introduction to spectral analysis (chapter 11) · 2008-03-24 · arthur berg introduction to...

19
Introduction to Spectral Analysis (Chapter 11)

Upload: others

Post on 25-Jul-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Introduction to Spectral Analysis (Chapter 11) · 2008-03-24 · Arthur Berg Introduction to Spectral Analysis (Chapter 11) 18/ 19 §11.2: Orthogonal Functions§11.6: Fourier Representation

Introduction to Spectral Analysis (Chapter 11)

Page 2: Introduction to Spectral Analysis (Chapter 11) · 2008-03-24 · Arthur Berg Introduction to Spectral Analysis (Chapter 11) 18/ 19 §11.2: Orthogonal Functions§11.6: Fourier Representation

§11.2: Orthogonal Functions §11.6: Fourier Representation of Continuous-Time Functions Periodogram

Outline

1 §11.2: Orthogonal Functions

2 §11.6: Fourier Representation of Continuous-Time Functions

3 Periodogram

Arthur Berg Introduction to Spectral Analysis (Chapter 11) 2/ 19

Page 3: Introduction to Spectral Analysis (Chapter 11) · 2008-03-24 · Arthur Berg Introduction to Spectral Analysis (Chapter 11) 18/ 19 §11.2: Orthogonal Functions§11.6: Fourier Representation

§11.2: Orthogonal Functions §11.6: Fourier Representation of Continuous-Time Functions Periodogram

Leonhard Euler (1707 — 1783)

Arthur Berg Introduction to Spectral Analysis (Chapter 11) 3/ 19

Page 4: Introduction to Spectral Analysis (Chapter 11) · 2008-03-24 · Arthur Berg Introduction to Spectral Analysis (Chapter 11) 18/ 19 §11.2: Orthogonal Functions§11.6: Fourier Representation

§11.2: Orthogonal Functions §11.6: Fourier Representation of Continuous-Time Functions Periodogram

Euler’s Formula

Euler’s formula:eiω = cosω + i sinω

gives rise to the Euler identity

eiπ + 1 = 0

In combination with the identities

sinω =e−ω − e−iω

2i

and

cosω =e−ω + e−iω

2iOne can conclude the following set of functions are orthogonal{

sin(

2πktn

), cos

(2πkt

n

): k = 0, 1, . . . ,

[n2

]}Arthur Berg Introduction to Spectral Analysis (Chapter 11) 4/ 19

Page 5: Introduction to Spectral Analysis (Chapter 11) · 2008-03-24 · Arthur Berg Introduction to Spectral Analysis (Chapter 11) 18/ 19 §11.2: Orthogonal Functions§11.6: Fourier Representation

§11.2: Orthogonal Functions §11.6: Fourier Representation of Continuous-Time Functions Periodogram

Outline

1 §11.2: Orthogonal Functions

2 §11.6: Fourier Representation of Continuous-Time Functions

3 Periodogram

Arthur Berg Introduction to Spectral Analysis (Chapter 11) 5/ 19

Page 6: Introduction to Spectral Analysis (Chapter 11) · 2008-03-24 · Arthur Berg Introduction to Spectral Analysis (Chapter 11) 18/ 19 §11.2: Orthogonal Functions§11.6: Fourier Representation

§11.2: Orthogonal Functions §11.6: Fourier Representation of Continuous-Time Functions Periodogram

Jean Baptiste Joseph Fourier (1768 — 1830)

Arthur Berg Introduction to Spectral Analysis (Chapter 11) 6/ 19

Page 7: Introduction to Spectral Analysis (Chapter 11) · 2008-03-24 · Arthur Berg Introduction to Spectral Analysis (Chapter 11) 18/ 19 §11.2: Orthogonal Functions§11.6: Fourier Representation

§11.2: Orthogonal Functions §11.6: Fourier Representation of Continuous-Time Functions Periodogram

Fourier Representation

Arthur Berg Introduction to Spectral Analysis (Chapter 11) 7/ 19

Page 8: Introduction to Spectral Analysis (Chapter 11) · 2008-03-24 · Arthur Berg Introduction to Spectral Analysis (Chapter 11) 18/ 19 §11.2: Orthogonal Functions§11.6: Fourier Representation

§11.2: Orthogonal Functions §11.6: Fourier Representation of Continuous-Time Functions Periodogram

