investigating the effects of atmospheric aging on the radiative

33
Investigating the effects of atmospheric aging on the direct radiative properties and climate impacts of blackand browncarbon aerosol Jesse H. Kroll, Colette L. Heald Department of Civil and Environmental Engineering, MIT Paul Davidovits, Andrew T. Lambe Department of Chemistry, Boston College 14 November 2014

Upload: dokhuong

Post on 10-Feb-2017

218 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Investigating the Effects of Atmospheric Aging on the Radiative

                  

         

                    

              

   

Investigating the effects of atmospheric aging on the direct radiative properties and

climate impacts of black‐ and brown‐ carbon aerosol

Jesse H. Kroll, Colette L. Heald

Department of Civil and Environmental Engineering, MIT

Paul Davidovits, Andrew T. Lambe

Department of Chemistry, Boston College

14 November 2014

Page 2: Investigating the Effects of Atmospheric Aging on the Radiative

         

     

BC climate forcing: Large, complex, uncertain

[Bond et al., 2013]

Page 3: Investigating the Effects of Atmospheric Aging on the Radiative

       Simple lifecycle of atmospheric BC

optical properties

transport

emission deposition

Page 4: Investigating the Effects of Atmospheric Aging on the Radiative

       Simple lifecycle of atmospheric BC

optical properties

transport aging

emission deposition

Page 5: Investigating the Effects of Atmospheric Aging on the Radiative

 

                                             

                                            

This project

Black/brown carbon aerosol is chemically dynamic, subject to atmospheric aging reactions; these can lead to dramatic changes in physicochemical properties, and therefore climate forcing effects.

A complete understanding of this aging, and representation of this aging within models, is necessary for the accurate simulation of global direct radiative forcing.

Page 6: Investigating the Effects of Atmospheric Aging on the Radiative

     

 

    

  

      

      

 

Key BC aging reactions

+1) Coagulation

ox + SO2 H2SO4 (or (NH4)2SO4) coating

(NH3)

ox + NO22) Condensation NH4NO3 coating

NH3

+ VOC ox

SOA coating

ox3) Heterogeneous + OH/O3 surface oxidation oxidation

Page 7: Investigating the Effects of Atmospheric Aging on the Radiative

         

                                              

  

               

  

                                                       

Effects of aging on BC properties

1) Enhancement of light absorption by coatings (“lensing effect”) [e.g., Schnaitner 2005, Bond et al. 2006, Schwarz et al. 2008, Lack et al. 2009, Cappa et al. 2012]

+ VOC ox

“darker”

2) Increased water‐uptake ability by coated or oxidized BC

+ H2O

Higher hygroscopicity can lead to …

‐more efficient light scattering (due to larger particles from water uptake) ‐ shorter atmospheric lifetimes due to increased wet deposition

(‐more facile activation to form cloud droplets)

Page 8: Investigating the Effects of Atmospheric Aging on the Radiative

       Simple lifecycle of atmospheric BC

optical optical properties properties

emission deposition

transport aging

Page 9: Investigating the Effects of Atmospheric Aging on the Radiative

       

                 

Simple lifecycle of atmospheric BrC

“Brown carbon”: OC that absorbs in the UV/visible (distinct molecules)

? SOA aging

“browner”

formation

?

emission deposition

BrC

“whiter”

Page 10: Investigating the Effects of Atmospheric Aging on the Radiative

 

                                                      

                                             

                                            

This project

Black/brown carbon aerosol is chemically dynamic, subject to atmospheric aging reactions; these can lead to dramatic changes in physicochemical properties, and therefore climate forcing effects.

A complete understanding of this aging, and representation of this aging within models, is necessary for the accurate simulation of global direct radiative forcing.

Major questions: ‐ what are the most important atmospheric aging transformations of BC/BrC?

‐ what effects do aging reactions have on climate‐relevant properties of BC/BrC?

‐ how do these aging reactions impact BC/BrC direct radiative forcing?

