centerline and would

experience no sideways drag force. Secondly, preliminary calculations

showed that the y-bounds increased monotonically with increasing z-

coordinate, therefore the previous y-boundary value (variable YMEM, line

143) was used as the 'inside' position for the ensuing half-interval B

calculation. Finally, note that the problem was symmetrical about the y-

axis, requiring that only positive y-boundaries be calculated for the

envelope.

30. The TRAJECTORY subroutine comprised all of the motion calcula-

tions from initial conditions to a determination of particle impact or

miss. Upon receipt of the initial conditions, the subroutine sets up an

iterative loop (the '10 loop', commencing on line 244) to 'move' the . -

particle towards the target. The iteration involved five main steps:

calculation of local flow velocity (lines 248-252), calculation of

Reynold's number and Drag Coefficient (lines 254-279), solution of the

differential equations of motion over a predetermined time interval (lines

284-291), testing for impact or miss (lines 291-297) and adjustment of the

differential equation step-size if the iteration is to continue (lines 303-

305). Note that the step-size is governed by the choice of the variable

DT, not the IMSL routine OVERK, because the positional dependence of the A-

flow velocity requires frequent updating. DVERK could not accommodate non-

constant coefficients, and in practice performed only one step per call due

UNCLASSIFIED

Se

UNCLASSIFIED /16

to the choice of DT which determined the end condition TEND. This alsomeant that the OVERK accuracy parameter TOL was of no practical importance;

its assigned value of 0.01 was arbitrary.

31. The remaining two program subroutines require no detailed

explanation above the internal documentation notes. Note that a partial

output is included with the program listing in Appendix A.

32. AEROSOL-6 was designed to plot particle 'streamlines' near a

horizontal cylindrical target. It was restricted to one size of particle,

which can be arbitrarily set, and one set of test conditions. The

calculation of initial conditions (lines 64-84) was identical to that ofAEROSOL-8, with the exception of the ability to perform in a no gravity

environment; hence, this program could recognize and plot streamlines for ahypothetical no gravity situation. The motion analysis section (the '60

loop', commencing on line 105) was the same as that of AEROSOL-8.

33. The one aspect of AEROSOL-6 that differs from AEROSOL-8 was the

trajectory plotting. To fully understand the details of this plotting, one

must study the CALCOMP Electromechanical Plotters User's Manual (From

California Computer Products, Inc.). As far as this project was concerned,

CALCOMP provided a list of subroutines which could be called upon to drawgraphs; separate subroutines could draw axes, plot lines, print titles and

draw other graph elements. In AEROSOL-6, the arrays XVAL(500) andZVAL(500) were used to store the x and z coordinates of each successive

particle location. This data was then sent to the CALCOMP System and

plotted (lines 211-241). Examples of these trajectory plots as given in

Figures 10 and 11, and a sample output is included in Appendix B with theprogram listing.

UNCLASSIFIED

UNCLASSIFIED /17

RESULTS

34. The computer generated collection efficiency results for all four

geometrical cases are listed in Tables l-VIII. Figures 10 and 11 show

trajectory pictures generated by AEROSOL-6. Figures 12-15 show

representative and comparative graphs based on the data contained in Tables

I-VIII. Although a detailed analysis of these results will be conducted in

the next section, the acquisition and content of these results require some

explanations. Note that all results are in W4S units unless otherwise

stated.

35. Sphere runs S1 to SlO, and horizontal cylinder results C1 to C10

were all performed under gravity and no gravity conditions to calculate the

effect of gravity on the problem. These results are listed side by side in

Tables I, II, IV and V. At the bottom of each double column are two sets

of numbers labelled 'maximum positive change', and 'maximum negative

change'. These are simply the greatest divergence values between the two

sets of data, recorded as either a positive or a negative divergence

relative to the gravity values. The numbers in brackets are the particle

sizes corresponding to those divergences.

36. Because spheres were the first geometrical case to be studied, a

few extra runs were conducted in order to evaluate the validity and the

accuracy of the motion model. The accuracy test, run S11, used half the

step-size as run S2 in order to check the numerical accuracy of the method.

In actuality, several accuracy checks were conducted, resulting in many

step-size modifications until the final accuracy level was achieved. The

similarity test, runs S12 and S13, was conducted in an attempt to validate

the motion model. According to the principles of fluid mechanics, tests

with the same set of non-dimensional numbers must yield identical results.

Here, there are three non-dimensional numbers which describe the problem:

UNCLASSIFIED

UNCLASSIF IED /18

CD, Reo, F. These were kept constant for runs S2, S12, and S13, but the

constitutive parameters (U, L, F, P, g) were varied to learn whether or not

the results would change. A change in the results would indicate that the

motion model was flawed.

37. The computer time required for solution of test runs varied

considerably with the problem geometry. The one-dimensional nature of the

horizontal and vertical cylinder envelopes resulted in very little computer -

execution time, typically ten minutes or less per test. (By way of

clarification, a 'test' refers to the calculation of collection

efficiencies for all ten particle sizes under a given set of windspeed,

target size and particle density values. Each column in Tables I-VIIIk represents one test.) The two-dimensional envelopes for the sphere cases

typically required one and a half hours per test. The man simulation was

somewhat peculiar. Because the particles travelled almost horizontally in

test M1, it required only twenty minutes; but the more vertical

trajectories of test M4 and M5 resulted in much longer trajectories (note

that the horizontal distance travelled remained constant so as to minimize

the cylinder flow perturbation at start) and execution times of up to six

hours per test. Actually, the collection efficiencies for the 2000 on

particle were not calculated for tests M4 and M5, and the 1000 pm particle

collection efficiency was not calculated for MS. The reason was that hours

of execution time would have been required for each particle, a cost which

was not thought to be worthwhile. The absence of these three values is

indicated in Tables VII and VIII by a negative value.

38. Finally, note that the graphs plotted in Figures 12-15 were done

using small plotting programs written during the project. These programs

are not listed in this report.

UNCLASS IF IED

..

~ ~ ~~~~~~~~~~~~~ -. -''-" -. -' - -. -" -, -.. -. - -... . .... , . . -,. -

o

UNCLASSIFIED /19

DISCUSSION

39. The computed similarity and accuracy test results (Table III)

verified the motion model and provided an indication of its accuracy. The

accuracy test clearly showed that numerical accuracy improved with

increasing particle size. This was because larger particles were less

affected by drag forces, and it was the drag force which exhibited non-

linear behaviour with position, making it the most difficult aspect to

numerically approximate. This also accounted for the observation that all

errors were positive, because the total influence of the drag force (and

hence the greatest particle deflection) will only be attained in the limit

as the number of steps approaches infinity. Hence, the drag force was

underestimated by this model. Since the overall collection efficiency was Apo.

the chief result sought, the relative error was of less importance here;

that is to say, the large relative error of the smallest particles was made

insignificant by the very small collection efficiencies involved. Based on

the absolute errors tabulated, the maximum error present in the

calculations was on the order of + 0.003 for the collection efficiency (+

0.3% for the values in Tables I-VII). It should be noted that the computer

model worked to four significant digits in distance values (0.1 mm or 100

pm). Since the targets were generally 0.1 m in radius, 0.1 mm represents .

an accuracy to 0.1%.

40. The results of the similarity test were within numerical error

for all three runs, provided that one qualification to the collection

efficiency error value of + 0.003 be accepted; specifically, that the

absolute collection error was a function of the target size in addition to

step-size. It seems plausible that the relative magnitude of the step size

to the target size would influence numerical accuracy, since an increase in

the target size would attenuate the rate of change of the drag force over

distance, allowing a greater accuracy for the same step size. As proof,

UNCLASSIFIED

UNCLASSIFIED /20

note that the S12 and S13 results are within .003 of each other, with the

S13 values uniformly lower; this suggests that its larger target radius

(L=0.15) improved numerical accuracy, since the step sizes were equal.

Conversely, the small target size of test S12 seemed to have degraded

numerical accuracy; the S12 values were up to .008 higher than the S2

values. In summary, the results of tests S2, S12 and S13 were deemed

sufficiently close as to be judged the same to within numerical error.

41. Figures 10 and 11 qualitatively demonstrate many of the aspects

of this motion problem. The smaller particle (Figure 10) showed a mostly

horizontal trajectory which indicated low terminal velocity. Close to the

cylinder, all trajectories were substantially deflected to the extent that

I. only one particle impacted on the cylinder. This was an indication that

the collection efficiency would be low for this small (50 sin) particle.

Figure 11 demonstrated the aspects of large particle motion. The trajec-

tory was much steeper due to a higher terminal velocity. There was almost

no particle deflection; consequently, one would expect a high collection

efficiency for this large (250 pm) particle. Reference to run C4 which hadthe same test conditions as in Figures 10 and 11, yielded the expected

magnitude of collection efficiencies: a low 14.11% for 50 pm, and a high

93.70% for 250 Pm. The qualitative model verification by these and many

other trajectory pictures supported the similarity tests and led us to

conclude that the motion model was valid.

42. The collection efficiency test results for spheres and cylinders

yielded many noteworthy features, most of which will be discussed in the

next few pages. We will start with the effect of gravity on the motion

results.

43. All of the sphere and horizontal cylinder tests (Si - SlO and C1

-C1O) produced results similar to that shown in Figure 12. The sigmoidal

UNCLASSIFIED

o

UNCLASSIFIED /21

shape of the curve agreed with the previous theoretical work. 7 The most S

notable feature of the double curve plot in Figure 12 was the crossing of

the two curves between 100 im and 250 tim particle sizes; this was thoughtto be due to the following reasons. For larger particles, gravity caused

the particles to fall with a terminal velocity close to or greater than the

horizontal free stream velocity. Hence, the particle's inertia was

significantly greater, rendering the particle much less susceptible to

deflection by the diverging fluid streamlines around the target. This

resulted in a collection efficiency with gravity, as evidenced by the .

larger particles in Figure 12.

44. The gravity-decrease effect on the smaller particles was much .

more difficult to explain. First, the terminal velocity was low, virtually

insignificant compared to the free stream velocity; therefore, the

particle's inertia was not noticeably higher. This allowed a second factor

to make a discernible impact on the motion; this factor was a motion

asymmetry around the target due to gravitational effects. The envelope

results for test C3 (Table 9) illustrate this asymmetry. It can be seen

that gravitational effects decrease the upper bound more than they increase

the lower bound for particles of 50 - 100 tim, which was the range of the

gravity decrease effect in Figure 12. The explanation of this asymmetry

was as follows. Near the upper boundary, the fluid streamlines are

deflected upwards by the target, in effect flowing crossways to the

particle motion vector, thereby increasing the local Reynold's numbers and

hence the drag force, resulting in a smaller boundary. At the lower .

boundary, however, the fluid streamlines are deflected in the direction of

the particle motion vector (that is, diagonally downwards) thereby reducing

the local Reynold's number and the drag force, resulting in a larger

boundary. The non-linear nature of the problem was such that the former

effect was greater than the latter effect, resulting in lower collection

efficiencies for particles in this motion regime when gravity was included.

UNCLASSIFIED

UNCLASSIFIED /22

45. Generally, gravitational effects altered collection efficiencies

in these tests by less than ±3% (Tables I, II, IV, V). The exceptions were

tests involving low windspeeds, speeds of 1.5 m/s or less. The greatest

difference was found in test S5; there, gravity added 21.2% to the

collection efficiency of 100 wm particles. Note that the crossover point

between the gravity and no gravity curves in this test was not present; all

differences were positive. Generally, the crossover point decreased in

particle size with decreased windspeed.

46. In summary, the gravity effect on collection efficiencies was

negligible except in cases of low windspeed. Other facets of the sphere

and cylinder studies will now be explored.

47. Figure 13 compared the collection efficiencies of the vertical

cylinder, the horizontal cylinder and cylinder no gravity cases, under the

same test conditions. (Note that in the absence of gravity, the vertical

and horizontal cylinders were geometrically equivalent.) The crossover of

the no gravity and horizontal cylinder curves occurred at 500 Am; the

gravity effect was minimal here as would be expected from the high

windspeed. The vertical cylinder curve was lower than either of the other

curves, except for a brief particle range around 100 pm. The reduced

collection efficiency was easily explained: as particles approached the

cylinder, they initially deccelerated, thereby increasing the trajectory

angle relative to the horizontal (the terminal velocity remains almost

constant) and provided more time for the diverging fluid streamlines to

deflect the particle. The exception at 100 om was probably a result of the

asymmetrical particle flow around the horizontal cylinder, postulated

before as the explanation for the gravity-decrease effect. The vertical

cylinder possessed symmetrical flow conditions and was therefore not

affected. However, the steepening trajectory effect with vertical

cylinders still lowered the collection efficiency relative to the no

gravity case; the reduction was just marginally less than that of the

horizontal cylinders.

UNCLASSIFIED

. . . . . .. .. .. .. mill d I3

UNCLASSIF IED /23

48. Figure 14 compared the two cylinder geometries to spheres, under

slightly different test conditions than in Figure 13. Spheres clearly

possessed higher collection efficiencies than cylinders for all particle

sizes. This can be understood in light of the fact that cylinders perturb

the flow more than spheres, in the sense that cylinders represented a

greater obstacle to the flow and thus cause faster fluid motion around the

periphery. This larger fluid velocity represented a greater drag force

which tended to deflect the particles away from the target; hence, the

collection efficiencies were lower. The relationship between the vertical

and horizontal cylinder curves was the same as in Figure 13 except that the

difference here was smaller because of the smaller target size. It should

be noted that Figures 13 and 14 were representative of all of the test

results listed in Tables I to VI, and were not just the product of those

specific test conditions.

49. Some general observations on the sphere and cylinder studies will

now be made. In all three cases, a decrease in windspeed resulted in

reduced collection efficiency for any given particle size. Evidently, the

reduced drag force was more than compensated for by the decrease in

particle inertia. Increased particle density appeared to merely shift

collection efficiency values from larger to smaller particles;

equivalently, plots of collection efficiency vs log (particle radius) were

translated left. The reason for this was that particle terminal velocity

and inertia were increased, rendering the particles more difficult to

deflect. A reduction in target size had the same effect as increased

particle density. The explanation in this case, however, was that larger

targets create more far-reaching flow perturbations, the net effect of

which was subject to incoming particles to greater deflecting drag forces;

conversely, smaller targets resulted in less deflecting drag forces.

