introduction to fs hydrodynamics

27
Introduction Introduction to to FREE SURFACE FREE SURFACE HYDRODYNAMICS HYDRODYNAMICS (module 2) (module 2) Prof Arthur E Mynett Prof Arthur E Mynett Professor of Hydraulic Engineering Professor of Hydraulic Engineering in addition to the lecture notes by Maskey et al. in addition to the lecture notes by Maskey et al.

Upload: angela-duangchit

Post on 03-Jun-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Introduction to FS Hydrodynamics

8/12/2019 Introduction to FS Hydrodynamics

http://slidepdf.com/reader/full/introduction-to-fs-hydrodynamics 1/28

IntroductionIntroduction toto

FREE SURFACEFREE SURFACEHYDRODYNAMICSHYDRODYNAMICS

(module 2)(module 2)

Prof Arthur E MynettProf Arthur E Mynett

Professor of Hydraulic EngineeringProfessor of Hydraulic Engineering

in addition to the lecture notes by Maskey et al.in addition to the lecture notes by Maskey et al.

Page 2: Introduction to FS Hydrodynamics

8/12/2019 Introduction to FS Hydrodynamics

http://slidepdf.com/reader/full/introduction-to-fs-hydrodynamics 2/28

basic principles:basic principles:

(i)(i) physicalphysical conceptsconcepts

(ii)(ii) mathematicalmathematical formulationsformulations

Introduction toIntroduction to

FREE SURFACEFREE SURFACEHYDRODYNAMICSHYDRODYNAMICS

(module 2)(module 2)

Page 3: Introduction to FS Hydrodynamics

8/12/2019 Introduction to FS Hydrodynamics

http://slidepdf.com/reader/full/introduction-to-fs-hydrodynamics 3/28

Page 4: Introduction to FS Hydrodynamics

8/12/2019 Introduction to FS Hydrodynamics

http://slidepdf.com/reader/full/introduction-to-fs-hydrodynamics 4/28

learning objectives:learning objectives:

(re)fresh knowledge(re)fresh knowledge

•• physicalphysical conservation principles:conservation principles:

 – – MASS / MOMENTUM / ENERGYMASS / MOMENTUM / ENERGY

•• mathematicalmathematical formulations:formulations:

 – – CONTINUITY equationCONTINUITY equation

 – – MOMENTUM equations (F = ma)MOMENTUM equations (F = ma)

(Euler, Navier (Euler, Navier --Stokes)Stokes)

 – – ENERGY equation (Bernouilli)ENERGY equation (Bernouilli)

Page 5: Introduction to FS Hydrodynamics

8/12/2019 Introduction to FS Hydrodynamics

http://slidepdf.com/reader/full/introduction-to-fs-hydrodynamics 5/28

learning objectives:learning objectives:

(re)fresh knowledge(re)fresh knowledge

•• physical conservation principles:physical conservation principles:

 – – REFERENCEREFERENCE COCO--ORDINATEORDINATE SYSTEMSYSTEM

 – – EULER / LAGRANGE descriptionEULER / LAGRANGE description

 – –

laminar / turbulent flows (500 <laminar / turbulent flows (500 <

ReRe

< 700)< 700)

•• mathematical formulations:mathematical formulations:

 – – TOTAL (MATERIAL)TOTAL (MATERIAL) DERIVATIVEDERIVATIVE

 – – FROUDEFROUDE number,number, REYNOLDSREYNOLDS number number 

(Euler, Navier (Euler, Navier --Stokes)Stokes) – – SPECIFICSPECIFIC ENERGY,ENERGY, CRITICALCRITICAL DEPTHDEPTH

(Bernouilli)(Bernouilli)

Page 6: Introduction to FS Hydrodynamics

8/12/2019 Introduction to FS Hydrodynamics

http://slidepdf.com/reader/full/introduction-to-fs-hydrodynamics 6/28

basic principlesbasic principles

•• conservation of MASSconservation of MASS

 – – continuity principle (control volume)continuity principle (control volume)

 – – for for inincompressible flow (compressible flow (hydrohydrodynamics):dynamics):

“what comes in“what comes in – – must go out” must go out” 

•• conservation of MOMENTUM / ENERGYconservation of MOMENTUM / ENERGY

 – – essentially derived fromessentially derived from SAMESAME (!)(!) equation:equation:

 – – Newton’s second LawNewton’s second Law F = maF = ma

Page 7: Introduction to FS Hydrodynamics

8/12/2019 Introduction to FS Hydrodynamics

http://slidepdf.com/reader/full/introduction-to-fs-hydrodynamics 7/28

example:example: hydraulic jumphydraulic jump

•• given bc’s upstream hgiven bc’s upstream h11, v, v11

•• => what are downstream=> what are downstream hh22, v, v22 ??