Page 11: Investigating the Effects of Atmospheric Aging on the Radiative

     

            

                  

Approach: Laboratory + Modeling

Development of global modeling framework for representation of aging, climate effects �

calculation of DRF

Laboratory studies of BC/BrC aging reactions: Changes to chemical + optical properties

Page 12: Investigating the Effects of Atmospheric Aging on the Radiative

                        

         

 

       

     

 

   

 

 

      

         

IPCC AR5 Estimates that Black Carbon is the 2nd Largest Warming Agent in the Atmosphere.

(but that’s not what models say)

IPCC AR5

Bond et al., 2013 How can these be reconciled?

ACCMIP (Shindell et al., 2013)

IPCC AR4

AeroCom II (Myhre et al., 2013)

BC (FF/BF)

BC (BB)

0 0.2 0.4 0.6 0.8

TOA DRF (Wm‐2)

Page 13: Investigating the Effects of Atmospheric Aging on the Radiative

           

     

                   

     

                 

Observations Also Suggest That Models Overestimate BC

AeroCom means in black, HIPPO obs in colour Obs in black, AeroCom models in colour [Schwarz et al., 2010] [Koch et al., 2009]

AeroCom models overestimate BC over Americas & remote Pacific by factor ~5‐8.

Page 14: Investigating the Effects of Atmospheric Aging on the Radiative

               

          

           

Aging Processes may Reconcile Both Mass and Absorption Constraints

AbsorpƟon ↑ LifeƟme ↓

Aging GEOS‐Chem integrated with RRTMG (GC‐RT) (Heald et al., 2014)

+ Emission Absorption (AERONET) Mass Concentrations (ARCTAS,

EUCAARI, HIPPO + surface)

Page 15: Investigating the Effects of Atmospheric Aging on the Radiative

         

   

 

 

 

 

          

 

             

                          

New Model Aging Processes for BC

Hydro‐phobic

Hydro‐philic

Old Assumptions

1.15 days

Hydro‐phobic

Hydro‐phobic

New Assumptions

Anthropogenic

Biomass burning

Hydro‐philic

Hydro‐philic

Sulfate, etc.

Organic components

4 hours (also increase fraction emitted as

hydrophillic to 70%)

k = 1/τ = a [SO2] [OH] + b

Based on several lab and field studies, esp Liu et al. (2010); Akage et al. (2012)

Page 16: Investigating the Effects of Atmospheric Aging on the Radiative

                 

Good simulation near source (with or without new aging).Modified aging scheme results in shorter lifetime and better 

simulation of low concentrations in remote locations. Vastly better than AeroCom. Generally within a factor of 2. 

 

 

Impact of New Model Aging Processes on Simulation of BC

HIPPO Continental (Near‐Source)

Good

Better

Still Bad

Page 17: Investigating the Effects of Atmospheric Aging on the Radiative

       

        

 

    

 

     

 

       

  

                                                                                    

                       

Considering Absorption Enhancement of BC

Anth BC

BB BC

Smaller size, wider size range

Mie calculation

Larger size, narrower size range

Mie calculation

Absorption Coefficient

Absorption Coefficient

Absorption enhancement from coating (AE=1.1)

Absorption enhancement from coating (AE=1.5)

Also “Most Absorbing” Simulation : Set AE=2 and standard aging mechanism (longer lifetime)

(Akage et al., 2012; Schwarz et al., 2006; 2007; 2008; Lack et al., 2012; Dubovik et al., 2002; Shamjad et al., 2012; Moffet et al., 2009; Knox et al., 2009; Kondo et al., 2011; Lack et al., 2012; Moffet and Prather, 2009; Bond et al., 2006; Cappa et al.,

2012)

Page 18: Investigating the Effects of Atmospheric Aging on the Radiative

       

             

 

 

          

        

 

   