50. The remaining discussion will focus on the man simulation

results. Although the ground fraction values are of most importance here,

UNCLASSIFIED

UNCLASSIFIED /24

a brief comparison of the collection efficiency results in Tables VI and

VII needs to be done. The only difference between the two tests was that

the 'M' tests (Table VII) incorporated a velocity gradient from the ground

up. This velocity gradient significantly lowered the collection efficiency

for all particle sizes. The reason was that as the particles fell, the S

windspeed decreased which in turn decreased the particle's horizontal

speed. As in all previous cases of reduced windspeed, this must result in

reduced collection efficiency.

51. The ground fraction results demonstrated several noteworthy

features. Most striking were the greater than unity ground fractions for

some of the particles in high windspeed tests. This was due to almost

horizontal particle trajectories for these cases; near horizontal

trajectories will result in low ground concentration since the particles

will be distributed over a large area. Clearly, objects standing

vertically in such a situation could receive greater concentrations than -

the ground. 0

52. Figure 15 showed three curves corresponding to tests M1, M2 and

M3. The central peak in each curve resulted from the interaction of two

effects. For small particles, the collection efficiency was so small that

the ground fraction was zero; for large particles, their near vertical

trajectories meant that relatively few could impact on the vertical sides

of the cylinder, so that the ground fraction was again near zero. Both

ground fraction reducing effects decreased toward the opposite end of

the particle size spectrum; therefore, the largest ground fractions

occurred in the middle region, in which neither effect dominated. This

peak migrated from 50 lim in the upper curve to 100 wm in the lower curve.

53. The tremendous effect of windspeed was well illustrated by Figure

15. The lower windspeeds possessed very low ground fractions; note that a

maximum ground fraction of 0.17 was calculated for the 1.0 m/s windspeed

UNCLASSIFIED

_o

UNCLASSIFIED /25

case. The reason for this was that particle trajectories were near S

vertical for such low windspeeds; hence, little particle impaction could

occur on the vertical cylinder sides.

54. The man simulation model in this project was undoubtedly crude. 0

Nevertheless, the essential aspects of this kind of man simulation problem

were believed to have been demonstrated, even though the flow geometry was

drastically simplified. Some speculative conclusions will now be drawn

from the ground fraction data. S

55. The curves of Figure 15 indicate that the largest aerosol

particles are not suitable for impacting on a standing man; in fact, the

best particle size is around 100 pm. This must be viewed in light of two ,

important qualifiers: first, the smaller particles will travel further from

the dissemination point, resulting in lower ground concentrations to begin

with; and second, aerosols from materials with some volatility will tend to

evaporate as they move downwind, so that the smaller particles might •

disappear altogether. Note that the evaporative characteristics will also

influence ground persistence of the chemical, which is another vital

consideration. Nonetheless, these ground fraction results suggest that an

upper limit for ideal particle size for impaction on a man may exist. P

56. The subject of man motion under this kind of chemical particle

bombardment was not considered in the project. Although authoritative

comments will have to wait until detailed work is done, there is one S

speculation that needs to be recorded here. Specifically, if the man were

walking in the direction of the wind, the particle trajectories would

assume a more vertical shape in the man's frame of reference. This would

be equivalent to a man-stationary, reduced windspeed problem such as was

studied in this project; and according to those results, the ground

fraction, and hence the man contamination, would be reduced. Incorporation

UNCLASSIFIED

-S

UNCLASSIFIED /26

of a moving target into this simulation model is a logical next step for

research, one that would help to resolve the speculation suggested above.

CONCLUSIONS

57. The numerical tests conducted with spherical cylindrical targets

indicated that gravitational effects altered the collection efficiencies

insignificantly, on the order of t 3% (absolute), provided that the free

stream velocity was 2.5 m/s or higher. Lower free stream velocities A

resulted in much greater gravitational effects, up to 21.2% (absolute) for

100 im particles impacting on a spherical target. Changes in the particle

density and target size were found to have a negligible effect on the

importance of gravity in the problem. D

58. The man simulation tests indicated that a man would receive the

most chemical relative to the ground concentration for particles on the

order of 100 im radius. In fact, he could receive up to 6.9 times the A

ground concentration. Although there were mitigating factors, the analysis

suggested that an upper limit may exist for the ideal particle size in

considering impaction on a standing man.

ULS-

UNCLASSIFIlED

0

UNCLASSIFIED /27

REFERENCES

1. Mellsen, S.B., "The Impaction Force of Airborne Particles on

Spheres and Cylinders", Suffield Technical Paper No. 486, 1978,

UNCLASSIFIED.

2. Saucier, Richard, "A Mathematical Model For Liquid Impaction On A

Moving Vehicle", Technical Report ARCSL-TR-82046, Chemical

Systems Laboratory, Aberdeen Proving Ground, Maryland, 1983

UNCLASSIFIED

4. Prandtl, L. and Tietjens, O.G., Fundamentals Of Hydro- and

Aeromechanics, Dover Publications, Inc., New York, N.Y. (1957)

pp 149-151

6. Wark, Kenneth and Warner, Cecil F., Air Pollution: Its Origin and

Control, Harper and Row Publishers, New York, N.Y. (1981) p 84

7. Friedlander, S.K., Smoke, Dust and Haze: Fundamentals of Aerosol

Behaviour, John Wiley & Sons, Inc., Toronto (1977) pp 104-109

UNCLASSIFIED

-1

UNCLASSIFIED SM 1102

'' F) ') CY. C)(' N -4 " .10

s . tip 0* r-. a:

L"j. L Is~ -I (o U 0 0 co, 0) C

+

- N- 0- 0 0

vl i r- r 0' 4) P-If (A) 0-

C'. C' .f) -4.. IN 0- 4.) LP, Ar%

U) ~ ~ t L-) C)C-4-it .'0i .~ 00 L.) (JC

(l t)0 ' 0 ') JU0 0 a i

U, C

C/)AJl C t 0 LI) U-1 p,0'C) L3 C)-s r-It" rJ- 0-C-1 N-

C)L 0. . . . . . l

C)) (-4 *- 10 0) -l EN

EN) 00-0-03 0

I LA. . . I.)

W - ") J) rxj %,k) u- U, 0-F' )

_jCC.L Li (I - )O-NU 7 o* * 0)1.w

u- (f) ZAS. ' ) C ) L -

Iii U. - 4 (10. c . r t.If\ - +=- (-.Q ( '( j l r\ - In -0 ) 1"I ~

c- it: u, V LiiP . .

>-4 :

fl ~ 4 (.7C') - O'* (Y) 0'

L.3 N C-) LiC 0) 4jYlr)Y0,L

I In* 1 l A

(\A C)) I'l C 1: C) 1- 0; C)- < - .-'LII ' N- r C- C i'LY (3, fr ;P

i ClIL) LJJ-

-'X -ZC~ * C) Q7i ILI 4 ClJi

t.) 9x I- In * r L* * L. C. t* * -* j * Zi z3 zi 1 LI;L-C n 4 z (NJ In P, ( C3E-)C) <1. < 1-1

frL n. <-s- .. rc

UNCLASSIFIED

IUNCLASSIFIED SM 1102

Q -s4. uf' C) 'fl ) 0'% P l 01 ,

1 Ir-1u r L C') 01 01 U, (.1

(,j r-1 r- CD co) IV L) In Lo-

C) '4) 1: c 0 l 11.7 1; ('V c; I

C- 4-3 Q w ky 0* (Y * p 9

Cl) (0J I) 'Q T'4 V1 0 -0. )' + -0 '

(.J -4)c- ~u' ' r '- po tiY icp - s- I -

iii II (- . n 4 C I M.*

U) CID L ) I' '4. Q,* 001 01 0 1C

"1.1 Li ) Lill o) - ' "1C'C-.-

I-I .xr-c v r. .

Li I C) *j 0 M p0 Ir

_( 4v zr.,If 0 .) a) 01" 0' - ' ILI

II

uj~~~~A (A) 0 r p 0

c 4' * .) L I') "- V A 01 C' (' 17' C)-.). t. L) ftLL.A> 2 .w C.0 0 a 0C) 01 01 'C3 CD'. W~

In -'q:3 -4 uN-C-A- Lt I-"-'

UN . .~j

QLi

w L-J

UNCLASSIFIED

TABLE III

MISCELLANEOUS SPHERE RUNS

ACCURACY TEST SIMILARITY TEST

S2 Si ABS. REL. S2 S12 S13

ERROR ERROR

U 5.0 5.0 U 5.0 5.0 5.0

L 0.1 0.1 L 0.1 0.05 0.15

F 25.5 25.5 F 25.5 25.5 25.5

P 1000 1000 P 1000 500 1500

9 9.81 9.81 g 9.81 19.62 6.54

PARTICLE PARTICLE

RADIUS RADIUS

10 .00044 .00032 .00012 37.5% 10 .00044 .00156 .00020

15 .00640 .00515 .00125 24.3% 15 .00640 .01010 .00493

25 .11263 .11008 .00255 2.3% 25 .11263 .12058 .10988

50 .44986 .44751 .00235 0.5% 50 .44986 .45592 .44775

75 .63808 .63635 .00173 0.3% 75 .63808 .64261 .63666

100 .74054 .73904 .00150 0.2% 100 .74054 .74426 .73934

250 .92237 .92182 .00060 0.06% 250 .92237 .92443 .92158

500 .97778 .97771 .00007 0.007% 500 .97778 .97978 .97725

1000 .99656 .99656 - - 1000 .99656 .99792 .99603

2000 1.00032 1.00032 _ _ 2000 1.00032 1.00217 1.00001

L

UNCLASSIFIED

. . . . . . . mm . . . . . . . . . . . . . . . . . . nl . . . . . . . . .

UNCLASSIFIED SM 1102

4J 1- 4 '" '-' Zrrroo( )J LI U ) u"'- In C:

I- Y ' -4 - -.1u

f T I 1 r . (1 0 .V. V

- b -j (0-) L 7 Q kg,%If

In If' I) C C )

Ini . . C .~i-~ 1 CD PI) cl 0 0

r- r f 11 .0. . 0.O

U- I . I' S ~~c * * * * * I

4-P ".cj (3 SU, I~ I-*(n

1-~' c) c. CCD..IAf ('j2~ O . '

-. j W~ z(I u,- fl.J u-, (7Oy(

CN 4I ) .) ~x C 0 i

c) 01C)0 N UJ'4W )' 14

v)~~i If 0' 0-tC.U?-4_> -

C*l -1 o' in C) : - r' uIC ' .