 _______  _______ 

 __  __ hh11 ____  ____ 

-->> vv11

 ___________________________________  ___________________________________ 

Page 8: Introduction to FS Hydrodynamics

8/12/2019 Introduction to FS Hydrodynamics

http://slidepdf.com/reader/full/introduction-to-fs-hydrodynamics 8/28

example:example: hydraulic jumphydraulic jump

•• conservation of MASSconservation of MASS – – continuity principlecontinuity principle

hh11 vv11 = h= h22 vv22

(“what comes in(“what comes in – – must go out”)must go out”)

•• conservation of MOMENTUM (mv)conservation of MOMENTUM (mv)

 – – F = maF = ma can also be written ascan also be written as Fdt = d(mv)Fdt = d(mv)

•• Fdt = ½Fdt = ½  g (hg (h1122

 – – hh2222

)dt)dt•• d(mv) = (mv)d(mv) = (mv)outout – – (mv)(mv)inin

= (= (vv22dthdth22)v)v22 – – ((vv11dthdth11)v)v11

Page 9: Introduction to FS Hydrodynamics

8/12/2019 Introduction to FS Hydrodynamics

http://slidepdf.com/reader/full/introduction-to-fs-hydrodynamics 9/28

excercise:excercise: impinging jet impinging jet 

•• given bc’s upstream (diameter dgiven bc’s upstream (diameter d11, velocity v, velocity v11))

•• => what is horizontal Force on wall=> what is horizontal Force on wall FFxx ??

FF

xx dt =dt =

--   

((vv

11 dt) (¼dt) (¼  

dd

11

22

) v) v

11

 ___d ___d11 ____  ____ 

 _________=>v _________=>v11 <= F<= F

xx

|

|

|

|

|

||

|

|

|

Page 10: Introduction to FS Hydrodynamics

8/12/2019 Introduction to FS Hydrodynamics

http://slidepdf.com/reader/full/introduction-to-fs-hydrodynamics 10/28

basic principles (ctd)basic principles (ctd)

•• conservation of MASSconservation of MASS

 – – continuity principle (control volume)continuity principle (control volume)

 – – for for inincompressible flow (compressible flow (hydrohydrodynamics):dynamics):

“what comes in“what comes in – – must go out” must go out” 

•• conservation of MOMENTUM / ENERGYconservation of MOMENTUM / ENERGY

 – – essentially derived fromessentially derived from SAMESAME (!)(!) equation:equation:

 – – Newton’s second LawNewton’s second Law F = maF = ma

Page 11: Introduction to FS Hydrodynamics

8/12/2019 Introduction to FS Hydrodynamics

http://slidepdf.com/reader/full/introduction-to-fs-hydrodynamics 11/28

BernouilliBernouilli EquationEquation

•• conservation of MASSconservation of MASS

 – – continuity principle (control volume)continuity principle (control volume)

 – – for incompressible flow (hydrodynamics):for incompressible flow (hydrodynamics):

“what comes in“what comes in – – must go out” must go out” 

•• conservation of MOMENTUM /conservation of MOMENTUM / ENERGYENERGY

 – – essentially derived fromessentially derived from SAMESAME (!)(!) equation:equation:

 – – Newton’s second LawNewton’s second Law F = maF = ma

Page 12: Introduction to FS Hydrodynamics

8/12/2019 Introduction to FS Hydrodynamics

http://slidepdf.com/reader/full/introduction-to-fs-hydrodynamics 12/28

BernoulliBernoulli EquationEquation

•• basic assumptionsbasic assumptions – – steady steady flow conditions (d/dt=0)flow conditions (d/dt=0)

 – – validvalid along a streamlinealong a streamline

(bottom, free surface, …)(bottom, free surface, …)

•• practical (hydraulics) formulationpractical (hydraulics) formulation

z + p/z + p/  g + vg + v22 /2g = H (constant) [L] /2g = H (constant) [L]

•• z = position head [L]z = position head [L]