Adding Brown Carbon to GEOS‐Chem

Aromatic SOA

Brown Carbon

Get RI from field measurements Absorption

Mie calculation Coefficient 50% of biofuel POA 25% of fire POA

MAE=1 m2/g MAE=0.3 m2/g

Absorption of BrC is highly uncertain ‐ we choose upper‐range estimates

Page 19: Investigating the Effects of Atmospheric Aging on the Radiative

                      

               

Including Brown Carbon is Critical to Capturing the Spectral Dependence of AERONET AAOD

*AAOD product here using lev2 SSA with lev1.5 AOD

Page 20: Investigating the Effects of Atmospheric Aging on the Radiative

           

                                            

                           

               

Measurements Still Suggest Absorption is Underestimated

Better able to capture the spectral AAOD with our “best” simulation (including BrC), but still biased low (especially in some biomass burning regions).

Can “scale up” our model to match observations (Bond et al., 2013) – emissions or optics?

*AAOD product here using lev2 SSA with lev1.5 AOD

Page 21: Investigating the Effects of Atmospheric Aging on the Radiative

                    

       

         

 

       

     

 

 

 

 

   

 

 

                                                 

Our Work Suggests Smaller BC DRF Required to Match All Observational Constraints

Scaled GCRT

BC (FF/BF)

BC (BB)

BrC

"Best" GCRT

Standard GCRT

IPCC AR5

Bond et al., 2013

ACCMIP (Shindell et al., 2013)

IPCC AR4

AeroCom II (Myhre et al., 2013)

0 0.2 0.4 0.6 0.8

TOA DRF (Wm‐2)

Brown Carbon contributes 35% of the warming from carbonaceous aerosols. BC DRF is less than methane and tropospheric ozone.

Suggests that controlling BC is less effective for climate mitigation.

[Wang, et al., ACP, 2014]

Page 22: Investigating the Effects of Atmospheric Aging on the Radiative

         

           

     

Lab Study 1: Heteogeneous oxidation of BC

with Kevin Wilson (LBNL), Manjula Canagartna and Paola Massoli (ARI)

AtomizerN2

Pump

T

O2

Drier

SP-AMS

BC source

[Browne, et al., submitted]

Page 23: Investigating the Effects of Atmospheric Aging on the Radiative

     

         

         

   

                  

   

SP‐AMS with VUV ionization

VUV (12 eV photons)

Soot‐Particle Aerosol Mass Spectrometer: Real‐time measurement of mass, composition of particles (OC, BC, inorganics)

Ionization efficiencies PAHs: 7‐8 eV Most organics: 9‐10 eV BC fragments (e.g. C3): ~11.5 eV

[Onasch et al. 2012]

Page 24: Investigating the Effects of Atmospheric Aging on the Radiative

Heterogeneous aging: BC “cores” unaffected

300 C x/20 (Hz)3 SMPS Integrated volume (ug/m )250

Cx accounts for the majority200

of the flame soot mass 150

100

12:00 AM 2:00 AM 4:00 AM2/2/2013

0.5

Frac

tion

of C

x spectrum remainsCCx

0.4 C 2 constant with aging: C 3 BC “core” is inert on the0.3 C 4 timescale of atmospheric agingC5 - C100.2

0.1

120.0 0.5 1.0 1.5 2.0x10-3OH exposure (molecules cm s)

Page 25: Investigating the Effects of Atmospheric Aging on the Radiative

       

   

                        

Changes to adsorbed organic species N

orm

aliz

ed to

Cx

0.16

0.12

0.08

0.04

0.00

80x10

CH CHO CHO>1

no oxidation

20 40 60 80 100 120

-3

60

40

20

0

~2 days oxidation

20 40 60 80 100 120

Organics associated with BC (representing small fraction of total particles) undergo dramatic chemical changes

Page 26: Investigating the Effects of Atmospheric Aging on the Radiative

       

