introduction to circuit qed lecture 2qs3.mit.edu/images/pdf/qs3-2017---girvin-lecture-2.pdf · 3...

53
Departments of Physics and Applied Physics, Yale University Introduction to Circuit QED Lecture 2 Theory SMG Liang Jiang Leonid Glazman M. Mirrahimi Marios Michael Victor Albert Richard Brierley Claudia De Grandi Zaki Leghtas Juha Salmilehto Matti Silveri Uri Vool Huaixui Zheng Yaxing Zhang +….. Experiment Michel Devoret Luigi Frunzio Rob Schoelkopf Andrei Petrenko Nissim Ofek Reinier Heeres Philip Reinhold Yehan Liu Zaki Leghtas Brian Vlastakis +….. http://quantuminstitute.yale.edu/

Upload: others

Post on 16-Apr-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Departments of Physics and Applied Physics, Yale University

Introduction to Circuit QEDLecture 2

TheorySMGLiang JiangLeonid GlazmanM. Mirrahimi

Marios MichaelVictor AlbertRichard BrierleyClaudia De GrandiZaki LeghtasJuha SalmilehtoMatti SilveriUri VoolHuaixui ZhengYaxing Zhang+…..

ExperimentMichel DevoretLuigi FrunzioRob Schoelkopf

Andrei Petrenko Nissim OfekReinier HeeresPhilip ReinholdYehan LiuZaki LeghtasBrian Vlastakis+…..

http://quantuminstitute.yale.edu/

2

- use quantized light shift of qubit frequency

†q 2

2za a

Reminder from Lecture 1: Measuring Photon Number Parity

ˆ ˆ22 2ez z

i nt i ne

ˆ 0,2,4,...n ˆ 1,3,5,...n x

z

3

Lecture 2:  Quantum State Manipulation 

and Measurement in Circuit QED

The ability to measure photon number parity withoutmeasuring photon number is an incredibly powerful tool.

• Quantum Optics at the Single Photon Level

• Measuring Wigner Functions

• Creating and Verifying Schrödinger Cat States

• Cat in Two Boxes

4

Quantum optics at the single photon level

0 1 2 30 1 2 3a a a a

• Photon state engineering

Goal: arbitrary photon Fock state superpositions

Use the coupling between the cavity (harmonic oscillator)and the two-level qubit (anharmonic oscillator) to achieve this goal.

Dispersively coupled cavity-qubit system is fully controllable.

Previous State of the Art for Complex Oscillator States

Haroche/Raimond, 2008 Rydberg (ENS)

Expt’l. Wigner tomography: Leibfried et al., 1996 ion traps (NIST – Wineland group)

Hofheinz et al., 2009 (UCSB – Martinis/Cleland)

Rydberg atom cavity QED Phase qubit circuit QED

~ 10 photons ~ 10 photons

Q5

What concepts do we need to know to understand a 

Schrödinger Cat State?

6

7

Photons in First Quantization

8

Coherent state is closest thing to a classicalsinusoidal RF signal

0( ) ( )

9(normalization is only approximate)

10

1even2

1odd2

(normalization approx. only)

How cats die:

even odd

odd even

a

a

2

2

2 | | (4 )2

n

n

a

a

Novel property:

How do we create a cat?

‘Classical’ signal generators only displace the vacuum and create coherent states.

We need some non-linear coupling to the cavity via a qubit.

11

12

Strong Dispersive Hamiltonian

q† †r damping2

z zH a a a a H

resonator qubit dispersivecoupling

rcavity frequency z

eg

r r

‘strong-dispersive’ limit

32 ~ 2 10

,

13

Strong‐Dispersive Limit yields a powerful toolbox

eg

r r

Microwave pulse at this frequency excites cavityonly if qubit is in ground state

Microwave pulse at this frequency excites cavityonly if qubit is in excited state

gD Conditional displacement of cavityEngineer’s tool #1:

Cavity frequency depends onqubit state

14

n Conditional flip of qubit if exactly n photonsEngineer’s tool #2:

q† †r damping2

z zH a a a a H

resonator qubit dispersivecoupling

Reinterpret dispersive term:- quantized light shift of qubit frequency

†q 2

2za a

3 124…

- quantized light shift of qubit frequency(coherent microwave state)