•• p/p/  g = pressure head [L]g = pressure head [L]

•• (z+p/(z+p/  g) = piezometric head [L]g) = piezometric head [L]

•• vv22 /2g = velocity head [L] /2g = velocity head [L]

•• H = energy head [L]H = energy head [L]

Page 13: Introduction to FS Hydrodynamics

8/12/2019 Introduction to FS Hydrodynamics

http://slidepdf.com/reader/full/introduction-to-fs-hydrodynamics 13/28

example:example: flow over weir flow over weir 

•• given bc’s upstream h1, v1given bc’s upstream h1, v1

•• => what are weir conditions=> what are weir conditions h2, v2 ?h2, v2 ?

 __  __ h1h1 ____  ____  __ h2, v2 __  __ h2, v2 __ 

-->> v1v1  _____________  _____________ 

 / /

 _________________/________________________  _________________/________________________ 

Page 14: Introduction to FS Hydrodynamics

8/12/2019 Introduction to FS Hydrodynamics

http://slidepdf.com/reader/full/introduction-to-fs-hydrodynamics 14/28

BernoulliBernoulli EquationEquation

•• specific energy (in terms of h, q)specific energy (in terms of h, q)(NB appropriate choice of reference frame !!)(NB appropriate choice of reference frame !!)

h + vh + v

22

 /2g = H (constant) /2g = H (constant)

q = vhq = vh

leads toleads to

h + qh + q22 /2gh /2gh22 = H= H (3(3rdrd order eq in h)order eq in h)

Page 15: Introduction to FS Hydrodynamics

8/12/2019 Introduction to FS Hydrodynamics

http://slidepdf.com/reader/full/introduction-to-fs-hydrodynamics 15/28

BernoulliBernoulli EquationEquation

•• critical depth hcritical depth hcc and velocity vand velocity vcc

(NB choice of appropriate reference frame !!)(NB choice of appropriate reference frame !!)

hhcc = 2/3 H= 2/3 H

vvcc22 /2g = 1/3 H /2g = 1/3 H

vizviz

vvcc

22 /2g = h /2g = hcc /2 /2

=> v=> vcc22 / (gh / (ghcc) = Fr ) = Fr 22 = 1= 1

Page 16: Introduction to FS Hydrodynamics

8/12/2019 Introduction to FS Hydrodynamics

http://slidepdf.com/reader/full/introduction-to-fs-hydrodynamics 16/28

SpecificSpecific Energy (h, q)Energy (h, q)

•• (ii) super critical flow over weir (ii) super critical flow over weir (NB choice of appropriate reference frame !!)(NB choice of appropriate reference frame !!)

h + vh + v

22

 /2g = H /2g = H

q = vhq = vh

leads toleads to

h + qh + q22 /2gh /2gh22 = H= H (3(3rdrd order eq in h)order eq in h)

Page 17: Introduction to FS Hydrodynamics

8/12/2019 Introduction to FS Hydrodynamics

http://slidepdf.com/reader/full/introduction-to-fs-hydrodynamics 17/28

Energy LOSSESEnergy LOSSES – – Carnot’s RuleCarnot’s Rule

•• sudden expansionsudden expansion

(continuity + momentum):(continuity + momentum):

H = HH = H11 – – HH22

= (v= (v11 – – vv22))22 / 2g / 2g

Page 18: Introduction to FS Hydrodynamics

8/12/2019 Introduction to FS Hydrodynamics

http://slidepdf.com/reader/full/introduction-to-fs-hydrodynamics 18/28

•• contraction (coefficientcontraction (coefficient   ~ …)~ …)

•• expansion (=> energy lossexpansion (=> energy loss – – Carnot)Carnot)

•• pipe flow (=> frictionpipe flow (=> friction – – head loss)head loss)

•• velocity head (from continuity)velocity head (from continuity)