LL *t. (-. C) (V- (.7' CAL)j

01 . . . .7 S * * * l ,

OZ - 1( r- (7' ( Lill 4.7' ". -xILy-)

~~~~~~" uJS)Li I! L 4I

a..UNCLASSIFIE

CD' pj U

UNCLASSIFIED SM 1102

-u 112 1( .3 *1 (". .1 .n .'J If j I, -(\

L ' eC) In- Mu I'l r-)

I'-) -\J 4.) Cu) LP

cy. C.) 4Jul (X - (1, C, k4> U

V)) on - f\J nj 4 i -4f CD

*u .k . . . . . to .

Li C) te) r- C)L r~tf)Ly)r

Cn. EJuI4 I-4vC .-

-

Li ) C-- c ~ 1" EJ 0: N.. lf "Il

00~ M.- -4 -n ck!UIU 0' 0' 01 V, C) k) C3 L9Li ul CC 4. N C) it, UN)

u.) L" (1'74-)Y )I C) I it"J tv) v- CIL -

Ui n -. 'i') 4 ) -. 7 t ) 0 ' (7 4LJ

0i Lij c L

C:) r. )

N.- *-CJ -( N -a 'O'O) ' C)I C)j i

r-4 Li U4 ) N- t- I f L 1-

L J L)) C; v. C' '; (.k u .N0 C; ~ I I

d o'' vi4c r( I v (7 o *-LI4- (-u\ .C-) (\i'3 fl- 0 3 .. c0 0

Li LT. I- m( i t Ii) A

u ) C 3 *.J ) 0 14 V1 C.) 1;44;.

vi kI) r .4)) (AC) I'y- c) c, l )

(NJ elf) I-I

I--- u. r- -4 Cl' I 1'. If; I. I9- e'. 1-4 ILI.

.c rL') -4 U' U ~ In ' -4- ) C) X' 3: X 7- (--IC

1) C) C3 Itr -4 - 'C)

CL z)

51UNCLASSIFIE-,

UNCLASSIFIED M10

C -) C ) i f * S M

1J 0 2

C) ~ ~ L ". C)"T- ~ ~ ( v ' - 0 C

9-4 Ij4

l

I- L . C - 4V .- I

o : i nl o) ' IL ll 4 .4 v 1

-. 0 f'.J A ll * ' U "t

ca it ' C.zJIl L

LA o

LI., 9x

(-- 9-4L)-

1 a L% 1

0IU ,- - C1y .4c r-.c;,r L I r'..

Lu I I' on L I C- P f

A-. ~ 9' ~ .I-tuILJJ)

L -

4 I V ) I nI~jL N I L'UNCLA SIIE

L-) 0.

UNCLASSIFIED SM 1102

in L C) C) AD..) U'r-). U -~

. . z . j .~ At . At At . AA, C) r'J r'_ f"sC) I I

UI A

C3

*) C, Q0 C) ',U C).~ r' i0

IJ, C.) k

01 LAI

C.) u 1 At 4- -)C-

Vj() -:3tt L% ,(1 U,. LI) L LJ F'- ri 'r) C r i

u 1 v cCJI) I'- LI:r L

ILI UA a

LI *UL U.J (1)1

kiiC., *L) 'S \rJ q-k) V~ I(j A- 4,11 Q) P -s-i ri c-' ' ~C) C) UN (0. (UJII In Cr- 2) I- 'A.) I.-t.

.r( . .*...At...It.

Ulfi (--3 (I

U ~ ~ ~ ~ ~ ~ ~ ~ L LIL ) l )~J4 J(I- 1

A C)A-- s mi(z) - '1 W 0lti 'A% 11 -4 I-

f-) 'Ij (\A .J ?I) 1 1C) IL 9414 )1%~.fC 's in C .. I. C, A- (ii

94 Ii c~~ . ~J f'.C.) ~ aC-3

t~fl L)

rJUNCLASSIFIED

V) -1 4-P k's L.

UNCLASSIH ED SM 1102

C) C) u CD 's 'o 0

*x 0-*

o, z

lJ t cr. M In nC : x ")L n c ~ ~

CI 0, e0 :) 0 f Ole a

~ LJ

I.-C.: 01'JW t .U)V n " L -

CD c (D s 14 10 - u1 01 n 0 0 X

Li

IK rv4.) C ) ri1 L(V r\ 0 fl C.1 * c- 0i DO(' cu V, co UN - r.- r4.

0 D C.A .0 w W f- . . c* r- C. a

m (

LA r C) n c)C3 0 1--

,u-4 CC Uit mu dc' V n 0) #.'I' -cr im 0 x cc - (Xi CuC-0 .)I- I

CL 4x

UNCLASSIFIED

-7S

UNCLASSIFIED

TABLE IX

ENVELOPE RESULTS FOR TEST C3

PARTICLE UPPER LOWER NO GRAVITY

RADIUS BOUND BOUND BOUND

(microns) (Mn) (Mn) (Mn)

10 -.0003 -.0005 t.0001

15 -.0008 -.0010 .0001

2E -.0006 -.0039 .0016

50 +.0162 -.0299 .0236

75 +.0314 -.0523 .0439

100 +.0435 -.0668 .0579

250 +.0827 -.0967 .0873500 +.0971 -.1004 .0959

1000 +.1004 -.1009 .0994

2000 +.1019 -.1019 .1014

The boundary values listed here are z' co-ordinates (Frame 2). The target _

was 0.1 mn in radius.

UNCLASSIFIED

UNCLASSIFIED SM 1102 S

EXPLOSIVE DISSEMINATIONOF CHEMICAL AGENT

PARTICLE MOTION0- 'AND EVAPORATION

6 0'

lao.-

Figure 1

OVERVIEW OF CHEMICAL MOTION PROBLEM

TARGET CENTERED

U

x

GROUND LEVEL

Figure 2

REFERENCE FRAME 1

UNCLASSIFIED -

UNCLASSIFIED SM 1102 S

I

xTARGET

STARTINGPLANE .

Figure 3

COLLECTION ENVELOPES

P1

P 5-P3

P2(

TARGET

STARTINGPLANE

Figure 4

HALF-INTERVAL METHOD

UNCLASSIFIEDboa

UNCLASSIFIED SM 1102

FRAME 0O- (x, 1, W)FRAME 1 -~ (x, ,z) 1

THE X-AXIS IS OUT OFTHE PAGE

Figure 5

SPHERE REFERENCE FRAMES 0 AND 1

aLS f

FRAME 2 Wx, y', z')

THE Y' (AND Y) AXIS/ IS OUT OF THE PAGE

*STARTING TRE

/ PPANE: X 9

Figure 6 x

SPHERE REFERENCE FRAME 2

UNCLASSIFIED

...- .....UNCLASSIFIED SM 1102 -

zAS" UPPER

.- BOUNDARY

LOWER 0BOUNDARY p

S.-!

•STARTING' " X

- PLANE ..

Figure 7 X

HORIZONTAL CYLINDER GEOMETRY

STARTINGLINE

Y-BOUNDARY

wx

V I

oo INFINITEI JCYLINDER

TYPICALSTARTING TRAJECTORY

LINE w X

(INTO PAGE)

Figure 8

VERTICAL CYLINDER GEOMETRY

UNCLASSIFIED

UNCLASSIFIED SM 1102

STARTING IPLANE

I INFINITE CYLINDER(TRUNCATED TO

II MAN HEIGHT)WIND

GRADIENTI

Y ~ 1.8 m

0.9 m

0.36 m

Figure 9

MAN SIMULATION GEOMETRY

UNCLASSIFIED

UNCLASSIFIED SM 1102

0;

(A

F 0 UE

PATCESZ= 0 MCOS WNDPE=J5/

UNLSSFE

.... - r r r r.rr" .-

S

UNCLASSIFIED SM 1102

;. AX I ...

o p

\ p0.4 -•S -J - --.~ -. 5 00 -0 .3 009 0 n o

\ --I

F GURE IPARTICLE SIZE= 250MICRONS WINDSPEED= 1 .5m/S

U S

UNLSSFE

o "/!-

\2

UNCLASSIFIED SM 1102

A0

0 0

0

LLJ

C)

0;o 0 ' ;0 0 ;C io 0 o0J~~j3NI310

0NLSSFE

UNCLASSIFIED SM 1102

cr0

iu-c 0

0c 0

I07 4l /

K 0. C.)

o -)

oL 0 ~InL

0 o a ',o C.0 0 0 o i 0 0 oAJN [JJ0 N01310

UNCASSFIE

UNCLASSIFIED SM 1102

w 0

a_ 0w

-4 4P

0; o o o 0',o 0; c 0 0a. o cio 0AJN~l~ljU3 NC 310

UNCLASSIFIE

UNCLASSIFIED SM 1102

~U- <i

- [L

r-C)

0

:)

0~

06 ~ ~ ~ ~ ~ ~ ~ ~ .. Di ,-Q c 0 0 ' 0 oo

N~ll3Vb LjnO?-

UNCLASIFIE

UNCLASSIFIED

APPENDIX A

LISTING OF PROGRAM AEROSOL-8 (MAN SIMULATION)

SAMPLE OUTPUT FOR

FIRST SET OF TEST CONDITIONS (RUN 1)

UNCLASSIFIED

UNCLASSIFIED Im10

(I I j L 1V I n k>

a- t- - - (.rj k

.- - eU~ ISILA - . :) I C

y 4/) s,.4 1341 u -x

n Q L.) ti Z I -3 -. 1 - >- .cs Lj: LN C) i LAI

% l 0, J 1i -.1 LIJ % (I s-. (D-

El Il ) _ LX I I i :>) UJ Z t4 I~I. nL -. 1 1 -1 -LI J U n-> 1l (1 LIt C) Lz I->-Lfy I %- AI(j .

- L- I ~ *i t. 4. 1-- -) :i 1,- i- .1( .1- V. C') .1. '-4 c) 5-):31. L x~ I- ILLJ ~LII 0I Ill X- tit 4< -. U12 %/ IS n ;

* " Z- Lin (/ vi 4~ F4 LJ > Ii LIP *-4 ;- I- " - Li " n ;e i-S i IL> .- J ~~U I-iL- 1 -C>m~ 1) > n4 F)- -4 4-.0 4C - -LI C I-lL 4

3- Zj~ ... L J -ka -30 yn'I- -ai -LJmi" C-- LA m.J- 1'. C4C) all. 14 (zILL J-p- c ~ LJ4Sr C)j. Er LI-.1i S. vii! 4-!) -; 'j I IZ I. % LI

I. a j C1 Lt v a, il. ! -J vi LA- O F-.1-iC ILI i .J- LI0~ .x YO'V - t-F- 93 aLi) In C-. x ~ ..J -I- IL n- uI V). LII I4Ii 1- -- Ii EX 0 if) _jO L -- L I

u. Z) 4.5 i _j .J rrI- I-~- C: IL -- .4 LI "' U, LI - 0I 0. .1. I'- LI 15o-L.,X C-)J ") Ui . O tI L>- 4-!. 0, . t) I' 6- J. ui A ) a -fI--.L C .. 40i it *U L)' L 0..-

0- fi ;e (1) vii it ms F- C." LI F-> "! "L >. F-- C) Lj! (, C.) Zw4 -J. III. i L ... i t -

3. .- k n V LulIL - I., (C) 1-4 z -J it LI-J LI U~J i.- Li Y >iz(15 I- III (/ 4- .3t-it I'- LAI I" Li In 4/3 >-f~l -: in-s) .i OLI co C) )'1 u.. Li - 1-1 .4 a I - . i ti, ui M

I. u C* 4 OC x 5-4.' uF -3 m-- L : ui (OXLi -. U 4j Ii >-- cU Ii ;> 11-1-I I ) j I.,

IWO-.3 U C.) mC.> I 14Li i-L)1,I4-li- 4 l- L - iL (I> - - 0 0 1 I3i - F- 0 ll % %11 CL L %

2bJ ; F- -- I L. Li 1 m> L I a. 1 -- tri.(I- II I I I" I "4 C4)I-l- -c clLA I, C -. .- C ;i~.0 04 t IJ~ .1 1 -C . C 0I itii 4F 2 .. 4 )j ;;," * :- f (C : INc) C-() I c' -1 - .1 Li li 0 ~ )~ C'IjI>I -

;L)4Vf n vI - I I (IL Ll f.i r wLI- -CE>-4 ) 1- L 0 I :f' III LLIi 1: L V) in :1) " i % ) * I-U .-

- x I- r-i4 LV) _j '3--c A-IX .. I-- 1.)'i.3, m~ %_jI V.--" 1 -4 -)-- 4 ..- " UL)j I L .... Ili L) 101 9z

*u a'i if) x ( o,41 'I-i I I I I I I I I I I ' m i i 'I Iu g I I I I7 I4 tr InC 4 Z -1Cr 0:-4L.vi (I I-in . n L

F--I.i - _j . _ - C) L I ' tit 1 -S lU L U4- >0 11 C V u LAI~ C3~ >- :2 I ~-i'LIJ111C9Q ~(I L LI I- It -It

C - i 5- V, "7 " -3. .4 C ) >-f CIi '-> .. %iL C[- - C) -~ L >(!.-~, <If. ") QOi MiC tit j -aF- C --x~ 'i D!U I I I"I.-

C I -M 4L-3 1 .-1 4 LA L- .)d. U - -M1--UL % fit h > - CLIL L -u (-.ii)Z " ) .(ju -cY

AY. 1- 0 r- I

X -41L) -C o- IrC1 WLU in GC) I ). C) I-I

LI 4 -. j) -L) k) ci L L I L LJ I I 5.) . L I kI 1 4'l.) Li -4-JL) Li L A, L LL LI) (.jL LIj '. LL LiLI.) .Li

iiSi*. i S-'-U -- -.- -C-' - --~ - r51 L I r (%I c\) (\j 'Cm '-L C\- mU 10' ) r1I 1.1 t) ii t.'4 ) I-~. mI IIN - xt -S -4 51)- 't 7. 1

L: LI C) I-)( )c I " I ) (- 13 L u13 () ID .C), :3) I C) L.)(3 7C)C 3 3C) (-) C- ) "-CD )r)LI )C " C-ICj u C) 1-) C

C.)~~~~~~~~ ~ ~ ~ ~ j\ I') fD 1-) 1. 3L ' . c)C3 - - - C3C)L)43 . Exi C.3 ( iS)iJ(m ' ~ ' 1-3)- -3L 7 7 (.3 0 - L-S) 3 C-3 t-3-I (D .I-2 -3 . -3 -,3

Ij

Ill r--) Ill-

-----

P__ I It__

_s____If

-

I UNCLASSIFIED SM 1102

I Ii

-- 4 11

,t- I F 4 I , ,

S.,of oilIIIi-

.,t" I" " I.3 --J . l I - - i

I.A IL EL u. 4i Li)-

x ,0 U .) fr_

- Z - LU 4 I 0 .

G, I-A or Inl I. U.3 .;LlI. ; 0. 4- Cl LUL ..3 -' i. 0 Li.j

's L LI 1-4 1) ) XI. u. 7-4 1.4 1.- t-, C l

