introduction to computational physics - eth zürich · •computational quantum physics ... •...

58
1 Introduction to Computational Physics Autumn term 2017 402-0809-00L Tuesday 10.45 – 12.30 in HPT C 103 Exercises: Tuesday 8.45- 10.30 in HIT F21 Oral exams: end of January www.ifb.ethz.ch/education/IntroductionComPhys 2 Who is your teacher? Hans J. Herrmann [email protected] Institute of Building Materials (IfB) HIT G 23.1, Hönggerberg, ETH Zürich http://www.hans-herrmann.ethz.ch

Upload: vomien

Post on 27-Jul-2018

258 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

1

Introduction to Computational Physics

Autumn term 2017

402-0809-00L

Tuesday 10.45 – 12.30 in HPT C 103

Exercises: Tuesday 8.45- 10.30 in HIT F21

Oral exams: end of January

www.ifb.ethz.ch/education/IntroductionComPhys

2

Who is your teacher?

Hans J. [email protected]

Institute of Building Materials (IfB)HIT G 23.1, Hönggerberg, ETH

Zürich

http://www.hans-herrmann.ethz.ch

Page 2: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

3

Studiengänge

• Mathematics, Computer Science (Bachelor)

• Mathematics, Computer Science (Master)

• Physics (Wahlfach)

• Material Science (Master)

• Civil Engineering (Master)

4

Plan of this course

• 19.09. Introduction, Random numbers (RN)• 26.09. Percolation• 03.10. Fractals, Cellular Automata• 10.10. Monte Carlo, Importance Sampling,

...........Metropolis • 17.10. Random Walks, Self-avoiding Walks• 24.10. Finite Size Effects, XY Model, ..........

...........first order transitions

Page 3: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

5

Plan of this course

• 31.10. Differential Eqs. (Euler, Runge Kutta..)• 07.11. Eqs. of Motion (Newton, Regula Falsi)• 14.11. Finite Difference Meth. Relaxation • 21.11. Multigrid, Finite Elements Method • 28.11. Gradient Methods • 05.12. Daniele Passerone• 12.12. Variational FEM, Crank-Nicholson

. Wave equation, Navier-Stokes eq. • 19.12. Giuseppe Carleo

6

Spring term 2018

• Computational Statistical Physics (H.J.Herrmann)

• Computational Quantum Physics (G. Carleo, P. de Forcrand)

• Density Functional Theory (D. Passerone)

Page 4: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

7

Prerequisites

• Ability to work with UNIX

• Making of Graphical Plots

• Higher computer language (C++, FORTRAN..)

• Statistical Analysis (Averaging, Distributions)

• Linear Algebra, Analysis

• Classical Mechanics

• Basic Thermodynamics

8

What is Computational Physics?

• Numerical solution of equations (since analytical solutions are rare)

• Simulation of many-particle systems (creation

of a virtual reality = 3rd branch of physics)

• Evaluation and visualization of large data sets (either experimental or numerical)

• Control of experiments (not treated in this course)

Page 5: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

9

Segregation under vibration

BrazilNut

Effect

10

Mixing in a cylinder

hardspheres

Page 6: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

11

Sedimentation

comparing experiment and simulation

Glass beadsdescendingin silicon oil

12

Motion of dunes

V. SCHWÄMMLE, H.J. HERRMANN, Nature 426, 619-620 (2003)

Page 7: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

13

Computer tools

• Object oriented programming

• Vector supercomputers

• Parallel computing (shared and distributed memory)

• Symbolic Algebra (Mathematica, Maple)

• Graphical animations

14

Areas of computational physics

• CFD (Computational Fluid Dynamics)

• Classical Phase Transitions

• Solid State (quantum)

• High Energy Physics (Lattice QCD)

• Astrophysics

• Geophysics, Solid Mechanics

• Agent models (interdisciplinary)

Page 8: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

15

Literature

• H.Gould, J. Tobochnik and W. Christian: „Introduction to Computer Simulation Methods“ 3rd ed. (Wesley, 2006)

• D. Landau and K. Binder: „A Guide to Monte Carlo Simulations in Statistical Physics“ (Cambridge, 2000)

• D. Stauffer, F.W. Hehl, V. Winkelmann and J.G. Zabolitzky: „Computer Simulation and Computer Algebra“ 3rd ed. (Springer, 1993)

• K. Binder and D.W. Heermann: „Monte Carlo Simulation in Statistical Physics“ 4th ed. (Springer, 2002)