•• piezometric head (from Bernouilli)piezometric head (from Bernouilli)

example:example: flow throughflow through culvert culvert 

Page 19: Introduction to FS Hydrodynamics

8/12/2019 Introduction to FS Hydrodynamics

http://slidepdf.com/reader/full/introduction-to-fs-hydrodynamics 19/28

momentum principle:momentum principle: F =F = mmaa

•• aa = F/m= F/m

•• Dv/Dt = F/mDv/Dt = F/m

•• D/Dt{D/Dt{vvii(t,x,y,z)(t,x,y,z)} = F} = Fii /m /m

  u u  / /  tt ++   u u  / /  xx dx/dt +dx/dt +   u/u/  y y dy/dt +dy/dt +   u/u/  z z dz/dt = f dz/dt = f xx

  v/v/  tt ++   v/v/  xx dx/dt +dx/dt +   v/v/  y y dy/dt +dy/dt +   v/v/  z z dz/dt = f dz/dt = f yy

  w w  / /  tt ++   w w  / /  xx dx/dt +dx/dt +   w/w/  y y dy/dt +dy/dt +   w/w/  z z dz/dt = f dz/dt = f zz

Page 20: Introduction to FS Hydrodynamics

8/12/2019 Introduction to FS Hydrodynamics

http://slidepdf.com/reader/full/introduction-to-fs-hydrodynamics 20/28

momentum principle:momentum principle: F =F = mmaa

•• aa = F/m= F/m

•• Dv/Dt = F/mDv/Dt = F/m

•• D/Dt{vD/Dt{vii(t,x,y,z)} = F(t,x,y,z)} = Fii /m /m

  u u  / /  t +t +   u u  / /  xx dx/dtdx/dt ++   u/u/  y y dy/dtdy/dt ++   u/u/  z z dz/dtdz/dt = f = f xx

  v/v/  t +t +   v/v/  xx dx/dtdx/dt ++   v/v/  y y dy/dtdy/dt ++   v/v/  z z dz/dtdz/dt = f = f yy

  w w  / /  t +t +   w w  / /  xx dx/dtdx/dt ++   w/w/  y y dy/dtdy/dt ++   w/w/  z z dz/dtdz/dt = f = f zz

Page 21: Introduction to FS Hydrodynamics

8/12/2019 Introduction to FS Hydrodynamics

http://slidepdf.com/reader/full/introduction-to-fs-hydrodynamics 21/28

momentum principle:momentum principle: F =F = mmaa

•• aa = F/m= F/m

•• Dv/Dt = F/mDv/Dt = F/m

•• D/Dt{vD/Dt{vii(t,x,y,z)} = F(t,x,y,z)} = Fii /m /m

  u u  / /  t +t + uu   u u  / /  x +x + vv   u/u/  y y ++ ww   u/u/  z z  = f = f xx

  v/v/  t +t + uu   v/v/  x +x + vv   v/v/  y y ++ ww   v/v/  z z  = f = f yy

  w w  / /  t +t + uu   w w  / /  x +x + vv   w/w/  y y ++ ww   w/w/  z z  = f = f zz

D/Dt = TOTAL (material) DERIVATIVED/Dt = TOTAL (material) DERIVATIVE

Page 22: Introduction to FS Hydrodynamics

8/12/2019 Introduction to FS Hydrodynamics

http://slidepdf.com/reader/full/introduction-to-fs-hydrodynamics 22/28

momentum principle:momentum principle: F = mF = maa

•• a =a = F/mF/m

•• Dv/Dt =Dv/Dt = F/mF/m

•• D/Dt{vD/Dt{vii(t,x,y,z)} =(t,x,y,z)} = FFii /m /m

  u u  / /  t + ut + u   u u  / /  x + vx + v   u/u/  y y + w+ w   u/u/  z z  ==   - - 1/ 1/       p/  p/    x  x 

  v/v/  t + ut + u   v/v/  x + vx + v   v/v/  y y + w+ w   v/v/  z z  ==   - - 1/ 1/       p/  p/   y y 

  w w  / /  t + ut + u   w w  / /  x + vx + v   w/w/  y y + w+ w   w/w/  z z  ==   - - 1/ 1/       p/  p/   z z  – –g g 