Fourier Analysis

A “well behaved” function1, f (t), defined on (−P,P) has the following Fourierseries representation:

f (t) =a0

2+∞∑

j=1

(aj cos(jt) + bj sin(jt))

where

a0 =1P

∫ P

−Pf (t) dt

aj =1P

∫ P

−Pf (t) cos

(jtπP

)dt

bj =1P

∫ P

−Pf (t) sin

(jtπP

)dt

1satisfies the Dirichlet conditions...finite number of extrema in a given interval, finite numberof discontinuities in a given interval, and absolutely integrable over a period

Arthur Berg Introduction to Spectral Analysis (Chapter 11) 8/ 19

Page 9: Introduction to Spectral Analysis (Chapter 11) · 2008-03-24 · Arthur Berg Introduction to Spectral Analysis (Chapter 11) 18/ 19 §11.2: Orthogonal Functions§11.6: Fourier Representation

§11.2: Orthogonal Functions §11.6: Fourier Representation of Continuous-Time Functions Periodogram

Fourier Analysis

Or when defined on (0, 2P)...

f (t) =a0

2+∞∑

j=1

(aj cos(jt) + bj sin(jt))

where

a0 =1P

∫ 2P

0f (t) dt

aj =1P

∫ 2P

0f (t) cos

(jtπP

)dt

bj =1P

∫ 2P

0f (t) sin

(jtπP

)dt

Arthur Berg Introduction to Spectral Analysis (Chapter 11) 9/ 19

Page 10: Introduction to Spectral Analysis (Chapter 11) · 2008-03-24 · Arthur Berg Introduction to Spectral Analysis (Chapter 11) 18/ 19 §11.2: Orthogonal Functions§11.6: Fourier Representation

§11.2: Orthogonal Functions §11.6: Fourier Representation of Continuous-Time Functions Periodogram

Fourier Approximation

The function f (t) can be approximated by truncating the infinite summation as:

f (t) ≈ a0

2+

k∑j=1

(aj cos(jt) + bj sin(jt))

Arthur Berg Introduction to Spectral Analysis (Chapter 11) 10/ 19

Page 11: Introduction to Spectral Analysis (Chapter 11) · 2008-03-24 · Arthur Berg Introduction to Spectral Analysis (Chapter 11) 18/ 19 §11.2: Orthogonal Functions§11.6: Fourier Representation

§11.2: Orthogonal Functions §11.6: Fourier Representation of Continuous-Time Functions Periodogram

Nyquist Rate

The Nyquist rate is the minimum sampling rate required to avoid aliasing.

Arthur Berg Introduction to Spectral Analysis (Chapter 11) 11/ 19

Page 12: Introduction to Spectral Analysis (Chapter 11) · 2008-03-24 · Arthur Berg Introduction to Spectral Analysis (Chapter 11) 18/ 19 §11.2: Orthogonal Functions§11.6: Fourier Representation

§11.2: Orthogonal Functions §11.6: Fourier Representation of Continuous-Time Functions Periodogram

Some Examples

Arthur Berg Introduction to Spectral Analysis (Chapter 11) 12/ 19

Page 13: Introduction to Spectral Analysis (Chapter 11) · 2008-03-24 · Arthur Berg Introduction to Spectral Analysis (Chapter 11) 18/ 19 §11.2: Orthogonal Functions§11.6: Fourier Representation

§11.2: Orthogonal Functions §11.6: Fourier Representation of Continuous-Time Functions Periodogram

Some More Examples

AR(1) with φ = .9

Arthur Berg Introduction to Spectral Analysis (Chapter 11) 13/ 19

Page 14: Introduction to Spectral Analysis (Chapter 11) · 2008-03-24 · Arthur Berg Introduction to Spectral Analysis (Chapter 11) 18/ 19 §11.2: Orthogonal Functions§11.6: Fourier Representation

§11.2: Orthogonal Functions §11.6: Fourier Representation of Continuous-Time Functions Periodogram

Outline

1 §11.2: Orthogonal Functions

2 §11.6: Fourier Representation of Continuous-Time Functions

3 Periodogram

Arthur Berg Introduction to Spectral Analysis (Chapter 11) 14/ 19

Page 15: Introduction to Spectral Analysis (Chapter 11) · 2008-03-24 · Arthur Berg Introduction to Spectral Analysis (Chapter 11) 18/ 19 §11.2: Orthogonal Functions§11.6: Fourier Representation

§11.2: Orthogonal Functions §11.6: Fourier Representation of Continuous-Time Functions Periodogram

Deterministic Example> t = 1:100> x1 = 2*cos(2*pi*t*6/100) + 3*sin(2*pi*t*6/100)> x2 = 4*cos(2*pi*t*10/100) + 5*sin(2*pi*t*10/100)> x3 = 6*cos(2*pi*t*40/100) + 7*sin(2*pi*t*40/100)> x = x1 + x2 + x3> par(mfrow=c(2,2))> plot.ts(x1, ylim=c(-10,10),+ main = expression(omega==6/100~~~A^2==13))> plot.ts(x2, ylim=c(-10,10),+ main = expression(omega==10/100~~~A^2==41))> plot.ts(x3, ylim=c(-10,10),+ main = expression(omega==40/100~~~A^2==85))> plot.ts(x, ylim=c(-16,16),main="sum")

Arthur Berg Introduction to Spectral Analysis (Chapter 11) 15/ 19

Page 16: Introduction to Spectral Analysis (Chapter 11) · 2008-03-24 · Arthur Berg Introduction to Spectral Analysis (Chapter 11) 18/ 19 §11.2: Orthogonal Functions§11.6: Fourier Representation

§11.2: Orthogonal Functions §11.6: Fourier Representation of Continuous-Time Functions Periodogram

Periodogram Example> P = abs(2*fft(x)/100)^2> f = 0:50/100> plot(f, P[1:51], type="o", xlab="frequency", ylab="periodogram")

Arthur Berg Introduction to Spectral Analysis (Chapter 11) 16/ 19

Page 17: Introduction to Spectral Analysis (Chapter 11) · 2008-03-24 · Arthur Berg Introduction to Spectral Analysis (Chapter 11) 18/ 19 §11.2: Orthogonal Functions§11.6: Fourier Representation

§11.2: Orthogonal Functions §11.6: Fourier Representation of Continuous-Time Functions Periodogram

Scaled Periodogram Equation

P(j/n) =

(2n

n∑t=1

Zt cos(2πtj/n)

)2

+

(2n

n∑t=1

Zt sin(2πtj/n)

)2

A time series Z1, . . . , xn with n odd has the exact representation

Zt = a0 +(n−1)/2∑

j=0

[aj cos(2πtj/n) + bj sin(2πtj/n)] .

From this representation of Zt, we have

P(j/n) = a2j + b2

j

Arthur Berg Introduction to Spectral Analysis (Chapter 11) 17/ 19

Page 18: Introduction to Spectral Analysis (Chapter 11) · 2008-03-24 · Arthur Berg Introduction to Spectral Analysis (Chapter 11) 18/ 19 §11.2: Orthogonal Functions§11.6: Fourier Representation

§11.2: Orthogonal Functions §11.6: Fourier Representation of Continuous-Time Functions Periodogram

Spectral Representation Theorem

Theorem (Spectral Representation)Any stationary process Zt has the representation

Zt =∫ π

0cos(ωt) du(ω) +

∫ π

0sin(ωt) dv(ω)

where u(ω) and v(ω) are uncorrelated continuous process with orthogonalincrements.

This theorem suggests the time series Zt can be approximated as

Zt =q∑

k=1

Uk cos(2πωkt) + Vk sin(2πωkt)

where Uk and Vk are independent zero-mean random variables.

Arthur Berg Introduction to Spectral Analysis (Chapter 11) 18/ 19

Page 19: Introduction to Spectral Analysis (Chapter 11) · 2008-03-24 · Arthur Berg Introduction to Spectral Analysis (Chapter 11) 18/ 19 §11.2: Orthogonal Functions§11.6: Fourier Representation

§11.2: Orthogonal Functions §11.6: Fourier Representation of Continuous-Time Functions Periodogram

The Link

The periodogram can be obtained from the ACF via the finite Fourier transformof the ACF.

Therefore we will be interested in the Fourier transform of γ(k)...the spectraldensity.

Arthur Berg Introduction to Spectral Analysis (Chapter 11) 19/ 19