• N.J. Giordano: „Computational Physics“ (Wesley, 1996)• J.M. Thijssen: „Computational Physics“ (Cambridge, 1999)

16

Book Series

• „Monte Carlo Method in Condensed Matter Physics“, ed. K. Binder (Springer Series)

• „Annual Reviews of Computational Physics“, ed. D. Stauffer (World Scientific)

• „Granada Lectures in Computational Physics“, ed. J.Marro (Springer Series)

• „Computer Simulations Studies in Condensed Matter Physics“, ed. D. Landau (Springer Series)

Page 9: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

17

Journals

• Journal of Computational Physics (Elsevier)

• Computer Physics Communications (Elsevier)

• International Journal of Modern Physics C (World Scientific)

CCP = Conference on Computational Physics

every year (2015 India, 2016 South Africa, 2017 Paris):

18

Random numbers

Page 10: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

19

Why do we need Random numbers?

• Simulate experimental fluctuations (e.g. radioactive decay)

• Define temperature

• Complement lack of detailed knowledge (e.g. traffic or stock market simulations)

• Consider many degrees of freedom (e.g. Bownian motion)

• Test stability to perturbations

• Random sampling

20

Literature to Random numbers

• Numerical Recipes

• D.E.Knuth: „ The Art of Programming: Seminumerical Algorithms“ 3rd ed. (Addison – Wesley, 1997) Vol. 2, Chapt. 3.3.1

• J.E. Gentle, „Random Number Generation and Monte Carlo Methods“ (Springer, 2003)

Page 11: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

21

Properties of Random numbers

• No correlations

• Fast implementation

• Reproductibility

• Long periods

• Follow well-defined distribution

22

Distribution of random numbers

1 0and( ) ( )P x dx P x

( ) ( )x x

x

w x P x dx

examples: homogeneous, Gaussian, Poisson

Probability to find a random number

in the interval [ x, x + Δx ]:

Page 12: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

23

Random number generators (RNG)

• Congruential (Lehmer, 1948)

• Lagged-Fibonacci (Tausworthe,1965)

electrical flicker noise photon emission

from a semiconductor

Algorithms:

24

Congruential generators

1 mod( ) , , ,i i ix c x p x c p Z

ii

xz

p

Fix two integers: c and p .

Start with a seed x0 .

Create new integers by iterating :

0 1,iz Make random numbers

through

Derrick Henry Lehmer

Page 13: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

25

Maximal period

Since all integers are less than p the sequence

must repeat after at least p -1 iterations, i.e.

the maximal period is p -1.

( x0 = 0 is a fixed point and cannot be used. )

R.D. Carmichael proved 1910 that

one gets the maximal period if p is

a Mersenne prime number and c the

smallest integer number for which1 1 modpc p

Robert D. Carmichael

26

Mersenne prime numbers

2 1 qqM

43* 30,402,457 315416475…652943871 9,152,052December 15, 2005

GIMPS / Curtis & Steven Boone

44* 32,582,657 124575026…053967871 9,808,358September 4, 2006

GIMPS / Curtis & Steven Boone

Marin Mersenne, 1626

prime

Page 14: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

GIMPS news

27

January 7, 2016

Curtis Cooper found Nr. 49

274,207,281 – 1 has 22,338,618 digits

Great Internet Mersenne Prime Search

28

Example of congruential RNG

Park and Miller (1988):

const int p=2147483647;

const int c=16807;

int rnd=42; //seed

rnd = (c*rnd) % p;

print rnd;

Page 15: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

29

Square test

x

xi+1

Applet

30

Theorem of Marsaglia

1 1 2 1 1 0mod , ..., : ( ... )n i i n i na a a x a x a x p

George Marsaglia (1968)For a congruential generator the

random numbers in an n-cube-test lie on

parallel n -1 dimensional hyperplanes.