EULEREULER EQUATIONSEQUATIONS

Page 23: Introduction to FS Hydrodynamics

8/12/2019 Introduction to FS Hydrodynamics

http://slidepdf.com/reader/full/introduction-to-fs-hydrodynamics 23/28

momentum principle:momentum principle: F = mF = maa

•• a =a = F/mF/m

•• Dv/Dt =Dv/Dt = F/mF/m

•• D/Dt{vD/Dt{vii(t,x,y,z)} =(t,x,y,z)} = FFii /m /m

Du/Dt Du/Dt  ==   - - 1/ 1/       p/  p/    x  x 

Dv/Dt Dv/Dt  ==   - - 1/ 1/       p/  p/   y y 

Dw/Dt Dw/Dt  ==   - - 1/ 1/       p/  p/   z z  – –g g 

EULEREULER EQUATIONSEQUATIONS

Page 24: Introduction to FS Hydrodynamics

8/12/2019 Introduction to FS Hydrodynamics

http://slidepdf.com/reader/full/introduction-to-fs-hydrodynamics 24/28

momentum principle:momentum principle: F = mF = maa

•• a =a = F/mF/m

•• Dv/Dt =Dv/Dt = F/mF/m

•• D/Dt{vD/Dt{vii(t,x,y,z)} =(t,x,y,z)} = FFii /m /m

Du/Dt Du/Dt  ==   - - 1/ 1/   ( (    p/  p/    x  x ++      xx  xx  /  /    x  x ++     yx yx  /  /   y y ++     zx zx  /  /    z )z )

Dv/Dt Dv/Dt  ==   - - 1/ 1/   ( (    p/  p/   y y ++      xy  xy  /  /    x  x ++     yy yy  /  /   y y ++     zy zy  /  /    z z ))

Dw/Dt Dw/Dt  ==   - - 1/ 1/   ( (    p/  p/   z +z +      xz  xz  /  /    x  x ++     yz yz  /  /   y y ++     zz zz  /  /    z )z ) – –g g 

NAVIERNAVIER--STOKESSTOKES EQUATIONSEQUATIONS

Page 25: Introduction to FS Hydrodynamics

8/12/2019 Introduction to FS Hydrodynamics

http://slidepdf.com/reader/full/introduction-to-fs-hydrodynamics 25/28

learning objectives:learning objectives:

(re)fresh knowledge(re)fresh knowledge

•• physical conservation principles:physical conservation principles:

 – – REFERENCEREFERENCE COCO--ORDINATEORDINATE SYSTEMSYSTEM

 – – EULER / LAGRANGE descriptionEULER / LAGRANGE description

 – – Laminar / turbulent flows (500 <Laminar / turbulent flows (500 < ReRe < 700)< 700)

•• mathematical formulations:mathematical formulations:

 – – TOTAL (MATERIAL)TOTAL (MATERIAL) DERIVATIVEDERIVATIVE

 – – FROUDEFROUDE number,number, REYNOLDSREYNOLDS number number 

(Euler, Navier (Euler, Navier --Stokes)Stokes) – – SPECIFICSPECIFIC ENERGY,ENERGY, CRITICALCRITICAL DEPTHDEPTH

(Bernouilli)(Bernouilli)

Page 26: Introduction to FS Hydrodynamics

8/12/2019 Introduction to FS Hydrodynamics

http://slidepdf.com/reader/full/introduction-to-fs-hydrodynamics 26/28

learning objectives:learning objectives:

(re)fresh knowledge(re)fresh knowledge

•• physicalphysical conservation principles:conservation principles:

 – – MASS / MOMENTUM / ENERGYMASS / MOMENTUM / ENERGY

•• mathematicalmathematical formulations:formulations:

 – – CONTINUITY equationCONTINUITY equation

 – – MOMENTUM equationsMOMENTUM equations (F = ma)(F = ma)

(Euler, Navier (Euler, Navier --Stokes)Stokes)

 – – ENERGY equation (Bernouilli)ENERGY equation (Bernouilli)

Page 27: Introduction to FS Hydrodynamics

8/12/2019 Introduction to FS Hydrodynamics

http://slidepdf.com/reader/full/introduction-to-fs-hydrodynamics 27/28

basic principles:basic principles:

(i)(i) physicalphysical conceptsconcepts

(ii)(ii) mathematicalmathematical formulationsformulations

Introduction toIntroduction to

FREE SURFACEFREE SURFACEHYDRODYNAMICSHYDRODYNAMICS

(module 2)(module 2)

Page 28: Introduction to FS Hydrodynamics

8/12/2019 Introduction to FS Hydrodynamics

http://slidepdf.com/reader/full/introduction-to-fs-hydrodynamics 28/28

IntroductionIntroduction toto

FREE SURFACEFREE SURFACEHYDRODYNAMICSHYDRODYNAMICS

(module 2)(module 2)

Dr Shreedhar MaskeyDr Shreedhar Maskey

Dr Luigia BrandimarteDr Luigia Brandimarte

Prof Dano RoelvinkProf Dano Roelvink