introduction to dynamics analysis of robots (part 3)

32
INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 3)

Upload: james-phillips

Post on 13-Jan-2016

217 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 3)

INTRODUCTION TO

DYNAMICS ANALYSIS

OF ROBOTS(Part 3)

Page 2: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 3)

This lecture continues the discussion on the analysis of the instantaneous motion of a rigid body, i.e. the velocities and accelerations associated with a rigid body as it moves from one configuration to another.

After this lecture, the student should be able to:•Derive the acceleration tensor and angular acceleration tensor•Derive the principles of relative motion between bodies in terms of acceleration analysis

Introduction to Dynamics Analysis of Robots (3)

Page 3: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 3)

Summary of previous lectures

333231

232221

131211

)()(

tRRt T

Velocity tensor and angular velocity vector

12

31

23

21

13

32

3

2

1

)(

t

)()()()()( tPtQttvtv PQ

)()()()()( tPtQttvtv PQ

bQabaobaQ PRPP ///

Velocity and moving FORs

bQabbQ

ababaobaQ vRPRvv /////

Page 4: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 3)

Relative Angular Velocity

Consider 3 FORs {a}, {b} and {c}. is the rotation of frame {b} w.r.t. frame {a}. Let

Rab

= relative angular velocity of frame {b} w.r.t. frame {a}aba

/

= relative angular velocity of frame {c} relative to frame {b} w.r.t. frame {a}bc

a/

= relative angular velocity of frame {c} w.r.t. frame {a}aca

/

)( // bcabbc

a R

)( ///

///

bcababac

bca

aba

aca

R

Page 5: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 3)

Example: Relative Angular Velocity

Example: The 3 DOF RRR Robot:

Y0, Y1

X0, X1

Z0, Z1

Z2

X2

Y2

Z3

X3

Y3

A=3 B=2 C=1

P

What is after 1 second if all the joints are rotating at

3,2,1,6

it

i

0/3

Page 6: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 3)

0

5236.0

0

1/2

100

0866.05.0

05.0866.001R

5236.0

0

0

0/1

Example: Relative Angular Velocity

5236.0

0

0

2/3

0866.05.0

100

05.0866.012R

100

0866.05.0

05.0866.023R

Solution: We re-used the following data obtained from the previous lecture

Page 7: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 3)

0

0472.1

0

5236.0

0

0

0866.05.0

100

05.0866.0

0

5236.0

0

)(

1/3

2/3121/21/3

R

Example: Relative Angular Velocity

5236.0

9068.0

5236.0

0

0472.1

0

100

0866.05.0

05.0866.0

5236.0

0

0

)(

0/3

1/3010/10/3

R

)(

)(

1/3010/10/3

2/3121/21/3

R

R

Page 8: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 3)

Example: Relative Angular Velocity

You should get the same answer from the overall rotational matrix and its derivative, i.e.

)1,2(

)3,1(

)2,3(

0/3

0/3

0/3

0/303

030/3

23

12

01

23

12

01

23

12

01

03

23

12

01

03

TRR

RRRRRRRRRR

RRRR

5236.0

9068.0

5236.0

0/3

Page 9: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 3)

05.0866.0

866.0433.025.0

5.075.0433.023

12

01

03 RRRR

09069.05236.0

2618.06545.02267.0

4534.02267.09162.023

12

01

23

12

01

23

12

01

03 RRRRRRRRRR

Example: Relative Angular Velocity

5236.0

9068.0

5236.0

05236.09068.0

5236.005235.0

9068.05236.00

05.0866.0

866.0433.025.0

5.075.0433.0

09069.05236.0

2618.06545.02267.0

4534.02267.09162.0

0/30/3

0/3

T

Page 10: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 3)

Acceleration tensor

Consider 2 points “P” and “Q” of a rigid body:

)()()()()()(

})()()(){()()()()()(

)()()()()()()()(

)()()()()(

2 tPtQtttPtQ

tPtQtttPtQttPtQ

tPtQttPtQttPtQ

tPtQttPtQ

Rearranging:

)()()()()( tPtQtAtata PQ

where)()()( 2 tttA

A(t) is called the acceleration tensor

Page 11: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 3)