1

11 0

at least one set

mod

, , , ..., :

...

n

nn

p c n a a

a c a c p

proof using:

Page 16: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

31

n-cube-test

1

4

np

One can also show that for congruential RNG

the distance between the planes must be larger

than

and that the maximum number of planes is

1np

32

Lagged-Fibonacci RNG

• Initialization of b random bits xi

• Apply:

j jii xx 2mod)(

b,..,1Robert C. Tausworthe

Page 17: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

33

Lagged Fibbonacci RNG

2modi i a i b i a i bx x x x x

20 i i k ix x x k b

Typically one uses, since it is easy to implement:

Theorem of A. Compagner (1992) :If (a,b) Zierler trinomial then sequence has

maximal period 2b – 1 and :

a < b

34

Zierler trinomials

(a, b)

(103, 250) (Kirkpatrick and Stoll, 1981)

(1689, 4187)

(54454, 132049) (J.R. Heringa et al., 1992)

(3037958, 6972592) (R.P.Brent et al., 2003)

ba xx 1 primitive on Z2[x]

(Neal Zierler, 1969)

Page 18: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

35

Making 64-bit integers

..…

zi = (01101….101110)

zi+1 = (10001….010111)

zi+2 = (00101….111001)

zi+3 = (01011….011100)

zi+4 = (00011….011011)

.....

36

Tests for random numbers

• n-cube-test• Correlations should vanish• Average is 0.5• Average of each bit is 0.5• Check distribution• Spectral test: no peaks in Fourier transform• χ2 test: partial sums follow a Gaussian• Kolmogorov – Smirnov test

→ „Diehard battery“ of Marsaglia (1995)

Page 19: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

37

Diehard battery• Birthday Spacings: Choose random points on a large interval. The spacings between the points should be Poisson

distributed.• Overlapping Permutations: Analyze sequences of five consecutive random numbers. The 120 possible orderings

should occur with statistically equal probability.• Ranks of matrices: Select some number of bits from some number of random numbers to form a matrix over

{0,1}, then determine the rank of the matrix. Count the ranks. • Monkey Tests: Treat sequences of some number of bits as "words". Count the overlapping words in a stream.

The number of "words" that don't appear should follow a known distribution.• Count the 1s: Count the 1 bits in each of either successive or chosen bytes. Convert the counts to "letters", and

count the occurrences of five-letter "words". • Parking Lot Test: Randomly place unit circles in a 100 x 100 square. If the circle overlaps an existing one, try

again. After 12,000 tries, the number of successfully "parked" circles should follow a normal distribution.• Minimum Distance Test: Randomly place 8,000 points in a 10,000 x 10,000 square, then find the minimum

distance between the pairs. The square of this distance should be exponentially distributed.• Random Spheres Test: Randomly choose 4,000 points in a cube of edge 1,000. Center a sphere on each point,

whose radius is the minimum distance to another point. The smallest sphere's volume should be exponentially distributed with a certain mean.

• The Squeeze Test: Multiply 231 by random floats on [0,1) until you reach 1. Repeat this 100,000 times. The number of floats needed to reach 1 should follow a certain distribution.

• Overlapping Sums Test: Generate a long sequence of random floats on [0,1). Add sequences of 100 consecutive floats. The sums should be normally distributed with characteristic mean and sigma.

• Runs Test: Generate a long sequence of random floats on [0,1). Count ascending and descending runs. The counts should follow a certain distribution.

• The Craps Test: Play 200,000 games of craps, counting the wins and the number of throws per game and check the distribution.

38

RN with other distributions

• Transformation method

• Rejection method

Poisson distribution

Gaussian distribution

(Box Muller, 1958)

Page 20: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

39

Transformation method

1 0 1

0

if

otherwise

,( )

zP z

0 0

' ' ' ' ( ) ( )yz

P z dz P y dy

We want random numbers y distributed as P(y).

Start with homogeneously

distributed numbers z:

P(y)

y z 0 0

' ' ' '( ) ( )yz

z P z dz P y dy

40

Transformation method

( ) kyP y keexample:

generate Poisson distribution:

0

0

1

11

''

ln

[ ]y

ky y kykyz e

y zk

ke dy e

where z [0,1) are homogeneous random numbers.

This method only works if the integral can be

solved and the resulting function can be inverted.

Page 21: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

41

Box –Muller (1958)

21

( )y

P y e

1

2

1 2

1 2

2 221 2

1 2 1 2

0 0

2 2 21 2

1 2

0 0 0 0

2 21 21 1

1 1

2

1

21 1arctan

( ) ( )

y y

y y r

y yr

y y r

y

y

y y

z z dy dy

dy dy rdrd

e e

e e

e e

0

21

'

'y y

z dye

Gaussian distribution:

cannot be solved in closed form.

trick:2 2 2

1 2

1

2

1 2

tan

dy dy rdrd

r y y

y

y

42

Box –Muller trick

2 21 2 2

1 11

2 1

1

22

2

ln

sintan

cos

y y z

y zz

y z

11 2

2

2 21 21

21

arctany y

yz z

ye

1 2 1

2 2 1

1 2

1 2

ln sin

ln cos

y z z

y z z

From two homogeneously distributed random

numbers z1 and z2 one gets two Gaussian

distributed random numbers y1 and y2 .