- s U O fr -- I I--L

U) - .3 1'-4 U) Lii ILJ IC) LV 0' Lii * LI-

c .It .,r . x It ILI-- 1- -" lI oJ V) !

U.1IC t LUi. #-1 0r LIA it) i/) Zs o, J dx 'L LL - -1- 4 LIi U 9 . , cc

;e Cit ei I-GiJ . C'.) gy Cb >- z . o

In -4 Arl in -. -I i C -. II .3r LI * ti-4U--I

Sair- C3 Ml " " C. '4- tit . L.) c) -- . 1I.. : *€' %_,3 o'

' r, . u '.. >6-- * i)Un.<( 4- U' (O F C)L,.o .J L}-' -". .

U) ,I I .. * %LL,- J- I ()0Clf. * IA. U CJL- . - lUP f It. 1 -9 - r - Dl I-A -Z .. I U/ "41" X

jL % #A I H- ui0- -P- I21--I ) j E - --

)( -i) - I . . , I u JJ, -( C ( Z 4 .0 .3 LI" ( 3 (A LA- CV

I ir % .. if l- WI t- -4 ) e -U-x n Is n i .- ILI- u, " w I -

I-- 3 % I , I- -"- aI ,-. i l L I C. 4 9 c I- ZX "-k 4- -)- * k 1-JLIU 1 4 1 fr0 V)')A r.4 z 0. 11 C

I -I C1 V1 n M 4-1 x a.C LJ)& 't U) C-4 6 OZ ca0.D)

s -- 2UC - 4l-i-- X LU V LA a- Us I - --

tI - I') % II L- Us ' 0c Co L.;) Un LJ C3 LU 1 --4 L . :" "_ a Z-- in 9-. J1 -4 1- .50- -. O * w4-- fl) I up -or C> 4 L

i 1- %D rI 1"j oJr. n .I') * . cr n * Cl I I I c L) l-4L. V N 1 U- •L

mL 's X .. -I "I i L - L Q I -- U - C3C 'n.i -U -M 3 .C3 CLZ I 1of t- % U- -Us1 C " . C ) LU -- UII-C < . I- U) (M U +I M+ - I.-- " Z * i i n14I.-

m- k 0 " -1 k--: lk -a -. l)--3 )-1--4 )..( U it I LIV *n Cl 4 . sa 4 - *J > X 4- %!;

C. 4 - .1 I IA " inl C $ U+

C.1 1" U) 4 C3 - % M C? I ",LI I Co .1 (A z 41 1.- U) WiC ,0 J_1 " - n 4n.w C) I'l -4CtiC) +' V) C)4- 4% fr .t. fr IL ) r cc x

I-- fr x~ 1-4 .Y) %I- a_ lI.-- 0 _j _j - 4- 4.J V * 4 0 00 LI3 (4$ " uI.s- I--.. j ~ U) sr-,-- - - e I is4 D I- l),L) L 4,!; 0: 111 S)I u) St/i 4- X- -4 M' U% ) 1/1L

-35 -. ~i) %C 'i L.) SiJ1- it:LiI., w IL -4 0 k"U . I wJ~ 4, >- II - . -Q.LI

IS -1 % I C I I i. L 1 .-1 4f3 J>1-4..)" 19 -tnf.i-II .A CL ( - Q)0 11.- 6 I-r -f 4 CX I- C-I~ A~ Ii L . U) " I l L IL) 3 ~ sC C -w cc ~ I 4- 1~C~ ILCfIt t*C))" Ift

A '- - A --- A A X.) A A *t/ 4 ~LII41 IJl( .12 ( 4 1A A A IX It 11.9A A A -1 CD 11 I1

t-) F- i n-1- oi- fXLL t -IlCS I- V I 4l-P 1 C U() 4- C-1 55 ;PIfII-i - L

LI-A~- >IJ -x)1 (3, "1 1 IL ? 1L r V) & I L

1-, CL. % .1 o 1-4 fr Ex 1-I I-j LI ' ii 1-4 IAs ti > CJ P- 4 64 rot

I CU) u I C CIOel x s -tL, It C3$

IjIf

st- Is If 11 U. I- I 'A) 1-1 '-1 If' &. r W_ U] C3 1:( ]( J()( U 1 I U (

L3 €3U O ) 1" C. O -'•

Li I LI • i LI I I L e ! i LIL ILIL ."I~~~~~ "1" % A- UC -12U1-'I, &A -S u ., lf% L. l if I is V -4.)' t) '0 . 0 Q 14 L 1 .r- -l - r, -O - r - r- i, L) tC.() fs 19)( .C' A. 0 C

AI Ai A) Ai A C A i A i (A A 3 A t A i A ) A ) A i A A I IN A A A C A LIN A) A A A A) A) A) A) A( Ai Ai A) A) A. Ai A A A A A43LI C..) uLi C) C3 C) Lm ) ( t 3 C-)r) CD) C.) (.34 L ) C) L. ) uC) I-) CD1 3 ( (D C) " (C) CD (3 1. f-3 (.3 (3 CDP u C3 C) C) IL- L.) C3 L .) f--)4-3(3 C) ( 3 (7 C) I) C) 1. -3kj) C- 3 C-LL) C sL) C3 C, I) (3 1) -.1 1 C C .3 ) C J C)1.) C-1) (3 1i ) I) U CJ C) CJ3 C1 C1 Li C.3 C:)l (-jC C)

1..C y ~ e)- I)')1- U L- )~ I)a 4 I) 0 5' . 0 it ( CD I 1 -3 C-3 ' .3 I'- r:: (: -l qS) I ) -4If) C- t() L3 s L3 .) IL-) r-1. OJ -3 5-4 . I," i UI~ U1 ) U l U II)I? C) r U) '4U '4 '4 4) '4) , 0 '4 4.) s r- r--- - - r- - - - I- () I)' 1. , U.) LU. (4) V.. W KI) V, Q, t y O- U., til

UNCLASSIFIED

•-"J' .-

__ .5-

IUNCLAsSIF7 I ID SM 1102

F ~IAI

*410141

LLI

Li~P- d..Iff.~L

7-)) -- 49 - LA~

10. ClIC) ki- L' Z4 *

0. LI -9 A- 0. LA ClI)ILA

~~C ori 2(Y 14I~ -414L

~ 0. IJ * LJL

n+ ILIn ->ttI: C). it) a- ctU r-. .4 u. ALI .4 i4 1 . -4

CL -)fh( 4.j 1,I 4 -r i ~ LI CAVo X. (\ au Lu >-. -j 1.11

In fi 7 # 1/) X.~-1- OLD "1.- _) 1-f I i

,if IM LA.T,4 leJ "O t4Ors +J 4>-

* C *>% ~ IX C) X'LI L%*j~a

11- 1 ~ T 4t i' . ('1 11-- 0-4i . I n . . C l - C

-)3 CL w -r ~ ~ C, ( J14 L U ~ .. 0 r i I :- -~. %' .' j c: IJU) 5 Ig4 C.LLU -.. i q iirJ -~gC f, )) -0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ C .4 40 . YC . ~ .1)Li- C) LiL ) 14II 5 4 )I )I)' ~ IU I~i . -

mI4-4 IJ icr- c'i 4-P IIIL LI- -L df-. UK >-) )

Lit III an LAi '4 1-~ -1 Ii- Cl C

ED~~~L c) + "u C "

(7. Ila LI % ,-. CI<.- ft I-IX:J " O j_ L r . 1- := vLI I.. I.e 1.. 1. LI +i 40 LI ILif -L IAU 1 - I 1

7r- i U ) C I -fr , 1. S- Ne 'C UV i l l I I'- Ail, y - -) I') 4 01 i a4 - :3 of1 L ' (i t) (1-? U 1 4)-. i 0-) LI: - t'1-1 C - 91 L,- 111CCL 4 n - I " ) I. " I-L 1- r " c - -. 1 fJ~ -N CU ~I r) j C- C it), (1 ' (1. (, V' It Ci $ II C-I CJ 0- W I

_j 1 19 1-- ;71 u I2LIL LI C-)LI ) Cj IC LI J )CI' a, 9, -1 1 -- 04 t)LC3)IV iC L~j L )C>I.Ij :Z w ' II~JI0IILCJ)I AAAC 1 r- I a' pi > A A A A)LL)ICC))CC(JJC4J)L

4- - I o4U 1 i 1 I; - 1, -u -l -1--1 0 1 - s-4 iF 7I. . * * . . I I * * I I

I' ) ) C - i' ;e IC) W F'- a.U 0' C) f-4 -S us 4 1 0 '.Li(SC ~ ')~). i Q 1~ I ) ~ -(.

iF I' ) ( 0 C)C 44C)& i> . C - a7- -I-" III U U1- iCUIJ vC-USi, ()C' -3' , ' ,- -Sr ' i> * -

4-j Ck Li UNCLASSIFIEDC

C. --- -- C) - - ~---- -- - - -

UNCLASSIFIED SMV 1 102

e-.1 .-

'I.- -'

Il lpC IsI L ILI

Iir. -) "iI : r I!, i)C#) 3--4 -;_ * : S % 1-1 #- i..

L91F- 41 Erx % 3Zi' LLj 1i -T - -> U..

l.) or I I ILI 1-4 It )%L. 0.- L-1 IL>) cx .l4 0 - U-

.e - . C-) 1-- 4 1 - U - C.4L.) U)t C) U..C - -.

6-4 1-..JU ILA *. :31' U.I. 4-1 U. 'Y ,- cF UL '

.z 1IC-3 1-s C.) -. C) LA) -:

ix :> Ili I "- _..j -. 0 M UI % Art4lII 1-1 V) UI F- IIli UA I s .>-_j- - Z C) .t-- 9 -. ~ I-) EX it0. (k %L- is] C. IL

1-4 . L/3 FCL ;7 U I I ~ -1-4 ix) -Cc XI

Lj I- 4bil 14 U. * k (1. C' - 1 x Ili -- ii LIJ>Lm c) % (.1114 a~ M.1 L)

4L r C) UI3/ 0 L t Zi m. *. I-J U,' . F-. L) 0 214 lu~? % 0.- (J. I- .4C3 .

6- -j on4 I I 0- - .% 4L ) I -. L ) C- 0-I U- 1- to- 4 j Lk U Vi L

cl xAI- t-4 J OLi'.. (A ~C) In .4 4) 0 Lit L i- 49 . ' I - - '-i .j1 C)

a', % AI Lit 4.1 - ILI'3)1

-al: * l' - %~ 0 h _Li Lj

Li ir:7 LAL. -iL 1.ZC ) 1 .- 4C .1 M) Lit I in

Ur L -4 .0,- CL - 1-1 >- (U ISq- c d C -1- .-3 . I" C. C) ; >- 4 % l,- it) (X 0 -4 - 0.. (V W U) 11 1^ C-Ll w 9-4 37 - I-C. it :i . i- ) C% II' r -tj IS &I

4L' -3"U 13 111A -i e-.. mua 4 - 0.u.L IL UA -LI N.LA -.. U *Ii IS 1-4 -. 1 111 L, U n. S.'1-1 . .C) .. i U-. V)

C)-~=3 -I%-~~C9~ ir-4J+ -1 C) .1.J X -( % %- I 4 s. 1- 4 >- r) /) -4 ) '-or t. - ) ALI Ui oA Jj- C 'C)L C)

: 14 2.Ij t . tx..il _j mI -I 7-3 i Li )4 .I ---3 -& eL t- il.. 3 y6cx(-I 3L -1 U) - P 1. 1 1- U- - UL IJI ) e Li., ". 1-- US LJ t - Z - L - ' I -) C.fib - Ili U *- 3( L.)1 Lu f- n in ~ .iC C LJ% - S *lJ Li st-U

:31 I- 'it .) j fi-4itI ;- 0 i -4 I J C) V) M'~Jn L i I/ '.ix m' ..- - r I,

1- ofrT Iit IC)41 IA. J.IJ> c .-- 4 C a-, e- I-- l.'L *'-' - tl IL %'1- . '.L II

LAjACL '11LI It C.L14 - 11. 1- LI,-'4A . . .-''-c A --J I4 I- ~ I 4. LI Il-

it (D fL F V fI II I- V V -) )- "I--') . z ;'I_

Li I ~Li4 Li () C X 11.. IA N - . % UL Z_ z C) C)

C3 C) I-- z

1-0 C-) V) C) )C

I-) U % U) Ut - A ,

Li li Li LI 4--'L Li 4,

I- I- - If% IS I I- "I e Nl - ' If% U' '- 1) -4. '- ) 4) .- r 1 '- t A. ) l- - r- r- N r- r - r-- - -~ L - -(f- -i 5- I- to c on

-A .LI. .J 1-)1-(\1) -4 C-3 ( 4)-3 C)C J I) 1- j t_.3I-u _ Ut-..or.)m.)t- -:) -)(- (_3 rIi -J *4) :-) (D (--'JC3 L- I A)L (r. L.)

-J -. 7 Ia - U4Li UN II In i t U l V1 U-% w)i 4) .4. 4) p 4 ) J . . '4) '4) 4c 4) IN- r'- ir i r'-N. N. ir- r9- i'- v., w) Ili 0., ( U) LkiI) UjcLI)L.~~~~~~~~~~ -' F- -- -- 5-5 F -x '5 * F -. 5 -F ~s - r - F -F F Z.I

U.1

UNCLASSIFIED

I S i

UNCLASSIFIED SM 1102

lit

S-I Iz IL -ccS

_j u S- -jJ4. SJ

S) i U, >I0 It. J: -4

us ,JI) U .

IA; n _ lV)Is: .C) tf

"* l C)

JU f% (11. ..J on _-CA _ i

U. V!UI Is" - u- () Vl j i- C.1.J '. U1i e- e e) -9 % .

.Z c) l. el I H III Ilt V)

) Va - 4 p i0 I . L - V

U- 2 rI i -" - ITO *C 3 uss U

t'- 0) I-- u - . - l ) 7. '

4L) =) V) |1_1 . vl -X 0 0 t j Ix -4 _j 0' N V) I

li "L. L Mi a! .%5-m1L4- . L _ ( e C !

- ll C ki si t U ILL UL ;:I fi u- E:

S.- L) J -f V-. LiUlSC:o

. C) U. . I) L us Lo ILI 1_ U. I& % f . .

1-. I% A - I-u Z - L r Z 1> .-u a D-A f IV)i.-UL ,I , 1," CI I _j IU I L.) L.) L Iii U 1

X-- 0 CL 2-- (. 2 Uj (Is "L CC UI - I-..L n a.v " () Z - >

U. X) -:1 _J UL M- .4 .1 us V1) U. Uckt2-k >.a t-- U (1. I'I I> UL IIi 14 41. -a.

J ui L-- Li - --- - x I II I L IC) • "-4 " D 0II :I 0 vs, 21 I 1-4 1 n c% da U.. :& 4-- n > IT Dc . Ui.

i 0 4 .3. ". nJ f a ; (.Z) fr m f -4 a_ 4 7 L.) U) 0 o- c L % 0 CD C.