†q 2

2za a

N.B. power broadened100X

15

16

†DISPERSIVE

zV a a

strong dispersive coupling  I

2

n 0n 1n 2

Qubit Spectroscopy

Coherent state in the cavity

Conditional bit flip n

Strong Dispersive Coupling Gives Powerful Tool Set

17

Cavity conditioned bit flip

Qubit-conditioned cavity displacement gD

n

• multi-qubit geometric entangling phase gates (Paik et al.)• Schrödinger cats are now ‘easy’ (Kirchmair et al.)

experiment theoryG. Kirchmair M. MirrahimiB. Vlastakis Z. LeghtasA. Petrenko

Photon Schrödinger cats on demand

Deterministic Cat State Production

Will skip over details of cat state production;Focus on proving the cat is not an incoherent mixture:

- measure photon number parity in the cat

- measure the Wigner function (phase space distribution of cat)

Vlastakis et al. Science 342, 607 (2013)

12

g

18

Photon number

Rea

dout

sig

nal

0246810

Spectroscopy frequency (GHz)

Coherent state:

Mean photon number: 4

Even parity cat state:

Odd parity cat state:

Only photon numbers: 0, 2, 4, …

Only photon numbers: 1, 3, 5, …

Proving phase coherence via photon number distribution

2

19

Qubit Spectrum

1.0 1.0

2.0 2.0 ODD CAT

ODD CAT EVEN CAT

EVEN CAT

Number of parity jumps Number of parity jumps

Prob

abilit

y (%

)Pr

obab

ility

(%)

Prob

abilit

y (%

)Pr

obab

ility

(%)

0 2 4 6 8 100 2 4 6 8 10

0 2 4 6 8 10Number of parity jumps

0 2 4 6 8 10Number of parity jumps

12 12

1212

20

21

We have proven our states have the correct parity and photon number distribution.

We have not (strictly) verified all the phases are correct.

Need full state tomography via measurement of the Wigner Function.

Wigner Function MeasurementVlastakis, Kirchmair, et al., Science (2013)

Density Matrix:*( , ) ( ) )(

Wigner Function (definition):

, )2

( ( , )2

iQr r rQ dr eW

22

, r2 2

Define center of mass and relative coordinates:

Combines position and momentum information by Fourier transforming relative coordinate

Wigner Function = “Displaced Parity”Vlastakis, Kirchmair, et al., Science (2013)

(( ˆ) ) ( )D DW P

Handy identity (Luterbach and Davidovitch):

ˆˆ ( 1) parityNP

23

Full state tomography on large dimensional Hilbert space can be done very simply over a single input-output wire.

Simple Recipe: 1. Apply microwave tone to displace

oscillator in phase space.2. Measure mean parity.

Wigner Function of a Coherent State

24

‐4

Re

Im Q

(( ˆ) ) ( )D DW P ˆˆ ( 1) parityNP

25

‐4

Re

Im Q

(( ˆ) ) ( )D DW P ˆˆ ( 1) parityNP

Wigner Function of a Coherent State

0

0

4

4

‐4

‐4

Wigner Function of a Cat StateVlastakis, Kirchmair, et al., Science (2013)

12

Re

Im Q

Rapid parity oscillationsWith small displacements

Interference fringes prove cat is coherent:

26

0

0

44

‐4

‐4

Deterministic Cat State Production

Data!

Expt’l Wigner function

Vlastakis, Kirchmair, et al., Science (2013)

27

0

0

44

‐4

‐4

Deterministic Cat State  Production

0.8

0.4

0.0

‐0.4

‐0.8‐2               0               2 ‐2               0               2 ‐2               0               2 ‐2               0               2

18.7 photons 32.0 photons 38.5 photons 111 photons

determined by fringe frequency

Data!

Expt’l Wigner function

111 photons

Most macroscopic superposition ever created?

Vlastakis, Kirchmair, et al., Science (2013)

28

0

0

44

‐4

‐4

Deterministic Photon Cat Production

0.8

0.4

0.0

‐0.4

‐0.8‐2               0               2 ‐2               0               2 ‐2               0               2 ‐2               0               2

18.7 photons 32.0 photons 38.5 photons 111 photons

determined by fringe frequency

Three-component cat: Four-component cat:

111 photons

Vlastakis, Kirchmair, et al., Science (2013)

Zurek ‘compass’ state for sub-Heisenberg metrology

29

30

Non-Deterministic Cat State Production

Using Parity Measurement

Cat State = Coherent State Projected onto Parity

L. Sun et al., Nature (July 2014)

31

even odd2 2 2 2

time evolve to entangle spin with cat states:

even odd

2 2

x x x

x x

ˆ ˆ22 2ez z

i nt i ne

Wigner Tomography of cats entangled with qubitL. Sun et al., Nature (July 2014)

32

even odd2 2

x x

Wigner function of cavity (tracing out qubit) yields an incoherent MIXTURE of two coherent states and not a cat. (no fringes)

Equivalently: mixture of even and odd cats.

“qubit is in |+x>”

“qubit is in |-x>”

Fidelity of produced cats:

Wigner Tomography Conditioned on Qubit StateL. Sun et al., Nature (July 2014)

33

34

Cat In Two Boxes

Cat in Two Boxes Qubit measures joint parity!1 2ˆ ˆ( )

12 1 2i n nP P eP

35

Theoretical proposal by Paris group:Eur. Phys. J. D 32, 233–239 (2005)

12

Cat in Two Boxes Qubit measures joint parity!1 2ˆ ˆ( )

12 1 2i n nP P eP

36

Experiment by Yale group:Science 352, 1087 (2016)

- Universal controllability- 3-level qubit can measure

1 2 12, , and P PP

Cat in Two Boxes

37

Two-cavities:4-dimensional phase space and Wigner functions.

Theory

Experiment

12

38

Entanglement of Two Logical Cat-Qubits

CHSH Bell: 2 2 2B

CHSH: (evaluate Wigner at 4 points in 4D phase space)

40

The ability to measure photon number parity without measuring photon number is an incredibly powerful tool.

Lecture 2: Using parity measurements for:

• Wigner Function Measurements• Creation and verification of photon cat

states

Lecture 3: Using parity measurements for:

• Continuous variable quantum error correction

Summary of Lecture 2:

41

For separate discussion offline:

Detailed Recipe to Make a

1. Schrödinger Cat2. Schrödinger Cat State

Strong Dispersive Coupling Gives Powerful Tool Set

42

Cavity conditioned bit flip

Qubit-conditioned cavity displacement gD

n

• multi-qubit geometric entangling phase gates (Paik et al.)• Schrödinger cats are now ‘easy’ (Kirchmair et al.)

experiment theoryG. Kirchmair M. MirrahimiB. Vlastakis Z. LeghtasA. Petrenko

Photon Schrödinger cats on demand

cavity

qubitP

M

Making a cat: the experiment

Q

(*fine print for the experts: this is the Husimi Q function not Wigner)43

cavity

qubitP

M

Making a cat: the experiment

Q

44

cavity

qubitP

M

Making a cat: the experiment

Q

45

cavity

qubitP

M

Making a cat: the experiment

Q

46

cavity

qubitP

M

Making a cat:

qubit acquires phase per photon…

t after time:

Q

47

cavity

qubitP

M

Making a cat:

qubit acquires phase per photon…

t after time:

Qubit fully entangled with cavity‘cat is dead; poison bottle open’‘cat is alive; poison bottle closed’

Q

48

49

12

g

Qubit in ground state; cavity in photon cat state

12

g e

We have a ‘cat’

We want a ‘cat state’

How do we disentangle the qubit from the cavity?

50

Combining conditional cavity displacements with conditionalqubit flips, one can disentangle the qubit from the photons

12

g e ‘cat’

D 2 012

eg

51

Combining conditional cavity displacements with conditionalqubit flips, one can disentangle the qubit from the photons

D

12

g e ‘cat’

2 012

g g 0

52

Combining conditional cavity displacements with conditionalqubit flips, one can disentangle the qubit from the photons

D

12

g e ‘cat’

12

g g 0D

53

Combining conditional cavity displacements with conditionalqubit flips, one can disentangle the qubit from the photons

12

g D0gD

12

g e ‘cat’

‘cat state’