00

00

000

)()(

tRRt T

Example: Acceleration tensor

Given

Find the acceleration tensor if =t2

Solution:

020

200

000

00

00

000

)(

t

222 tt

Page 12: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 3)

Example: Acceleration tensor

22

222

2

22

400

040

000

)(

00

00

000

00

00

000

00

00

000

)(

t

tt

t

22

22

22

222

420

240

000

)(

400

040

000

020

200

000

)(

t

ttA

t

ttA

Page 13: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 3)

Angular Acceleration vector

)()()()()()()()(

)()()()()()()()(

tvtvttPtQttPtQ

tPtQttPtQttPtQ

PQ

where

12

31

23

21

13

32

3

2

1

)(

t Angular

velocity vector

12

31

23

21

13

32

3

2

1

)(

t

Similarly:

Angular acceleration vector

Page 14: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 3)

Example: Angular Acceleration vector

00

00

000

)()(

tRRt T

Given

Find the angular acceleration vector if =t2

Solution:

020

200

000

00

00

000

)(

t

222 tt

0

0

2

)(

21

13

32

t

Page 15: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 3)

Acceleration and moving FORs

RRR

RRRRR

RRRR

PRPRPRPRPRvv

PRPRvv

T

TT

TT

bQabbQ

abbQ

abbQ

abbQ

abaobaQ

bQabbQ

abaobaQ

1

1111

1

///////

////

)()()(

)(

bQabbQ

abab

bQabababbQ

ababaobaQ

bQabbQ

abbQ

abbQ

abaobaQ

bQabbQ

abbQ

abbQ

abbQ

abaobaQ

bQabbQ

abbQ

abbQ

abbQ

abaobaQ

PRPR

PRPRaa

PRPRPRPRvv

PRPRPRPRPRvv

PRPRPRPRPRvv

///

///////

//////

///////

///////

)(2

)(

)(2)(

)()()(

)()()(

Page 16: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 3)

Acceleration and moving FORs

bQ

abbQ

abab

bQabababbQ

ababaobaQ

PRPR

PRPRaa

///

///////

)(2

)(

Let

bQabrel

bQabrel

bQabrel

PRa

PRV

PRP

/

/

/

)(

relrelabrelababrelabaobaQ aVPPaa )(2)( //////

Page 17: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 3)

Example: Acceleration and moving FORs

Example: The 3 DOF RRR Robot:

Y0, Y1

X0, X1

Z0, Z1

Z2

X2

Y2

Z3

X3

Y3

A=3 B=2 C=1

P

What is the acceleration of point “P” after 1 second if all the joints are rotating at

3,2,1,6

it

i

Page 18: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 3)

Example: Acceleration and moving FORs

We know from the previous lecture that at t=1

100

0866.05.0

05.0866.001R

000

05.0866.0

0866.05.0

11

1101

R

1000

0100

00)cos()sin(

00)sin()cos(

11

11

01

T

0000

0000

00)sin()cos(

00)cos()sin(

1111

1111

01

T

61

Page 19: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 3)

0000

0000

00)sin()cos(

00)cos()sin(

1111

1111

01

T

Example: Acceleration and moving FORs

0000

0000

00)sin()cos()cos()sin(

00)cos()sin()sin()cos(

112

11112

11

112

11112

11

01

T

000

0866.05.0

05.0866.02

12

1

21

21

01

R

Page 20: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 3)

Example: Acceleration and moving FORs

Similarly at t=162

1000

00)cos()sin(

0100

0)sin()cos(

22

22

12

A

T

0866.05.0

100

05.0866.012R

05.0866.0

000

0866.05.0

22

2212

R

0000

00)sin()cos(

0000

00)cos()sin(

2222

2222

12

T

Page 21: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 3)

Example: Acceleration and moving FORs

0000

00)sin()cos(

0000

00)cos()sin(

2222

2222

12

T

0000

00)sin()cos()cos()sin(

0000

00)cos()sin()sin()cos(

2222222

22

2222222

222

12

T

0866.05.0

000

05.0866.0

22

22

22

22

12

R

Page 22: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 3)

At t=1,63

1000

0100

00)cos()sin(

0)sin()cos(

33

33

23

B

T

000

05.0866.0

0866.05.0

33

3323

R

100

0866.05.0

05.0866.023R

0000

0000

00)sin()cos(

00)cos()sin(

3333

3333

23

T

Example: Acceleration and moving FORs

Page 23: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 3)

0000

0000

00)sin()cos(

00)cos()sin(

3333

3333

23

T

Example: Acceleration and moving FORs

0000

0000

00)sin()cos()cos()sin(

00)cos()sin()sin()cos(

3323333

233

3323333

233

23

T

000

0866.05.0

05.0866.023

23

23

23

23

R

Page 24: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 3)

TTT RRRRRRt )(

00 0/101

01

01

010/1

TT RRRR

Example: Acceleration and moving FORs

Substitute the matrices given into the equation, we get:

Similarly

00

00

2/323

23

23

232/3

1/212

12

12

121/2

TT

TT

RRRR

RRRR

TPP 001;6 3/321

We need to find 0/Pa

With

Page 25: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 3)

5236.0

0

0

0/1

5236.0

0

0

2/3

0

5236.0

0

1/2

For the data given, the following were determined in the previous lecture:

Example: Acceleration and moving FORs

0

4534.0

2618.0

2/Pv

4304.1

0

4304.1

1/Pv

4304.1

6571.1

6084.2

0/Pv

02/31/20/1

Page 26: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 3)

Example: Acceleration and moving FORs

3/

233/

232/3

3/232/32/33/

232/32/32/

)(2

)(

PP

PPoP

aRvR

PRPRaa

0

0

0

3/

3/

2/3

P

P

o

v

a

a

There is no translation acceleration between frames {3} and {2} and no translation velocity and acceleration of point “P” in frame {3}

3/232/32/32/ PP PRa

0

1371.0

2374.0

0

0

1

100

0866.05.0

05.0866.0

5236.0

0

0

5236.0

0

0

2/Pa

Page 27: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 3)

Example: Acceleration and moving FORs

2/

122/

121/2

2/121/21/22/

121/21/21/

)(2

)(

PP

PPoP

aRvR

PRPRaa

01/2 oa There is no translation acceleration between

frames {2} and {1}

TPoP PRPP 05.0866.23/232/32/

TPa 01371.02374.02/

01/2

TPP PRv 04534.02618.03/232/32/

Page 28: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 3)

2237.1

0

023.1

0

1371.0

2374.0

0866.05.0

100

05.0866.0

0

4534.0

2618.0

0866.05.0

100

05.0866.0

0

5236.0

0

2

0

5.0

866.2

0866.05.0

100

05.0866.0

0

5236.0

0

0

5236.0

0

1/

1/

P

P

a

a

Example: Acceleration and moving FORs

Substituting the values into the equation:

2/122/

121/22/

121/21/21/ )(2 PPPP aRvRPRa

Page 29: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 3)

Example: Acceleration and moving FORs

1/

011/

010/1

1/010/10/11/

010/10/10/

)(2

)(

PP

PPoP

aRvR

PRPRaa

00/1 oa There is no translation acceleration between

frames {1} and {0}

TPa 2237.10023.11/

0/ ab

TPoP PRPP 866.10232.52/121/21/

TPPP vRPRv 4304.104304.12/122/

121/21/

Page 30: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 3)

Example: Acceleration and moving FORs

Substituting the values into the equation:

1/011/

010/11/

010/10/10/ )(2 PPPP aRvRPRa

22.1

53.2

38.1

2237.1

0

023.1

100

0866.05.0

05.0866.0

4304.1

0

4304.1

100

0866.05.0

05.0866.0

5236.0

0

0

2

866.1

0

232.5

100

0866.05.0

05.0866.0

5236.0

0

0

5236.0

0

0

0/

0/

P

P

a

a

Page 31: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 3)

Example: Acceleration and moving FORs

We should get the same answer if we use transformation matrix method.

Try it at home and we’ll discuss this in the next lecture!

Page 32: INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 3)

Summary

This lecture continues the discussion on the analysis of the instantaneous motion of a rigid body, i.e. the velocities and accelerations associated with a rigid body as it moves from one configuration to another.

The following were covered:•The acceleration tensor and angular acceleration tensor•The principles of relative motion between bodies in terms of acceleration analysis