i)- rJ _j 0 - if ") ri, ) (o , ILI -a } n -L3 3 V) 1 0 1 1.a (.3 _j NO, > C [ 1 u 0 0 U €- 3 - . :.

_j.1 -- I [ U, I %V f1 11 U . .( IiO LL LAL c rJ C _iJSL I - I3 L-. _ _ )O U I " ,

wtI. Its o .). . r) c-l--I . n c11 >- t 'I 1- in x of (L >- i -1. Sal of fof-- S- t ) >< a " Lai ej (7 I'a) Lo rx 0- "-I. 1'.LS- U O 1- .LI:L Ili~

t ~ c c -_j Z. >. o*- ) % III C) -K (2

it)l • . . . . .I...,. -U1'l I-- n -n ft -

.~ S-I-I _. %. -4 4)4 .. L -1) 1.- S-

2 L J- f-I Y. XI C)4 11) VI VL ( C) IV . LX 42

or - :: i* x 1 s(Z NU _j LX I'_ % I T..l -a - KZ. -

DV)I I.- " .4) tr- 04 - j x2 ics2. K ) .r-.1 I~ a~I .JrI 02!): - . - )L. -3 I- .J _j.Px - "u m~ 4O)Lue - U U I= n I- If a "ZV)

"U -I ( lP -L J U- I- .3 . . ... . JT 4. . . .) - C .. - 4 -if ... . . . .w--4 ) _ -J T55 ~ ID Li

AAAAAAAAAAAAAAAAAAAA AAAAAAAAA\AA 5_.-S-4 AASI1l..u-AA<1-." *r*.i:3 1) 2! _j I >- " a : 0 0 > CJL

C3 ~ I 1z 55-L 1 11 1 1') t11 it u,

A, "1 UI Ci ~ - -' - C3 - U- '- V

0~ 4 XC j .- -. ~- 1 .

Ul (21 1±1 u.! lia La U_. 1, . i t

.- II 55 -1 Sa('i U P5 4.. 1. S 14-I I A.) . . pi I.) cy l.. s - I'4 - ) I. ' L .4 . S a 4 s, a -I. 1-) .4. 5-1 L_# SkL.VI ) 1 i/ a j.

(% 4- (, (,, I-j "~ t4 r, Cs \ s ~ 5 s I r5. Cri I,) I,. (I 1,) 1--1 in) 1) 1-1 VL ) 1 . -4 1 4 21 -1 J, -.1 'r

0C) l U c)C)IDc(3C) 4-3(C 31 LJ .)PCIL-) (IL)C LC)IL L-)) LL)" c)C(.71(_3 U L (.3 (3 Li C) (jC)LIC) "C)L)L3EC-3 L.3L)fli 0 C (:) ID C) L.31 ( ..3 (01L C)" C) ". U) UI C-3 (. ( C3 L. ) C) U L- ) C L3 . I. C) C-3(.) C3 1-1 L) CC L.) IJ.) L) L-) (.3) iL-) C) CJ) L .3)

(71 : u~ (.3 C) -3 C- C- W C3 C3 - ) C-) 4L .) C-3 C'.) r.> L- ) r-3 IN, CL. ' )) C:' )L ) IN I. C3 ) 4D (.3 L3 L- ('. : I-) L) IdC) ) L3 ) C3 .) 'D C3) I.) C3) C') "' I,

UNCLASSIFI ED

UNCLASSIFIED SM 1102

LA- *y upB fl

I-- -- '-44

fr ) 14- 1, :(D" C

11. 4I 3 .7-11

u " L ) 'hiI LAeCrE. - l III I

CA r IIILA41 I>-OI

I.- C- LL 1-4 C. 4.A . LC)p Z) I- C.1 3- U. a

-14 Ex 4.j - IL .) kI Lii C) tL u

IIIM . us LA- U14 LA- ia Q in zP.- n. A. uj -4-)1-r

I" )f A,! Mi A34 U- ". 3) -G.C' EOi! 1-' U. CDt C) In in C-

ur1V Li L (NJ In +. -1 f. in L

13 1.i -- -> a.: - .4 gmLi0I.I 1~ BAA 13 -A. CDPs-

M . I-- It *' I-- :x CL-I---I Cx L, -' c)f u, u 2 i U. A. LU

in-> 4. J 1-4 C, Ili -'J F- :31

CL *. I- C-. "11 :: 1)f ~ jC. nLL). a .) It UJ 0i w I-a wij -E )W L

LA) -. 1 -. Lii 4,J Ili Ili cr 3aL- u I ) s I -

(III l"L Lii U sL. u % )) 1-4 :Z .. I- wX. IV 4.> V)CL-lo - C III Z Lia-b 111 4.(" .9 III - C)-. U LI -

t.r- Lii F-- 4.114 . a- C/) M C3) 0" W/(n -x 47:1) 1- ) L)i CLtb)f III LAfr.5)

4.01 3- ) ui _j .. 3. 2, r. < I LIF LkI. -2. -.F-II :> i n - Cs) o4 L.r Ct a ) &A a CI Ca, fr1 (1. " " 3 Li- -LiiV ) Lif) cL

X(.1-a 4 - X .CDP VIItn n - * C:+2) IfC I-A cLA I-iC l-4L -

2: 4. 1i41 ) , s 41- L - (1 X) I-4 L Z 6 - -En:I- t'u ..) 4.o-- IL )I-- C). I3 U,4 t -a "- P.- )I

LA A ( A I- A. A Ai 0 .4 Lcm re* 11 11 1-4 WA A r I.- LII 4- :c .4 in A n PA

L - 11 1,- V) C.. V' -,i cx 2 w -I a fra I a. Li.i z ti L / i i)SC tz 4 -1 -2. 11 If of Li IiV LA-- LA) Lii 0- i u>

Lc) LA. f-4 I :3 1-S III ill -3 r-J 4.C) aBB A i ' 1 )C) L

Li F 2- I '4 4 k .). s 4 . r -3 - 4 . 4 . 4-A 4- t-(1 Li r .1

I04 I iI,) 4. t/0L 1, C. L')+ P. Li) WN1 I-. A-('g i.irF. UI. ) ZuIJ - ' ll1

If l- i %I ItI I If -4)f0-) l0 " Io . -r rLA ii''-L - a. * i- u .) a ccc:;(), e- o - co, U aa L o- ,

A AA A -\A AAAAA- AAAAAA-- AAAAAA A-44~ AArJ\~ AI AI A A A A~-~L) AC.A.LA AA A-(3"L -UiC "I F-C.)U : I-) I. C3 .) L. )" ) ) ->.- C- (Z 0(V)C)C3I JL L.) -73L3 Q Z)(3 Di . Li) (- . JC- DL

C((4I. L -) (.3 )C l(- )C - 1-)L)43.L r- it Ii C3~ L.) .. La-l-i C )L) : L-) C.) -L-)4 L 3 CD- c Li) "-(_ - . " D(- 3r:a #-. -3 Baa C3 L.) 2- I- c (al Ci .4 L -4

.3 .4 C) (.-I C.L C3 (.j C) U3 C3 (:: 14 La3 LC) r3 uA C3 C) L-3

I') Ill 1- U.. 0'CLVVi4 Vl'Di j C L; I!( I I o I k Y I)T-r 4 I 0 f-" 1t.

In i15 US BI5 L/' Is Is' LfS 's Lii aft il) Ill ill ill u') -O l ' NuNuNL- 4) 40100 'k, 00 -C.) r'-- r~- r'- C- r - r- r- r1- C'j C'. Mi rC) &J~C.(- a . O~IC) ~C "0 5

r4I fi(j ' \ICA ' j I( rirj v(\ j ~ q \ f% ~jcj(\ j \ I\ ~j (I \Irj ~ j I r-c~

AAAAAAAAAAAAAAAAAUNCA SSIFIEDA A AA AA AA A

62L iD ) ~ C)( iC 4L . i]L . )C iC )C C. iC)C )L iC)C iC iC C i1)L )C IC iL

UNCLASSIFIED SM 1102

if- tr C i

VI4 14 +4 III .

I L i

j (/) I., I

Lt Ix-

1- 4./) 3:~~u

4Li * X V) cr + cu

ILI co L)-

'-I ILI w~~I -

UJ . V # l T- (I-. ixLA- C.. C)' + ~ _ 'j LA I.- .. ~

% U) I". C' ~ IA C - e:.. D i.

%. 0x c') LAID LI *LC,~f

iii LIi on Is' I.'s - '- '

L.)LLIL- .3c CY <U..J xL CQ

C I U . ' '4.) E I.-. *LA, ~ f -1.1 *IL z-j C.-1 I- *iiL*4 F ) L_

X: fl. 3w-- >y iIi C

Is- 't CI 4. L... 0.4 -i q . - 4- LuI/

I-: I <r "j C) AA 4-'- l-I1-4(~ $/ -'.1IA mi t-1 -'0 I

C-1 LLIA _L) L. 1 u - 2'o C)V II

2 1- 41 - - L ii 6, '-4 Wi -x II- (

L.)ul x Il 40 ru1 t3

LAi

PA

ff t,'t t L LII.) 0..' 4 " 11LII * 1)L

C), ii? C) C3 (- 3 C gi (D 1'c) (ZL'L - j r' 4iI rr. u4i

I'D J I-)(- uC) ( 3 c C) L. I C L.)if 3 C.) c:) L3 -3 c') C.) C) C) L.i 1:) 1 D* * * * * * . . . * . . . . . . . . .. U

U') '4) ) 01-~ 4 Li s- r\J V-1 111 ,)'3C'..f . -3. f\j ti 4t L 14.J r II i>('oI Q A I) W U-I7 1. 41' V.1) V .7 V1 .V )' 4.7V L-) C.> L:)- C.) L> LiP Li C.) -L.1

C.j (\ rN v rN N ~ (,j N ~ i' A IV ( % n in in) t-1 rn ! t') i'i n1 (' gi

ILI

UNCLASSIFIED

UNCLASSIFIED SM 1102

a-l 1,.1 u)

f-. >- cX

LA-~ I- A

-4f (- $ .) i

wL 0 ILI > c

. I C ), 1-4 .- 1 .

Lai lie t.- a .

U)3. c~j :>

C7 ()jl (Iu

n fuIiIi '

L- C) UlI-Z) -. 0

.1 ILI Ill I- -OL__

4-) - (n tAQ c>4 tj

ancr ffl w IL1-

vJZ 14 ) 1-- fl

-j ii O LA, #-- 0.LI >-( u. a

l 0 C>Ir 3I t- 4 %LJ11 Zf ta L-

c ZC).L, t .U. A IC)4) M.--

tLI- ax L& " I-j Q =: LA-

Z -U I-- ..j I.- CL % UJ Lii Ii

'- ) "~L~a ~ . La-. L" Lfy LX )

I- D ) -ul. :...... .. .. * 4C L14I L 1- 1-- tliS Ii '~ C1 n) 0)

Lia IIc m ~ ULl4I-~s)iii I

LX' 1- P - uI P-- o- t- %~ It, .LA- An .La- LL- i i ) a,

Z)XC V) (3u a 91 73(/ Lii 11 o 11of111If

a A A A a A A A- I -o . - 4 - - - - '

fl L) .I-~ Lii in I N L )- ii ~ C

" - % 21- 2! :L. LX~~ -

ZI *-4 -j a o._ ni 0_ a 0. ill ,

Li 4L J t

AAAAAAAAAAAAAAAAAAAA)L3 C)3 4- C -J 0 ..) 473 173 Lij f) (:3) Li L:j ) ( C .)L C-3 c) ).3) C)34C3 DL. ))) C-) .) r- I ) c) 3c ) C EDC C. C 1 ) LI-.) U..U) Q Li) C() L.3 (3 C3 I..) C) -1 1. (3c:) C3 r:> Li I) C-3 C) L3

1; 0; '- S1.0 1; U". 14) '. 1; (7' -* 1z 1' .1 I/'. 1z ,'- 1: ILi.- - - r - - r- IVj I~ -aU I sj isv IsA I N t Il u)

UNCLASSIFIED

UNCLASSIFIED SM 1102

4 +

(w I--

EnU1-U.-

U'.

n I - 01S

iul 0.u

W -- w -

I" '0 It

L.0 X It I.

Ci 0- C) . . . JI ,S, 155 c

%-P /) J Z3U 49U 0 ,X Ic

6I. L 0i. - -44 -- n uI "

1-1-1- V)l (.1 Co)L- 1-- 0. L):. - It LA I .) U

1- otIW I.- I4)J X " u: 0

CJLLI ft. 10 1 I I', 'pJ1.V) It' I.-I ~ - 35 I) I.- C

* C 0 ...... .. ,i ki IlA Q- LL(\,

~- U' -'.'-C) k U..C4

4 %jJ~ 1 IllC'J 3 111.) 10 t

01U. 3-- 0' 3-4 Li 1 Z 1- 0;0:O V: U. 0 4 -; Lin (

~ CL t~.JUNCLSSSIFIEDI

UNCLASSIFIED SM 1102

0-4

C) L)LIC1C1CI- I L- - - "f u(\ I , \ \11 I ' . LIL-I I I I a .)C I I

*- I- Ls IL- I L

*( I It IlIkrIC1t- . ) ( - . 1 u M C1r :)C)()C

*I I ;p m

10 L . It. Li %L i I

* 4-j £- W r.- Iir r I J r r"04 w 4)U .-N I. I *110 1tj I- y "u4c IJfrIi I Ix L u - m .: 0 -~ I - Irurj 3 :

= Ii I. %J I x ZI-Ii I I L I

41 s' II I k

aUNLASIIED

UNCLASSIFIED SM 1102,

II

L I In l L I4/

C- In 2 : II I o

*.' f I It ltIr C .fL)1 v a - t I " I 1L)I,* DC I Ir I-I-Ic Dc U1-0 C

. It .It . . . I t>. I t I t . . . . . .tt >. . . I t . . . . I

IL CAI I L LL

.6. U. .1ltL ,#- 1. I~ j V I L

It IA -c F I II fI T .

n Xi x. 0 ).

I - (- 1--1.liii I

UNCLASSIFIE

UNCLASSIFIED SM 1102

CI iI I I 3 I

fI I I IX" I I cOL I J TIL I "

I &I I I S

VS In I inI0 " I" Q I

S - IM I3 it I"18', 1 x F) L)C3 I) ' ,I " J '

P 1 IU Vcx IN -I IL Ik C

tI 47 C- I ClC )C1C1IiCL C iI )r

*) IL icIc)r~ - - l u I I - 1-( cIc C-)r C)c C341 - lC LI S - c -

I L L %.') I .I ('a I

.4 LOIi * o 0 n r I--u _ -r t O- II C) T -

I. II (Z (a 0VIIjC j1 1VV C -' N(jI- r)0

I. Ix, I chinjC 1 t "''r n7 - X II- - t ,-) 4 fjC-r nr I - x II'J4,1

LA X~ I~ It r..1 I- cg '-Lj-Ef4

I F L I I .,r~ Lki I I (

tz I. LL 1- - - - -- LAC:

IL ' 1S4 I -441I Oki~ aI IL t LiILA

11-4 ~g 14 1-1 5X