Page 22: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

43

Sample two homogeneously

distributed random numbers

z1 , z2 [0,1). If the point

(Bz1, Az2) lies above the curve

P (y), i.e. P (Bz1) < Az2 then

reject the attempt, otherwise y = Bz1 is retained as a

random number which is distributed according to P (y).

P

Rejection method

Generate random numbers y [0, B] sampled

according to a distribution P (y) with P (y) < A.

44

Percolation

John M. Hammersley(1920 – 2004)

Broadbent and Hammersley

Proc. Cambridge Phil. Soc.

Vol. 53, p.629 (1957)

Page 23: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

45

References to percolation

• D. Stauffer: „Introduction to Percolation Theory“ (Taylor and Francis, 1985)

• D. Stauffer and A. Aharony: „Introduction to Percolation Theory, Revised Second Edition“ (Taylor and Francis, 1992)

• M. Sahimi: „Applications of Percolation Theory“ (Taylor and Francis, 1994)

• G. Grimmett: „Percolation“ (Springer, 1989)

• B.Bollobas and O.Riordan: „Percolation“ (Cambridge Univ. Press, 2006)

46

Percolator

Page 24: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

48

Applications of percolation

• Porous media (oil production, pollution of soils)

• Sol-gel transition• Mixtures of conductors and insulators• Forest fires• Propagation of epidemics or computer virus • Crash of stock markets (Sornette)• Landslide election victories (Galam)• Recognition of antigens by T-cells (Perelson)

• …

49

Gelatin formation

Page 25: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

50

Sol -gel transition

Shear modulus G vanishes

and viscosity η diverges

at tg as function of time t.

η •

G ◦

tg

51

Percolation

bla

site percolation on square lattice

p is the probability to occupy a site.Neighboring occupied sites are „connected“

and belong to the same cluster.

Page 26: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

52

Burning method

2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 34 4 4 4

4 4 4 4 45 5 5 5

5 5 5 5

6

6 6 67

7 7

7

8

8

89

9

9

HH et al (1984)

10 11 12 13

14 15 16

17 18

19

20

21

22

23

24

L = 16

shortest

path

ts = 24

p = 0.59

53

Probability to find a spanning cluster

pc = 0.592746…

Page 27: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

54

Percolation thresholds pc

lattice site bondcubic (body-centered) 0.246 0.1803

cubic (face-centered) 0.198 0.119

cubic (simple) 0.3116 0.2488

diamond 0.43 0.388

honeycomb 0.6962 0.65271*

4-hypercubic 0.197 0.1601

5-hypercubic 0.141 0.1182

6-hypercubic 0.107 0.0942

7-hypercubic 0.089 0.0787

square 0.592746 0.50000*

triangular 0.50000* 0.34729*

55

Order parameter of percolation

P(p) = fraction of sites in the largest cluster

( ) ( )cP p p p = 5/36 (2d); ≈ 0.41 (3d)

pc

Page 28: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

56

Many clusters

bond

percolation

We have clusters

of different sizes s

and can study the

cluster size

distribution ns

ssn

N=

N

57

Cluster size distribution

• N(i,j) {0,1}, 0 = empty, 1 = occupied

• Start: k = 2, N(first occupied site) = k, M(k) = 1

• If site top and left are empty: k = k + 1 and continue

• If one of them has value k0: N(i,j) = k0 , M(k0) = M(k0) + 1

• If both are occupied with k1 and k2: choose one, e.g. k1 , N(i,j) = k1, M(k1) = M(k1) + M(k2) + 1, M(k2) = - k1

• If any k has negative M(k): while(M(k)<0)k=-M(k)

• At end: for(k=2; k<=kmax; k++) n(M(k))=n(M(k))+1

Hoshen-Kopelman Algorithm (1976)Raoul Kopelman

Page 29: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

58

Evolution of N(i,j)

2 3 4 5 6 6 6 72 8 9 3 3 3 3 3 3 3 3 3 7

8 8 3 3 3 3 3 3 3 3 310 3 3 11 3 3 3 3 3 3 3

3 12 3

59

Cluster size distribution ns

ascs esppn )(

)/11(

)(dbs

cs eppn

Page 30: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

60

Cluster size distribution at pc

sn s

at pc

1872

912 18 3

52

2

in

in

.

