introduction to deep learning - department of computer ...fidler/slides/csc420/lecture20.pdf ·...

40
Introduction to Deep Learning A. G. Schwing & S. Fidler University of Toronto, 2014 A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2014 1 / 35

Upload: vankhanh

Post on 02-Apr-2018

222 views

Category:

Documents


1 download

TRANSCRIPT

Introduction to Deep Learning

A. G. Schwing & S. Fidler

University of Toronto, 2014

A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2014 1 / 35

Outline

1 Universality of Neural Networks

2 Learning Neural Networks

3 Deep Learning

4 Applications

5 References

A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2014 2 / 35

What are neural networks?

Let’s ask

• Biological

• Computational

Input #1

Input #2

Input #3

Input #4

Output

Hiddenlayer

Inputlayer

Outputlayer

A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2014 3 / 35

What are neural networks?

...Neural networks (NNs) are computational models inspired bybiological neural networks [...] and are used to estimate or

approximate functions... [Wikipedia]

A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2014 4 / 35

What are neural networks? The people behindOrigins:

Traced back to threshold logic [W. McCulloch and W. Pitts, 1943]Perceptron [F. Rosenblatt, 1958]

More recently:

G. Hinton (UofT)

Y. LeCun (NYU)

A. Ng (Stanford)

Y. Bengio (University of Montreal)

J. Schmidhuber (IDSIA, Switzerland)

R. Salakhutdinov (UofT)

H. Lee (University of Michigan)

R. Fergus (NYU)

... (and many more having made significant contributions; apologies fornot being able to mention everyone and all the students behind)

A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2014 5 / 35

What are neural networks? Use cases

ClassificationPlaying video gamesCaptchaNeural Turing Machine (e.g., learn how to sort) Alex Graves

http://www.technologyreview.com/view/532156/googles-secretive-deepmind-startup-unveils-a-neural-turing-machine/

A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2014 6 / 35

What are neural networks?Example:

input xparameters w1, w2, b

x ∈ Rh1

b ∈ R

fw1 w2

A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2014 7 / 35

How to compute the function?

Forward propagation/pass, inference, prediction:Given input x and parameters w , bCompute latent variables/intermediate results in a feed-forwardmannerUntil we obtain output function f

x ∈ Rh1

b ∈ R

fw1 w2

A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2014 8 / 35

How to compute the function?

Forward propagation/pass, inference, prediction:Given input x and parameters w , bCompute latent variables/intermediate results in a feed-forwardmannerUntil we obtain output function f

A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2014 8 / 35

How to compute the function?Example: input x , parameters w1, w2, b

x ∈ Rh1

b ∈ R

fw1 w2

h1 = σ(w1 · x + b)f = w2 · h1

Sigmoid function:σ(z) = 1/(1 + exp(−z))

x = ln 2, b = ln 3, w1 = 2, w2 = 2h1 =?f =?

A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2014 9 / 35

How to compute the function?Given parameters, what is f for x = 0, x = 1, x = 2, ...

f = w2σ(w1 · x + b)

−5 0 50

0.5

1

1.5

2

x

f

A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2014 10 / 35

Let’s mess with parameters:

x ∈ Rh1

b ∈ R

fw1 w2

h1 = σ(w1 · x + b)f = w2 · h1

σ(z) = 1/(1 + exp(−z))

w1 = 1.0 b = 0

−5 0 50

0.2

0.4

0.6

0.8

1

x

f

b = −2b = 0b = 2

−5 0 50

0.2

0.4

0.6

0.8

1

x

f

w1 = 0

w1 = 0.5

w1 = 1.0

w1 = 100

Keep in mind the step function.

A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2014 11 / 35

How to use Neural Networks for binary classification?Feature/Measurement: xOutput: How likely is the input to be a cat?

−5 0 50

0.2

0.4

0.6

0.8

1

x

y

A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2014 12 / 35

How to use Neural Networks for binary classification?Feature/Measurement: xOutput: How likely is the input to be a cat?

−5 0 50

0.2

0.4

0.6

0.8

1

x

f

A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2014 12 / 35

How to use Neural Networks for binary classification?Feature/Measurement: xOutput: How likely is the input to be a cat?

−5 0 50

0.2

0.4

0.6

0.8

1

x

f

A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2014 12 / 35

How to use Neural Networks for binary classification?Feature/Measurement: xOutput: How likely is the input to be a cat?

−5 0 50

0.2

0.4

0.6

0.8

1

x

f

A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2014 12 / 35

How to use Neural Networks for binary classification?Shifted feature/measurement: xOutput: How likely is the input to be a cat?

Previous features Shifted features

−5 0 50

0.2

0.4

0.6

0.8

1

x

f

−5 0 50

0.2

0.4

0.6

0.8

1

x

f

Learning/Training means finding the right parameters.

A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2014 13 / 35

So far we are able to scale and translate sigmoids.

How well can we approximate an arbitrary function?With the simple model we are obviously not going very far.

Features are good Features are noisySimple classifier More complex classifier

−5 0 50

0.2

0.4

0.6

0.8

1

x

f

−5 0 50

0.2

0.4

0.6

0.8

1

x

fHow can we generalize?

A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2014 14 / 35

Let’s use more hidden variables:

x ∈ Rh1

b1

h2

b2

f

w1 w2

w3 w4

h1 = σ(w1 · x + b1)h2 = σ(w3 · x + b2)

f = w2 · h1 + w4 · h2

Combining two step functions gives a bump.

−5 0 51

1.2

1.4

1.6

1.8

2

x

f

w1 = −100, b1 = 40, w3 = 100, b2 = 60, w2 = 1, w4 = 1

A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2014 15 / 35

So let’s simplify:

x ∈ Rh1

b1

h2

b2

f

w1 w2

w3 w4

fBump(x1, x2, h)

We simplify a pair of hidden nodes to a “bump” function:Starts at x1

Ends at x2

Has height h

A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2014 16 / 35

Now we can represent “bumps” very well. How can we generalize?

f

Bump(0.0, 0.2, h1)

Bump(0.2, 0.4, h2)

Bump(0.4, 0.6, h3)

Bump(0.6, 0.8, h4)

Bump(0.8, 1.0, h5)

0 0.5 1−0.5

0

0.5

1

1.5

x

f

TargetApproximation

More bumps gives more accurate approximation.Corresponds to a single layer network.

A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2014 17 / 35

Universality: theoretically we can approximate an arbitraryfunctionSo we can learn a really complex cat classifierWhere is the catch?

Complexity, we might need quite a few hidden unitsOverfitting, memorize the training data

A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2014 18 / 35

Universality: theoretically we can approximate an arbitraryfunctionSo we can learn a really complex cat classifierWhere is the catch?Complexity, we might need quite a few hidden unitsOverfitting, memorize the training data

A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2014 18 / 35

Generalizations are possible toinclude more input dimensionscapture more output dimensionsemploy multiple layers for more efficient representations

See ‘http://neuralnetworksanddeeplearning.com/chap4.html’ for agreat read!

A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2014 19 / 35

How do we find the parameters to obtain a good approximation? Howdo we tell a computer to do that?

Intuitive explanation:Compute approximation error at the outputPropagate error back by computing individual contributions ofparameters to error

[Fig. from H. Lee]

A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2014 20 / 35

Intuitive example:

Target function: 5x2

Approximation: fw (x)Domain of interest: x ∈ [0,1]Error:

e(w) =

∫ 1

0(5x2 − fw (x))2dx

Program of interest:

minw

e(w) = minw

∫ 1

0(5x2 − fw (x))2dx

A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2014 21 / 35

Chain rule is important: w1,w2, x ∈ RAssume

e(w1,w2) = f (w2,h(w1, x))

Derivatives are:

∂e(w1,w2)

∂w2=∂f (w2,h(w1, x))

∂w2

∂e(w1,w2)

∂w1=

∂f (w2,h(w1, x))∂w1

=∂f∂h· ∂h∂w1

Chain rule

A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2014 22 / 35

Back propagation does not work well for deep networks:Diffusion of gradient signal (multiplication of many small numbers)Attractivity of many local minima (random initialization is very farfrom good points)Requires a lot of training samplesNeed for significant computational power

Solution: 2 step approachGreedy layerwise pre-trainingPerform full fine tuning at the end

A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2014 23 / 35

Why go deep?

Representation efficiency (fewercomputational units for the same function)Hierarchical representation (non-localgeneralization)Combinatorial sharing (re-use of earliercomputation)Works very well

[Fig. from H. Lee]

A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2014 24 / 35

To obtain more flexibility/non-linearity we use additional functionprototypes:

SigmoidRectified linear unit (ReLU)PoolingDropoutConvolutions

A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2014 25 / 35

Convolutions

What do the numbers mean?

See Sanja’s lecture 14 for the answers...[Fig. adapted from A. Krizhevsky]

A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2014 26 / 35

Max Pooling

What is happening here?[Fig. adapted from A. Krizhevsky]

A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2014 27 / 35

Rectified Linear Unit (ReLU)Drop information if smaller than zeroFixes the problem of vanishing gradients to some degree

DropoutDrop information at randomKind of a regularization, enforcing redundancy

A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2014 28 / 35

A famous deep learning network called “AlexNet.”

The network won the ImageNet competition in 2012.How many parameters?Given an image, what is happening?Inference Time: about 2ms per image when processing manyimages in parallelTraining Time: forever (maybe 2-3 weeks)

[Fig. adapted from A. Krizhevsky]

A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2014 29 / 35

Demo

A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2014 30 / 35

Neural networks have been used for many applications:

Classification and Recognition in Computer VisionText Parsing in Natural Language ProcessingPlaying Video GamesStock Market PredictionCaptcha

Demos:Russ websiteAntonio Places website

A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2014 31 / 35

Classification in Computer Vision: ImageNet Challengehttp://deeplearning.cs.toronto.edu/

Since it’s the end of the semester, let’s find the beach...

A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2014 32 / 35

Classification in Computer Vision: ImageNet Challengehttp://deeplearning.cs.toronto.edu/

A place to maybe prepare for exams...

A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2014 33 / 35

Links:

Tutorials: http://deeplearning.net/tutorial/deeplearning.pdfToronto Demo by Russ and students:http://deeplearning.cs.toronto.edu/MIT Demo by Antonio and students:http://places.csail.mit.edu/demo.htmlHonglak Lee:http://deeplearningworkshopnips2010.files.wordpress.com/2010/09/nips10-workshop-tutorial-final.pdfYann LeCun:http://www.cs.nyu.edu/ yann/talks/lecun-ranzato-icml2013.pdfRichard Socher: http://lxmls.it.pt/2014/socher-lxmls.pdf

A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2014 34 / 35

Videos:

Video games: https://www.youtube.com/watch?v=mARt-xPablECaptcha: http://singularityhub.com/2013/10/29/tiny-ai-startup-vicarious-says-its-solved-captcha/https://www.youtube.com/watch?v=lge-dl2JUAM#t=27Stock exchange:http://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-networks/Applications/stocks.html

A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2014 35 / 35