* I UNCLASSIFIEI

UNCLASSIFIED SM 1102

* I I c' f III I forS

I C I I SI~~ C I6

I I I 1" ,11 " uI1 4) 411)-a . -1 11t I I . P V)1 - :*i Il I 0 C1 -4 Aa) . i -

u. I I I S- I > Il Su a

I e I R - I I ir -x -II I I L I'-. It I"l

r-a g A rAI 's 01m * ,q rC J-4LJ 1) 1 )' 1

t'- uI 01c S- (Lu (N I9 - - ~ I N ~ (11)1 oII L -ILLA I <1 Z I--

1-4 I (-4 Ij I-41 I

I~~F I -

>-a I %LA >-I I %,- >1

UNCLASS IFIED SM 1102

I -

I- V)

C (1 I

I- P1IW IIL Ell

'A) ~ ~ ~ ~ ~ ' C) I% Y t- jU

CC ) X L4bSI (jr' J V

C\.j I

UNCLASIFIED

UNCLASSIFIED

APPENDIX B

LISTING OF PROGRAM AEROSOL-6

(TRAJECTORY PLOTS AROUND HORIZONTAL CYLINDERS)

SAMPLE OUTPUT OF MINIMUM TABULATION RUN

SAMPLE OUTPUT OF FULL TABULATION RUN (FIRST PAGE ONLY)

UNCLASSIFIED

{. UNCLASSIFIED SM 1102

a')C. 6- 0 -fFi -i 1-4 I--

x 6-11 C-)

U. I.- a- .4 U

01-4 k l I' >-* owU

t' -. -4 In fr In I -. 1

I.- si C) WE~ ~en -

0-4 l m -.1 4-3 Lai I- -3 C) <I 0 I-- iT C-1 Imfr k0 F -4 LI c 14.1 2. 0D kiI - )-d " 5-4l Z III (D

(_ e- .1:t -7 . I -4 Lii u 1 -0 I-- m 0-- zUI 1 oil

#-- I, - x fl #i1 Ik: -x or ?-- -j --7 111 a. -.4 ri f:1- r I- b

tI Li 1 - 1-4 ILI fr- 0- in. t) LI LA - -12 ax ()> Z) . i* 4D -II s -1:.1-1-4ILI Z nc, --I[ fr 0 n CI I I.- -.0 .4

I-aP u).. _j us .J0- U )-C)-

a OLD i _j 14- A Ii CL LI().- JU) 0 -1 NCL-CJ - W:

DAL 41 -. 1 IL - e~~- i-4 Z' m: I.-IL 4_0 -aa LI ILI±J )I.C L DrtLL .4L o ;1 z

L .11. J -4 I-JU-- f III4 III C-L. " r),-- 1-41) --- Ia I-' UI'il % -j %i

.. J -9.CC z ~~ >-C LCl O j go of I-0 Lm. -CEwC L l1-i n. -x t.- d > 411.- - i 0fr -cc2 I , 111 1p C3 L.) 6-4C. -.1 m L fr r I)-j 4- IL I m -C

I- Dj C3 ' CID(i 24~ LI 1.-4 -U a:- 01J. 00 C>~a : T i /1 LII0 - 01 a' i-i 16, 4.9 1-.) %5-L.0 02 >-ii .4JJ-4: J i CX 0-14 L

-j I.- (1)1 An Ci'l C3ll usI (xL () LII0 )L1,UILAJO1'r .4l 4±9 -J, C ID . w W M -i 1, -

.9~~~~~ ~ ~ ~ ~ -a( w- I- r, >.14 > sII0 > L:- Z U - z &i 1-- 4-. 4 aL f- u L U -- -4O. -4 0l> to4 )1 - ee-Cc1 " Yi I--- z >-0 in04I D X IIQ 4-P=

2.4x1 DUD CL DOD I-- V) n fr. d w l-1I~l4 .3' if)Lukj .0 w(f~ L~0 L 11 10.%CLI 3I" I-1 ic.>I1 fr Il LA 1 -.1 ~a: .- j ic, a " £Vfl >: < o~L~ -- aaa --~ 0. w I- I-C(A

us " Vi I-L) II . L .14 D-(, C DIi ID u LJ v)" i a ua a =) il- I (LS- !1-q I c c~-4: ~ L v =3=)""-

:0- 1- t-- .J _j in In4 '4) n- 1- ". ".-. J * 1- - . Z M fi 3 -J CI- Z: - A F- > C -) V) t-' 2- a'JF tI V - )P4 b F -If.L Ai L s0 Z L j_ .

I I 640 L., XP ^ " C)U ) LIII4J- I ">(04r OX' 4.- CI- a' I.- I C>"L7.m 1 I-L- 1-41 u-. ).. IL n4 LI -a[ 1.- ;1 - 2 s L& , -4 n i rk) io u jP 4 #

CIp "- ( , (I L-

V l LP- I.- "~ 1,- 1-- C1a 1ia U1 1 1L 1 1 1 8 1 I I I I 1- 8 1- Il I I I I I I I I I

01-4>x.zJ-CL W') n-la

CV I-0 _j us >L 4 .)L a U ~ >C . L r - -.L~ < U.~ ' i--~- Lr~ L a 1-cc - ft & -. -j 11 1 - %C)

-c AA AA A nAA xA A nA AA AA A A A AA A A A A c6-4I nOLc cQ x l0uj %

L p ., ' l L L 4 .1 LI1 LI 1 >ct Li -- LX I DIL iLIC L LI LI LI, LI LI i L XI >< r4 I& C), LI LI F- 1-0 P- LI I LI3 oxLIL

.L-p- L - .P LA t - .- k - I.- 4-1 4-1 4- 4-1 - j 91 t.J 1x 4-.) L~ ~J ~ -) ('iC. 'I L* I-) L l I .- L.) -. J2 -J - 4-4 I. 4-

IV V 1i 24 I ( V)L C L C L I-.))L . C)L IC Pb LI LI %I -C) 1) LI V- LI WI I- I L 0 I 0.- LI (V C) C.. 0

CY 4 C-3 I-) " 4IL) C.) Li ) .)i ( Ci 0 I (C)3 L. ) C) " U C-) I3 C3) 4.3J L (- C) f ) LI (4 3 I L j c) t. ) L. 0- C.) C. C03 LI ) c L- 1) LI3

I o - ) . ) 4- 3 "i -U Q'- ( ( -I c (w - . ) - 3 ( .41 1 L ) (: . C) - 3 C. ) (.3 C3 C E)-3 L U L .) '- I-) J C ) - -- I -) L 3 C-.3 47 C3 r:j C - U l C- - L.) 03173~~ ~ ~ ~ ~ f-1. (- .- (3 C- -1 (- CJ Lii 3L C )L)(3 : )r C) ' (D Q (_3 17 6.i lx3 (ii i 4'- : l'~C3 L3 6 K.3 Ci3 (.3 1i-3 T3t3( lIj . -d -3 L C-34 --- I,

I UNCLASSIFIED

UNCLASSIFIED SM 1102

4-4

_j U.us

X. -r U) C C)

-z cj I.- us d AI..+1-

V- Li Z5)4 4 2 U)

% - %j 0L I i -- 3U

C)II XInrj> It z - 4' -cc tl C 0)

9-. sI % %' L l I.- U- IS3 a- _j 40 .i k> i-9 L! '0 X4 Lj I0 =31 IL 1 4

CD % rv a-9 , 1 i- 10 z * 4'- --

w1-4 nt 9 - Z 4a. - 0 U) w Us4( Z 0oX u I- ~I-4 Is, -4L u) Li 0: C) V)0

ci~ 4. U- L4. - m.'-(/1-a n -4 fit L& in 40 t-4Lii n. C3 cc- IL a- (' - -

Is <O oI CL~) I'aA. -M 0L cl 00 4' * /)0

at .it c us L v 4.1 . L tv Ix " fr. It. ix) aC. C.))CE-.q 0 m I %O .L =:) i-4L 0i0nfi III n'~ (3 (In I- t 4

La *r' a -X wo'1 -o fr 10-' In t.) a- m A #-_ 11. C)C 1xu _u Z. It Ci- m r.2(W3fjn, 4 1oa LiU 1. Li inina -c U

usII 'r 4u U Is: Z)4 C) M Il -.. c ia3.P ^- 3I-- Its ZL> I-- U .- 9It"41 a- 4. CIL 41 "- "0 -I-- (:> a- + k" t-.jIn tr r * 4 )c:C

aA vi4 c. f 0cM- 1- 4.41a. - ~ - ~j& 4-17i stU) V) 41/) v) c)4 (0 I- C; %k L 3 Z Lx: II - -- a ' L13 Cl>I - -N * LU In c.a~ % -. n -. - L * 0j4nC .

_jlbZaKAL- j_ x * - u a--I-V *- f U 1Cr li3a 4-P a; C) Z In . m 4 4X4- TL)7 CLI-:)09 0.4 cL m (- tf'0~ u 4' "E 9- C 1. 3 OE e EX a-

4^ %.V- - - - 4 0 0 4>" I I I l- us - DLA. _:c- C) 0A I-~ - 1 -a It '-

Its 4.3 a v aI >- _4 at -4I - _4 I f ~ 'c- I-- C.j U-c os e fl -4r 4* c9I ZC

C, :-u ( I u C-3 -:x0IA it) nC O)4 t 4 s " c0. * I_ n c n Oil i u-aa if ~ ~ c:> '0- rin

Vu C 1 - c. Vi IIILLID Uj *a- wC4~I t)4 us Lii X~ iUO 01-4ri(x4L U -41 4

_j1 U ;e CA II V a ar >i I- >- 0j P1 Lit 44 of ti of If v) LU (l 4 r- - -a ' I x-. A A A 4c Ci 0'4 \ MC :( Ani-1-45l4) -Qcra V-0.*O L LU A' fl. mn ,-.- * , A- 11Of1LUI) % I () i0 4L9 19- CI9 fi C-4L11- (I L Li(l IA) n -n- W3 n tL) _ If/)LII +)x LI -u -aL U1 ul -Za z -- 0- . i0r\* .4" .. O 0r *_L 4.. us-J *- La' Li ( 00xisUW1 U -21

.i 1 _ V) I-%.-4-III...JILI-4 *- t,) _j 0l "i I f 1-I 1a 4 I I.- -I~C- EX L ~ a L - O - " 0- 0' + *Lli)lU 4' > ' I It If In-1-4' 4 1-)(I _

LI' 4Og- 0~ ::-a u. . 10.4 j4 it X- X [,-4 - C - 0 . - z.4 4 CI J u_ ZLc

$0i. l n A4 1 U, UN % -4) If0 k) '4. '0 4) I- .0 -0 -3 -i rLiiL I,- II Fl- ) U1 10f)E.) 9-l 4% X3 toVl ) a .* ) 4). I 0

A4 A4-'--44 A AA A' lb)'-XA~f-i A C AAA AAA-45 AA A A'1 AAaa4 0A A A AIA1_3 1- C U E3 I4- L jC L () *lhiC ) J L IC. D l . (3 DL)L Lj "114 I'- L3C .)-4- C3 L -3C) %)C4 )L)(>C )( 1 )L 45 C - -)fIL f4-)a Q 4 ) C- 4 1-)13 (D-iLi iJ 2 C(.324-1. ( Ij I J1-3 4-) Ul/ LlC -) 4 _ Z -1 F. C

L - - (jc>L e . - L _ .3 I-3 L.)0F'1(LI C I -1 : . ~ _ _ .4 . 1i r j j( c: _ _ c.3-J ~ L j rI c3l- _3 -i-3 ---

& l AS IIW4U1t W%$ILNWI 4., -4. 4)U ~4U lic IL. 4(334I I -r -I-I -I o)'j j" 4j4 l -) kV J l--J Ls' 's' kp (7

4'4'4'4' 4'CLAS4'IFIED

UNCLASSIFIED SM 1102

1001-4

me-. X. uz -jV -I-- S r' --. Si 0.

C 0 - 1 1 r s I- t x Z- I% 6 - c .) E ILI

% 114 ni - Zi _.L I S

Lu (1i LL ). - L-) )-. :j L1 + U

--- ...i6 CI - CA~ c3~ C) 1=-

IU£ ~~ I- L'f) k- z/ i~ 'i C

9-'J0 C1- * i ~ t i6 4u ~ U

L.) - U LIt +T eI LA i a I-i -1*-4L- m LL. cr

% % ~ 0. 1. >u =J3 =) =AXI -tILi1. > LL- (f) X-? > L.0, (40 -.1* I.- >- n

zt ILI q> 0.1 c)' I- - LAL uj 4- UI0.

*u ;e- +i 43- C) V--c ) 7- x V U-M rQl 1us -- " - 'j I- 4-p- LX

f' I'. - I-- I-II X. (v Ci,. I4 V i.LL LAC . (/I

- .. % i - - t-i 0- ' L)- -s 6.4cII S-l X.' Z C K

(L X - m- 6- Lii 1(-~i 0. -cr C.1* > UU 4

f-. S CL o I.- .- U Ili c)i - It

1,4 1 -1 n 0- %) U- X4 <.I -1 ~ U S' L.. if

% L % C.) I. M -Z 4- Ci- UI i 31- I"tD *4I Xo~~ In t-C) I>C t-it _-. ".10' S IL'i -X . 1 #'~ I

0 In Co c: *- * x1lI'i~ -Y oi n)C III I" +- z>> i~>L i -1 c

*_ L C- " "D-I.' '.6- % ~ 4..)- s-. CA - LK- .1 -r.' .. ei 1L ( L. - Is419 c: %. %. .) 1- 24 if 1-1i- S.- S' 11) C-) (c C-) t'i C3 #,- -3 Xi z.' CT 1/ -*in

C/ .)-.- -C ) <i - ". ~ . -- - % ~ - In - &~1 ")) C-)'Ifl to0,4 IL " Uis ) Er V) -14 4) -Of%.*0. .(14 -4 -LI "'6 S.j %~)-J- In >LLF% (. t* 35.1 - 1i r1 . ca * I -/ - -L)E

91 ~ 4 cA Ai.1 D f'X )% - = - y , E ) i C:) C1111 MI LLC LAI U_ I, QS11AA AAEll Z a'."' ) Z6 (IILA_ 1_V)t- #-. f Vj 6- P- Ii- i 9 4pI n 6-4 SIn .I- )-Z in " of IL lL

I .-4 6- - -s1)-" I/IA u5 I--t1 1.-1- V)-. 0.4( 1-4 (i-.S- -r 4 4 f4 - a-

I--.4 4. (,1 r, I - 2 .') 4j '" ItS ) -.J 11 C:- - U- LI 0- _DZ)-3 X

_j _4 _.4_j I., L- 0 - - - -U- - :n 11 FC) 1-1 -s- 3r 0. _

L-1 4-j CXL L .

LI OI0.oC) C)CDf: -I: -) oi L~ jrjI i L i Li Lij LI L I 'l r)11 f)Is I t-

oD LI r--3 L C) Li L3 E-3 C3) L LI) CD LI c C.) Li) Li CD L3 fj I Li (1 (-3 C3 u I L ) Ei .3 LI L.)E (L) u~ (=) I u i roC-) LI3 c C-) L ( LI -) LIoD " OC C-3 ) (J ED " U C) C) I-) " E- (-. L ) L i C1 L-I Lt) C-) (.3) 1 ) C7DE) L1 C) LI LI) C)E LIJ CD (3 ILI D1 .C) L C) C-) C) I CD C) L.) L3L'. I2 ( L (.3 0 Li3 13 1-) (.3 LI LI3 (.3 CJ C3 C-)13 tI 1 01 0 LI 4-) Ui 1~I C) 1 L I 3 C LI L3 173 0 I- 0~ (7) Li r:) C) 417 C.3 LI) L1 ("D " C3

* . . . . . . S * * * * * * . . . . . . .. . . . ... . . .. . . . . . . S *

4,P V (J. 4i.J .41 .D i1 L 1.4 I- ( .41 1.4 1J aJ %- S -F a-. - - 'j ('S (\j 4\1 (\I %) I'S I'.) (\j 1-19 ) 1 II'S P.) I ) III "I 111 -4

UNCLASSIFIED

UNCLASSIFIED SM 1102

ii. ) p...Lit 1 4 -'3 ;P. .3

LU C 1 .1. " r i.- "

9-0% CDP al I- Z t 1

-x O i .% n

il= CED 9Lu .4 -4%US 0 -- 1-- L UJn

o LI -• .4 ~142E e- I

H ~ ~ ~ ~ ~ - % 1 UI

LJ C) U -II us i .jo L_.

4-3 Oi L- C( 0I- I-- wll 1o > - 1-1.

Us uZC al 111~i 1-1 US u1%

> u- L.. I ILU. )1- -4 0 ) z 0S% -r 10 f-- 4:J U1vH M3t- ILI "

Li €1J -- LiJUi1 LAS C ) Li tru. I-s . "."

-' 4 - C I. Li 0 0 II A. >- I r -

j0- I--" I-4W I C " i) LA, if I

C3 %.-iS Cf u U I- 4m > C)n

T l."- 2U ) •I& c r INS IJ.4 ..Lit (1 .. 51 ) (r) 4,1 L) c)3 + ma 1.- 0.-

iIULI ~ Vd) LiI 1-4 .O &. LbiJ

VS-- *2 e ( U) Ii Iii C i C. C. I'- I--C.) I-- v r U'..

SL0•On LAI"

w4 - - io + tU '-C/)Li LUS c i 014 A- - 111

-il _ ca V) LJ Jr 0.-P " . ..

L) Ok X) ;d.-- 01 11.1 Ai > C)il -%I

xo o .CI) il I . Z - 0 C3 2r ii i.. o - X. Z--. p-. . , ll . - UJ C-) :.j 1/ Li t - ' - - ii + us + C.

C)C.) -Li. C{) 0, ZE Li) LU LU .3. a IA- - i~)L C-- -* 0-- Ck. I-- -

. ... I J -'J I- 12 --- l, - L U -- t *. ( 11.1 %• -I- r -Pi n J 1IU. A.. ---A • - I-- - .-.N . -

I Lu 4L C) 4-) C, Li- of I1 U-I C1

ill .U U Luj in4. u C* 4S.')E f.- I m *.~~.Lit %)( 2

C 0 *uJ0&. -o.r ol . 4LU Oc0 .J i4ll iiI to C -- I-- -- LU. "

I.- fr~ a to it C/ .. ~ C * iL > V) V- up IL r"~ 2 2 I l ' "- .

-J - .4 C, I -- cU U IA- cr Li-

LI- C) C3 -- CIO us H L IT ' - pn * -.

4+ # * v I (- 1..J . , l II- H 1- U I I4/ I.), .S C) I i ( i) ' L 4. Li &. C-. (I> I- * L

40 0)LL .-.4' (U).7 0..; X 0-4n 1-1L 0. "-. Ms. _. 4 > &-I UsC - u.Li i-.) " - ,--'43- C L. LJ..

J i-L U- I 8-4 U ..- Ii. 7-- Li Ic _-- 0: , t- n u. I--fr. IU -c LA .IA- - -it lfI% lit It Ix"- ;p_..1 Ai C5V 1 of 11i1-4 1- -CS VII 1-41-44"" " v iC. -1.1- I-L

1"3 M

4x tit IS. il -x to) I- wt I.. ;- "i i L Z 1) C1 -. 1 - If I- C9 -. 14.1 m- 0I - t .La. -1 I A.LA.- A A -i-t " 4 U -tlA Li12 A A A A ,n'O l J !c Co A i / < A x .0 O A 321:

J4 IA- J4 f II Z Li d I- 2 II > > tA- L.. .

LLi Ci 1-4 iiJ Iii . "- I -t Li 1- il U.l X( 9. 1- ii."-.

IiL Li if% L4. Li tit i Li) 1. 1Lito% t L i

'S*1r- tg *P * I *V* I')- -*S I I- P*- - V-. L*- 4*- t *' u, 4.- 1 *, ", - -- t r- - -r- .V - rr- r -** - .' -

Il in Ur

,11 Uf"

on uU 1/ -1 Lr il 0 0 c L) r 1) 0 C <-,IW f M 0)U

.,

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A Aj C) D C) L) L. C ( J C ( L3 L C)- L ) ( LJO C) (3 LO C) C) L. L) C) ) C. L( ( I) c) I) D Li C) Li (.) C w L 3 C) (.') (" (- -)

C3 IJ ( J L3C-3"CI UC) 01 1 C) U 4.3 (.3.JICC L .) C CD L- - (.J (-j (.3 C3 3 -L :) ) U LJ C C) I U ( ) C 0 -) I u) i

,,; . ; , -, . 1-",; ,,4 z -,. 1.01 0 1 ,. r:. ..* 1; , ,. c;,. ,j4 1z C ,,; , ,z * ;: -"I,, ,-,,. .in- .J . . III an v,~ i t or vi u N u% U or ,U p '4 ) 4 1 c43') A.) .4 4 j. 4.1 '41) r- t. t"- I- I' - I"-3- I'- I'- I)) vA)i U.S ) U Ili U.S W 4 w .. 0.t3' .

1~~- - --- - - - - -- -- - - - - - - - - - - - -

UNCLASSIFIEDA 4

UNCLASSIFIED SM 1102

LI1 41

a-

Li I

Li U,

%(1 (3 Y)S (i

+ 41

IL ~ IIIi I-- La- w - - ~ % I 4

dCi Li44f *l!11 L, - i iC)-

.4(i C3i I.- gal4 a L . r L C

if) 11) -1 W.4 * (( ) USj %

C3if V-C CLf a.(4~ ILI4 *rrcr .. U.,

%LLL' L.(-(U <r( C) 4 II lii Z C; 'J i 4 ' L

-a 0. IIIj4LA OrCf-l LAW L % 4 .. O - C * - . -- C %

-3In I I %~ n' C-) -*- VI)LLs V..J '.J) i.t

1.11 4 13 *-. uu C-.JLa OC'IZ.4,. 0-- -a %'I ar- 1-~s0% .J 4.-. L 1 -.- 4.J5L ~ ~~~((. ~ %s~ gill LL UiI&14 stG ~ -

-a) toi "14 0i .4 .. i -A II 4-4 u-, e) r.4 .4 .4 .s I~ C I- -AXU nl.nr 9x x- C) C) -.4.4- P

% dI-( up CA) 4r

O ( i ~ L (.3 -J ( LZ L C.1 i L L C3 L 1) 4 L I i f (.3 - 1 xi s. V. I 4 3 3 L i 4~( . ( ( Li Li ( L I i C L ) I ) L -S (\

O i 4. V ( . ~1iC i ) 113(' : (9 4.1 x) :> PI4~ :> -. 1 C)L iC . . . )L L )'3 C iL iC ) C) C) P- 00 C C( ) c C

I-)C : I. o.. it ,.)L (1 3 ::. c: Li Li I a- I.- I- Z) ';_C LIP'. L f-) a-(3 L C-24 Li V) Li i x LI LiL )C i 3( .1 (33. . CI 12 * 1 9 k * S S9 t! fS' 0 u) *r *i *x *u -*i *j 9V 5 * * * S.1 . -

-ts - I,.? 3 -iJ ~ * CIL L1. C - J ;M_ 0.'~ C ') ) 044 U b %~ .3 ".5 F. ? a - n .. La- n i C. C'J c) t f'4 0 . 4 I0J ) 7 4 iJ 7 I I I' U LiL Lt. -j(A u 4-).. J t -j 1 .- Ili X'~ 111 4s1s j.u (. 1 i Ifi 4.) 9) M' ("4 ()all c., 4' 4 '

UNCLASS"&A aC)IFiEDl n -e J J-t (4 "-. " s ' '~ 4* 4* )(% X +X \ it) #4 # (-.0 111 -' 2X 2S ('S ''~ f1(X .S >*'~ - 'S 2. i(l

-J - _j-1 - p x -- ZCK . a 0

UNCLASSIFIED SIM iIW

0

f-

'0

4-1u,

I- z

V) W

CLU

(3 C ) u

bi c

Vu

UNLASIIE

UNCLASSIFIED SM 1102

UJI

Li I"

u- LA N

Li q

'a: +

LLu

I-IL -4

2-- LIN4

Lu a

-cc LI 9.

Lu =) -jP .

UJI U, .. 140.IU) . 4.

cr) Li. U i Ii) ....Ui I u - I Il aZ Z L I-4 4 a: ujs

c in w 0i 10 UJ.. Pl .I

t: Ix tv) u0.Lii WU., Lu ) 1-4 1 '.

n zX. ".4 2'1 Ili 0' -,x ' 0v) 0-4I-LCZ c" ~ r 3: n4 +.

C- 3c0 UI U IL Ili -JO. U) E:-

I-: Ui c-.%.0'- 0. C)3

CA (L - ui 1. 0L2nJ4 T- Z E 0' -

Li- M~ ii~ C) Z3 L *j -1 II. ni 11 Il

.f (VU)U 4,0 -x i LU I-I%A A A A A A C> - J11 -JCL 11LL C

1-4 .Ju 0. 9: CE L f3-1 LL. Z C)I-- 0. -- t U Lu je. Lii r - I. -Li e) fit 11A 1 .3 - 13.1 uIs 11 --.Z 0 0- 1 / In (1) -4J n 4M

Ili LiJ Lit LiLi

' .b - I')C- A) V,7 LI- T- (V'.1 'T ul k) I4-LA (7'l;

uLi C.3 0ci C) C C) 0- 3 C.4) C r) L .) L3 C3 C) 0(30 U3.Li .) 3 UP C3 ( Li) C3 C3 Li I C3 LJ Li) (-) C.) L.) (.3

4r r~ '4 9%. UZ $At I'nh U 1 Ift U'%0nU 9% .3) Cy "u v- u%

ntj n~j I' (Ii I'M "u ('*J flJ ( r5 fli ('U n.J n i 1 4 n i n~i n.1 j V

Lu

t UNCLASSIFIED

UNCLASSIFIED SM 1102

a. U)

C> U) I

LILA 1-0 I"4-3

t- 1,- C- I(.

-14E LI II >_j in n (

I- Li r 0 : 1.3

LII IL ILI s

i C. U) 1 - 1 I LI

Li 51.5 an) 0" M-

> 1-4 P4 ' UN '4.Ai * j >- LI. %~ .lu ci

us) LA Cy. Op. 'n F 1,- Z : LA L.- -v) C.1-43 - 1-1 -ti (Z - *4t-O

11. ti LIn w l % 1-- % Lui ~ >~) .

9-I1- tCl L, all C?' a., V,~

I,- V)I'-.J-f- LL II-> LL % LJ tA.5L1

7)cr Is--1- a 11 1- (fIi n 40 11 C

4..) 1- ~)IiJU.1'uJcx T UN a..) t tr

ILL )L J )~ C U V)i -4r Ui ial Ll IDi i - - k OLL "- Lag 11 ii a. -- <i A. C ) LL 1.0/- L m% a'. f% .

&/ tit ILI U) "i 1,1 % ~ LL-Lj

c -, in) a,- t4I. v) 1-41-4-4) -*

=3 t-l - 0 0-. ( L 0 ci uj Z

Q-i 91- LL 6.) L- LA_ Li iL

Li NJ CiLIC. I s U .Ii 'o LI L) C)C 40(1 L .)4)L

Lj C) 40 1-) C C) 4."'u (. L : ) C) (7) C-) C'3 (C) ~C3 L ) Li) 1:.1L.) L.) C) C. I ) C 0 C. - C-1(1 ) L C IS. e:j r C ) C-: cliC (4j&A

tz 11 * * *.0 * .z 1* 1 * IL .. .1/

'4M '4. '4. '4. 'IV '4j (NJ5-' I'. C' U% C" -I . I"- C"- ( I' 4' j' L) Li

UNCLASSIFIED

UNCLASSIFIED SM 1102

C)l Q 0f 1,l 0

)I- Cl . 0 )0- C0 :I- 0) 0 3 ~*j ":I .,;I .D a O03:.

o3 n 0 03 c0 D a0C

)( 0- 1 0 r1- 0 ) ( 0 ( 0 )

Is w-V j

C) 0C30 C3. 0 (3 C- CA 1 N

)I- C3 Q~ 0 AU 0

I I o, IV, ' 0. .

w-W~ ~~~~ 1.E (1 c ca

.1- L:) 42. W U7 C)4k USl LIP. K l 4.7 cL

~ I .3c. a Q1 X .3- fr frC3 IL %L IL m- 4 CC WI L M .%-x AX 0 * r I xii.%1 . II

- 9- 113 xel x~3 r I li r1- X 1_ xr,' I- p"9' 9 i . r)U i LIS I-I -

LL j .- P. Ili CA I q U - - USI CA Li) CIO W. Ii) us L 4/)-US 4pC

ub) (_I UP V) U) -a GSUP4 I nLi

%_ C3 04 0-4 Cl 1 4 *-4 6-4

-L x a.c lC'T : J

W1 I-(i 4 US4 0-a( 0- - 0-2, 0 0,4 0W.-x* 94 :3 11 ox -4 x -A 4.) JL US InjX

114mCe 3 CA CA4 CA4 %4 C4 I. - 90 9

mg _k. _j fCge CXC. IVCXI

up ow4-ES CA 4A. Lid. 9Ld U CL CA L Lj U. LA M CCin101. 0 0 0 0 0 03 ,.

-c 44 1.- OX 3 I- OQ m- 1.- 3 I.- OI I. - .3.I-.

UNCLASSIFIED

IUNCLASSIFIED SM 1102

cJ

Ln

ILau AD

-4 er

Ix n -

Iii ffO

UNLASIIE

U.NCLASSIFIED' SM 1102I_. EU In 'I v. N _ -iC U. 8C)l )' 10 l t 4) wt jo i t- L I* a U in l- 0' w.- PI In8 N 0~'

S I q*q -W* IV EU Ai IU. CV 18 P-1 -2 -4 IW ul '48 N N, (11 0. CA I, C\ .8 oni '0 (k) CE C.) 8 1

*so e s i , ii 50 , so so * 5 .,1* , so * so si so so so so g so I I

E~ C; C-)VCZ)CIC)tC -CI(j C C QCCC. , Ci)C)LCEpCoC r.iC CC. L riLI3C) C)C) 1C) C I )CC'lD' L- Lu Li 4.1,)lt "i 11 CILI Li L CI Li U C-0 C.) Ci LI P I ) iC) ILIQ U L C.)L LJ L -LlI (.I u i C.) u L.) i C-)C. Li