τ

τ

d

d

61

Scaling of cluster size distribution

±( ) [( ) ]s cτn p s p p s

±

D. Stauffer

(1978)

s = size of cluster

are scaling functions („+“ for p > pc and „–“ for p < pc)

Page 31: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

63

Second moment χ

3

cppC

3600

= 43/18 ≈ 2.39 (2d)

≈ 1.80 (3d)

' 2

s snsmeans that one excludes the largest cluster

'

'

64

Critical exponents

Page 32: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

65

Order parameter of percolation

P(p) = fraction of sites in the largest cluster

( ) ( )cP p p p = 5/36 (2d); ≈ 0.41 (3d)

pc

in infinite system

66

Size dependence of OP

fd d

fddPL s L df = 91/48 in d = 2

df 2.51 in d = 3

at pc:

We will

show later:

L is linear size

of the system

Page 33: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

67

Shortest path ts at pc

also called

„chemical distance“ℓ

minds Lt

site (upper) and bond (lower)

percolation in 4 dimensions

(Ziff, 2001)

dmin ≈ 1.13 (2d)

dmin ≈ 1.33 (3d)

dmin ≈ 1.61 (4d)

6868

Fractal dimension

• B.B.Mandelbrot, „Les Objets Fractals: Forme Hazard et Dimension“ (Flammarion, Paris,1975)

• J. Feder, „Fractals“ (Plenum Press, NY, 1988)• T. Vicsek, „Fractal Growth Phenomena“

(World Scientific, Singapore, 1989)• H.-O.Peitgen and P.H.Richter, „The Beauty

of Fractals“ (Springer, Berlin, 1986)• J.-F. Gouyet, „Physique et Structures

Fractales) (Masson, Paris, 1992)

Books:

Page 34: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

69

Self similarity

70

Self similarity

70

105 particles 106 particles

107 particlesDLA clusters

Page 35: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

7171

Fractal dimension

df = log(5)/log(3) 1.46

df = log(3)/log(2) 1.602

„box counting“ method:

fdM LSierpinski gasket

7272

Gold colloids

David Weitz, 1984

df = 1.70

Page 36: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

7373

Sand-box method

.

Forrest and Witten

(1979)

M(R) is the

number of

particles

in box

of size R .

7474

Sand-box method

slope = df

ln M

ln R

Page 37: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

7575

Correlation function method

)]()([2

)2/()(

12/rMrrM

rr

drc

dd

c(r) = <(0)(r)>

( ) fd dc r r

slope df - d

7676

Calculate c(r)

. r

r + Δr

Page 38: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

7777

Light scattering

( ) ( ) fqr d dI q c r e d r q

Intensity of scattered light with wavevector q:

silica gel

Schaefer

(1984)

7878

Many clusters

bond

percolation

Page 39: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

7979

Ensemble method

21

1( )

( ) ig ji jr

M MR r

Define „radius of gyration“ Rg:

Take cluster of M sites.

f

g

dM R

8080

Ensemble method

slope = df

g

Page 40: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

8383

Box-counting method

= grid spacing

N() = number

of occupied cells

8484

Box-counting method

slope = df

Page 41: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

8585

Box-counting method

= grid spacing

N() = number

of occupied cells

8686

Multifractality

i

qiq pM qd

qM L

0

1

1

lnlim lim

lnq

Nq

m

qd

Ni = number of points in box i

pi = Ni / total number of points

qqq MMm /1

0 )/(

Page 42: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

8787

Strange attractor

21

1

( 1)

n n n

n n

x y x

y x

a

b

Hénon map

Michel Hénon

8888

Strange attractor

self-similar

Page 43: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

90

Hénon Map

93

Percolation

bla

site percolation on square lattice

p is the probability to occupy a site.Neighboring occupied sites are „connected“

and belong to the same cluster.

Page 44: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

94

Order parameter of percolation

P(p) = fraction of sites in the largest cluster

( ) ( )cP p p p = 5/36 (2d); ≈ 0.41 (3d)

pc

95

Size dependence of OP

fd d

fddPL s L df = 91/48 in d = 2

df 2.51 in d = 3

at pc:

We will

show later:

L is linear size

of the system

Page 45: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

96

Volatile fractal

L3

L2

L1

9797

PercolationThe correlation function g(r) for percolation

describes the connectivity and is defined as the

probability that an occupied site is connected

to a site at distance r . This is equivalent to the

probability that the two sites belong to the same

cluster.