Continual changes with oxidant exposure

Approximate days0.0 0.5 1.0 1.5 2.0 2.5

1.2

Sig

nal n

orm

aliz

ed to

Cx

1.0

0.8

0.6

0.4

0.2

0.0

250x109200150100500 OH exposure (molecules s cm

-3 )

Reactant CxHy +

CxHyO+

CxHyOz +

Page 27: Investigating the Effects of Atmospheric Aging on the Radiative

       

         

             

Rapid loss of organic species

[Org

]/[O

rg] 0

1.0

0.8

0.6

0.4

0.2

0.0

0 5 10 15 20 Approximate days of OH exposure

Lifetime of adsorbed organics is short

Follow‐up experiments: Water uptake (hydrophobic hydrophilic)

Page 28: Investigating the Effects of Atmospheric Aging on the Radiative

     

m/z 202 m/z 216

       

Loss of adsorbed PAHs

[PAH

]/[PA

H] 0

1.0

0.8

0.6

0.4

0.2

0.0

m/z 202: pyrene

m/z 216: benzo[a]fluorene

0 5 10 15 20 Approximate days of OH exposure

Long‐timescale “survival” of PAHs (morphology)

Page 29: Investigating the Effects of Atmospheric Aging on the Radiative

         

   

 

   

      

 

 

Next: Coating + heterogeneous ox. experiments

Flow tube reactor

soot particle generation

reagent/oxidant preparation

analytical instrumentation

SPMS (size) CPMA (mass)

SP‐AMS (composition)

EAD (surface area) CAPS‐SSA, CRD‐PAS

(absorption, scattering)

March 2015

Page 30: Investigating the Effects of Atmospheric Aging on the Radiative

 

                     

    

                           

        )  

Experimental matrix

BC source ‐ fractal soot from McKenna burner (denuded at 300oC) ‐ also atomized black carbon spheres

Particle size ‐monodisperse, 30‐300 nm

Aging type ‐ OH + SO2 (sulfuric acid coating, het. ox) ‐ OH + NH3 + SO2 (ammonium sulfate coating, het. ox) ‐ OH/O3 + VOCs (SOA coating, het. ox ‐mixed coatings

Page 31: Investigating the Effects of Atmospheric Aging on the Radiative

                                    

                            

Parameterization

Changes to composition/hygroscopicity + optics as a function of atmospheric exposure (to match representation in Wang et al. 2014)

Key optical parameters determined, included in a “lookup table” (or interpolated function) based on experimental results

particle size mass extinction efficiency

relative humidity single scattering albedo

wavelength asymmetry parameter

mixing state (BC:org:SO4)

Page 32: Investigating the Effects of Atmospheric Aging on the Radiative

                

                                                  

                            

                                 

                

Summary/conclusions

‐Modeling vs measurements of BC: models overestimate loadings, underestimate aerosol absorption

‐ Aging processes can affect both concentrations (via changes to deposition) and optical properties (via changes to coatings); need for an improved understanding, description of such processes

‐ Global modeling results: Improved agreement between predicted, measured BC loadings and properties (but AAOD still underestimated!)

‐ Laboratory results: Heterogeneous oxidation an efficient way to change organic components of soot; oxidation can dramatically decrease“brown”‐ness of brown carbon

‐ Next step: Laboratory results implementation in models

Page 33: Investigating the Effects of Atmospheric Aging on the Radiative

 

   

   

  

   

  

    

          

                   

Acknowledgements

Manjula Canagaratna Kevin Wilson Eleanor Browne Andrew Lambe Paola Massoli Thomas Kirchstetter Xuan Wang Paul Davidovits Timothy Onasch Jonathan Franklin Douglas Worsnop Kelsey Boulanger

David Ridley

Xiaolu Zhang Christopher Cappa

Joshua Schwarz Anne Perring Ryan Spackman

Dantong Liu Hugh Coe

Anthony Clarke

Publications from this Project: Heald et al., ACP, 2014 Wang et al., ACP, 2014 Browne et al., JPCA, submitted Lambe et al., ES&T, 2013

RD83503301