. . . . . . . . . . . It . It . It . . . . . . * * S S * * * * * S * S * * * * *

if% 1')11 0, f- I4 1'. 0, 's EI U,8 v- Mi I C) I. N M' 't -4 4) 0 EU two It C~i N 4'UV in I'S 4 r Ei Eon in f 4)x I .4 -4 in8 1411 1" Pi (1. r\0 " ri-j -~-C C) C) (), Q1 ai 0E) fy1 N- N- C) .40 I) I% ut on InEI in i N i l Ei 8111 i i

It . . .It It It * . . . . . . . . . . . . It I 1 * 1 1 . . . . . . . .

)C) C) C1'N 0 C> C3. C4 El 0 0 EDP Cn. Ci C3i '4)' 173 3 C)~ C C > CP. C C.I CD '3 N) 0D 0- C5 a4 ' 0 r)

. . . . .* . . .. . . . .It....t... .It..0. .. .... .. . . . .

0( C) cor--0I) n In CE 't i) on in " 0i noCE C-) n a 0 01 0 oe at f- C'- 0 Ci0 q) C In In 00 UN in C% ' i

* . . .. It . . It . . . . . .. . ... a. . . . . .

C-) 0" N 0 ILI " C ' 0 u U 0-j L) C I# C. C.3u a' l ILI C) C.) C) C ILI C) 40 C) N T- V- 0'C l 2020 iE

*~~~ S. . . . . It . It . . . . . . . . It It . . . . . . . . I I

o) C) 1. 0 L C C ) C.; Cli 17 7) Cl IC14 )C C) CU ' l (7 N 0 L) CS C3 C' (71 C.) N) C' C), 17, 0u r h ni i C.) C1.

C3 Ci CD C) CD C-1 ca C) Ci CD -0 CE) uE C-340 C. CE C3 40 (7C) C CELI C i L. ) (D 0L UE C) C) CE CE1 C) 0 CD C)C)3 u) D" CI iC C) iCLI ui C.> Li C)) CE- (34-3 CD C1 C-) u Ci C) C.3L) a LI C) Li u C) Ci ) L ) C) cu uI.- L.) 0 k>

............................ . . . It . .. .. . .. . . . . . . It . ..

anin 10 'C10r-r eC N k 0.' C)' 0 (VC CUj -04 -tIn '4) N- r CO) 0' CE - no oi -S in aO fl- A)4i I') In - CE0'q-C) a- W' N '4) EE '4 "O "U - 1- 0 0 N ,- i 4 r^ # w) I- Ciw 0' OD8 0., N% .4) i 't 10 f%. - - q- q. i 8-8 C)

X &A in' '-4 124 4 I - I - 4 1* 4 -? fP8 WI "1 1,1 ' fi Ili ' on ) i 8 11 1* " CM C ( CU nU IV "U (8J.C. CUs (\U CU fm ni IVC

11 1 s s * 10 so I' so go so s 1'* * 0 1 1 1 l o s *1 1 I' l 1 *S1S* ~ S *~

Sg Sir l lU - D- ItI if, Wr-00v \ 4k.I lIC V' - - )r no 'T11 1 51.5 55 5 .ISSQ ) 0gA

ch rr .* tIt .. . .. .. .o. .. It. .. . ... .. ... . . . . It . .

IL LA

I Ify ' t 0 SE I tiN - 1O 1-Er- fO.PW '0P4 'V 0 - n UE'88In II ' C Ui " I 4 - C ) (\j f IN I,-. ) IQfl0,0

(_I * L N.I r rI N- 11 '- -V'- P- f I '- N02( LI %X ONI( U E8JC)ifI McifL.) L- I (-1 - q- I- -U) L C) q- IV 8- M (%I I* V~ M- I'V 8r* 8-J II C-8 -q -8 'q -. - ' -~ UC ,C UC U j III

*S8I-

LIH.t,l .- Is C 1I f 1 O NUo411 1 ni V m j0 1r )4 K t r "0 4 l )4 ,U

o 1S- 1 o14-1P1.P-)- O.'C 4A -4jU8UE i0ia4. 4) A 0CU88-CIC) E UU NI N i UI n SIT-Z" EiE E in IlC)DO " " (I r IV

us, .1L 1-

ILI W~ EIt im

111 0-4 9.4 SAl 0- 0 111 "- in 4.0 111% 41. 14) EU ii.) fol) I- 4.1 CU wA 17 I' Eli I-' E' "S U Li E/ W% T ..- I P8 IAJ U P 8 NI '4 1-93 1.- 1- 4.9 0 O 00ro l0f)- -armO 0' Cli N u2Ili- Cii U',- u304 -04 R-% N'4 1- 1".4 ID 80 0n a T- CU no 44 St '0

I UNCLASSIFIED

B 4 __UNCLASSIFIEDThis Shoet Security Classification

DOCUMENT CONTROL DATA- R &DlSecu, .ly clesss*,cation of title. bodv of ablstract end Indesting annotation must be entered when the overall document is Woess'd)

I ORIGINATING ACTIVITY 2a. DONtJ~~?T CLASSIFICATION

DEFENCE RESEARCH ESTABLISHMENT SUFFIELD 2b GROUP

3DOCUMENT TITLE

AN INVESTIGATION OF PARTICULATE IMPACTION ON SPHERICAL AND CYLINDRICAL TARGETS (U)

4 DESCRIPTIVE NOTES IType of report and inclusive dates)

SUEEIELMMDRANAUTHORIS) fLeet name. first namse. middle initil)

JEFFREY L. HALL AND STANLEY B. MELLSEN

6. DOCUMENT DATE Augus 1984L 78 O PAGES b NO. OF REFSAuus 1984 78 7

b.PROJEiCT OR GRANT NO. go. ORIGINATORS DOCUMENT NUMIERISI

13E10 SUFFIELD MEMORANDUM NO.

lb CONTRACT NO. 9b. OTHER DOCUMENT NO.tSI lAny other numbers that may beassigned this documentl

10. DISTRIBUJTION STATEMENT

UNL IMI TED

11. SUPPLEMENTARY NOTES t2. SPONSORING ACTIVITY

13. ABSTRACT'

(U) This project was a theoretical investigation of particulate impaction onspheres and cylinders. The motion model developed was implemented on a computerand yielded results focused on two main goals: first, the net effect of gravityon particulate impaction was determined; and second, a man simulation was con-ducted. This simulation calculated to a first approximation the amount of chem-ical that would impact on a man subjected to a chemical attack.

Due-

UNCLASSIFIED __

FI is .;he-et Sectrity Classifilcatio n

KEY WORDS

AerosolChemical DefenceParticulate Impaction

INSTRUCTIONS

I (I RIG;INA I ING AC.TtIf ~Y Enter the name and address of the 9bs. OTHER DOCUMENT NUMBER(IS) It the document has beenittai/~ii ss"'.. Qlh. Jwumront. assigned eny other doicument numbers iteither by the orrsgmnar

or by the spontor[, also enter this numberilsLIn U()CUMENT SE CURl I ,CLASSIFICATION Enter the overall-

wecuity (faissification of this document including special warning 10, DISTRIBUTION STATEMENT Enter any limitations on___terms lohetiiver, itpcoliCittf further dissemination of the document, other than those imposed

by security clasti localtion. using standard statements such so.,?t) GROUP F ow,' wt iuritV i .'i tessificetion group number. The three

i jw ....iiul. (~Iii mi A;, tenil.. *M ut the, ORB Seicurity Regulations. I1) Quelilitoor Fei.uelei s may obtain copies ofl thisrtoCuiment hiom their defence documentation centet .

I I)(iWrOi NI It ILL ito the trnipiott idocument tSil in allt~,ii'Iitii Vi . iiIialies ihoolettie unclassified. If a (2) "Annoiuncei.efi and ilissemirialtot or this document

sil" oi,.ilst~..~ue il cantrot be selected without deast is not authoi ,,Od withoujt prior approval fromio, i tii issi.ot with the lisual one eapitallieortern oi~rqliietiq aictiiy

iii ,,i..pu i.t hi.. ininediatv fo l lowing the title.11. SU~PtCMENr-AWY NOTt.S Osit lor adiitiooui etipluiaoorv

4 it ,'RIP Rit VI NOTkI E.,lter the catilgory of document. e.g. notes.-,i..iooii itiport. tit~n Yir, no te or technical lettei If appropri

I.- ii.hi. tyt,.- (44). ment. e.g. interim, progress, 12. SPONSORING ACTIVI I vEnte, the name of the departmentalsi-.ov,t .innuai ni liuttil Give the inclusive daotes when a project office or laboratory sponsoring the research andsp- f., ecoortinV pos1irot , covet rd development. Include irldresa.

5 AUTHiICHISI Eiitur ti@,imelsi ol euthorlal as shown on at 1j ABSTRACT Etera.n abstract givingo a briel anci factualit the, diio, uuiititi F0nt 1.iur namse. first uname, iddle initial. summery of the docuiment, even though it mnay also appsear __

ii in, tat . iholow tensk. !,--. name of the' pincoiu author to an elsewhere in the body of the dlocumntn itself It is highlyilt is turit iMinium~ . cituuritteont desirable that thu ebsitraut ouf classified documents lie uisatsi-

lied. Ech paiagraph of the abstract shell end with anbi D)LLIME N I DAIt E ~ithe (t0re irionth. year)I of iiidication of the seiuuity classification of the information

F Siuulu~riiei pprovalt I- riilceticn iot the ielir ment. in the paragraph tunicss the documqnt itself us unclassified)

heI OTAL NUMBE 11 OF '(,ES The total page count should etsne s4) b C.(i i~ItIullone iunl pngiiitu#oi isrocedutes. i.e. enter the number The length of the asltract should he limited to 20 sinogleo-spaced,Ii piugol, -I ...iiiiii tub .lo i-h stencillrd typewe ip tImtues P,% itches long.

/Ii NIJMt~ 14 1 IF Fil t Ifl P., 1 S E nti the Intel numober of 14 K1I- Y WoijfIS Key wietit dte technically meaeneiful termns orwl d .. .. I il ., it. -wuti . shoo t phoises Shoot hi.uti a ilctuinentl and ubujlil he helpfl

in ( ' taliitiU the riiou , ii Kesy senit it hroultt tutu seloti teril stoHr.i lilt) Itt I iIllI tilt ANT I '. MBE1 if aptuprise' enter the Ihelt no0 %8i Ui ity 1-lessilii1eTIOn us titosited. lcsor~tsfiers. Nuch as

.quopli~i tt -looeia'i. i-1 uugiieeisn p'oCir or *Finl numsber m olu4Jptintiolell iii.signet.io. h Itad iiame, rilitusry pr oject codetil, hi i IN-i I ... ii... w it itot tet.iI iiiime. geographirc hunt otie nay li serd at kI. wo srs fst will

li0 toowedt iy dn Meleiiet inn1 of V iuie11411 (otlas tM~b r ON lt A. NI lM1llf it it p-io. ii tete r. the applt able-

*.,tw. wi ivui h Ihi.-o ititmelier wiis written

,is ijRIGtNA rollS i(li jtNUMB# IS151 Enter theliii4 otlituinw i tiio. t iy wehich the document will tie

, iuitlittl ontl tni tilti i v the ittigiuating activity 'This

ii.' if~elmust.ue....uti. this lotiument

10-84

DTIC