The correlation length ξ is the characteristic

length of the exponential decay of the

correlation function.

Page 46: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

9898

Calculate g(r)

. r

r + Δr

9999

Correlation length ξ

/2 1

( / 2)( ) ( ) ( )

2 d d

dg r M r r M r

r r

If one just analyses one cluster

connectivity correlation function g(r) = c(r)

For p < pc the correlation length is

proportional to the radius of a typical cluster.

0

with for( ) r

cg r C e C p p

Page 47: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

100

Correlation length ξ

cp p

pc

101101

Correlation length ξ

cpp

pc2( )( ) dg r r η = 5/24 2d

η ≈ -0.05 3d

at pc:

Page 48: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

102102

Finite size effectsproblem when:

system size L < correlation length i.e. close to the critical point:

Lcritical region

round-off

103103

Round-off in correlation length ξ

pc

3100

Page 49: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

104

Finite size effects

1 1( ) ( )cL p p p

1 2 1 cp p p p

1 2

1

p p L

L

p1 p2

1

1( ) ( )eff cp L p aL

size of

critical region:

105105

Apply finite size dependence

)1()(1

aLpLp ceff

Extrapolation to infinite size

-

Page 50: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

106106

L

χ L

Finite size scaling for χ

1

( , ) [( ) ]cp L L p p L

HH et al. (1982)

data collapse

LL )(max

at pc:

A.E.Ferdinand and M.E Fisher

(1967)

107

Finite size scaling of OP

])[(),(1

LppLLpP cP

)( cppP

fdM L

fdd d

M PL L L

LP

fd d

fraction of sites in spanning cluster (OP):

finite size scaling:

at pc:

fractal dimension:

Page 51: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

109

Continuum percolation

Continuum

Swiss cheese model

110

Bootstrap percolation

Start with p = 0.55 on square lattice.

Remove iteratively all sites that have less

than m =2 occupied neighbors: „culling“.

Page 52: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

111

Bootstrap percolation

triangular lattice, m = 3

112

Cellular Automata (CA)

John von Neuman and Stanislaw Ulam after 1940

discrete determinstic

dynamics

Boolean variables

discrete = on a lattice evolving

from t to t +1

Page 53: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

113

References to CA

• Stephen Wolfram: „Cellular Automata and Complexity“ (Perseus, 1994)

• S. Wolfram: „A New Kind of Science“ (Wolfram Media, 2002)

• A. Ilachinski: „Cellular Automata“ (World Scientific Publ., 2001)

• B. Chopard: „Cellular Automata Modelling of Physical Systems“ (Cambridge University Press, 2005)

114

Definition of CA

1 1 ( ) ( ), , ...,i i jt f t j k

σi binary variable on site i of a graph

rule:

k = number of inputs

There exist possible rules.22k

Page 54: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

115

Time evolution

time

„ rule 30“

entries: 111 110 101 100 011 010 001 000

f (n): 0 0 0 1 1 1 1 0

On every site of a

one-dimensional chain

we put the same rule f

with k = 3 inputs, namely

the site itself and its two

nearest neighbors and

put at t = 0 a random

configuration of bits.

example:

116

Classification of CA

12

0

)(2k

n

n nfc

entries: 111 110 101 100 011 010 001 000

f (n): 0 1 1 0 0 1 0 1

f (n) = 64 + 32 + 4 + 1 = 101

k = 3

Page 55: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

117

Examples for k = 3

applet

entries: 111 110 101 100 011 010 001 000

4 : 0 0 0 0 0 1 0 0

8 : 0 0 0 0 1 0 0 0

20: 0 0 0 1 0 1 0 0

28; 0 0 0 1 1 1 0 0

90: 0 1 0 1 1 0 1 0

118

Evolution of different rules

14 16 18

20 22 24k = 5

Page 56: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

119

Classes of Automata

class 2 class 3

class 1 class 4

(Wolfram)

121

The Game of Life

John Horton Conway (1970)

• n < 2 0

• n = 2 stay as before

• n = 3 1

• n > 3 0

Consider a square lattice.

Be n the number nearest

and next-nearest neighbors

that are „1“.

rule:

Game of Life

Page 57: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

122

The Game of Life

123

The Game of Life

gliders:

Page 58: Introduction to Computational Physics - ETH Zürich · •Computational Quantum Physics ... • J.M. Thijssen: „Computational Physics“ (Cambridge, 1999) 16 Book Series • „Monte

124

The Game of Life

glider gun: