introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/ta_1e06c.pdf · before...

107
Introduction to electrophysiology Dr. Tóth András

Upload: others

Post on 12-May-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Introduction to

electrophysiology

Dr. Tóth András

Page 2: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Topics

• Transmembran transport

• Donnan equilibrium

• Resting potential

• Ion channels

• Local and action potentials

• Intra- and extracellular propagation of the stimulus

Page 3: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Level of significance

• “Entry” level (even under 6)

• “Student” level (for most of you)

• “Gourmand” level (only for the pros)

Page 4: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

1. Transmembran transport

Page 5: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Major types of transmembran transport

1

Page 6: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

dx

dcA

JD

x

cDAJ

dx

dcDAJ

=

∆∆

−=

−=J: net rate (flux) of diffusion

A: area

dc/dx: concentrationgradient

D: diffusion coefficient

(D: cm2/s)

Fick’s first law of diffusion

2

Page 7: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

ηπ r

kTD

6=

Diffusion of solutes as a consequence of the random

thermal (Brownian) motion of the particles

Stokes–Einstein

equation

Einstein relation____

(∆x2) = 2 Dt

3

Page 8: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Time required for diffusion as a function of diffusion

distance

4

Page 9: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Fick’s law for membrane

x

DK

x

cDAJ

x

cDAJ

∆=

∆∆

−=

∆∆

−=

β

β

Diffusion across a semipermeable membrane

ββββ: partition coefficient

K: permeability coefficient

5

Page 10: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Osmotic motion across a semipermeable membrane

6

Page 11: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Definition of the osmotic pressure

ΦΦΦΦ: osmotic coefficient

ΦΦΦΦic: osmotically effective concentration - osmolality

van’t Hoff’s Law

π= iRTm

π= iRTc

π = RTΦic

Φic = ∆Tf /1.86

I.e.: 154 mM NaCl solution

ππππ = 6.42 atm

Φ Φ Φ Φic = 0.286 osmol/L

7

Page 12: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Mechanism of facilitated diffusion

8

Page 13: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Principle of transport of ions across ion channels

9

Page 14: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

The principle of function of the Na+/K+–ATPase

10

Page 15: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Secondary active transport processes

11

Page 16: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Transport via proteins shows saturation kinetics

Michaelis-Menten

equation

Vmax: maximal rate of

transport

Km: concentration of

the substrate for which the rate of

transport is equal

to Vmax/2

12

Page 17: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

2. Ionic equilibrium

Page 18: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

[ ][ ] ( )BA

B

A

o

EEzFX

XRT

zFECRT

−+=∆

++=

+

+

ln

ln

µ

µµ

Electrochemical potential (difference)

13

Page 19: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Nernst equation

[ ][ ] ( )

( ) [ ][ ]

[ ][ ]B

ABA

B

ABA

BA

B

A

X

X

zF

RTEE

X

XRTEEzF

EEzFX

XRT

mEquilibriu

+

+

+

+

+

+

−=−

=−−

−+=

ln

ln

ln0

[ ][ ] lg60

B

A

X X

XmVE

+

+

−=+

For monovalent cations

Z = 1

14

Page 20: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

A B

0.1 M

K+

0.01 M

K+

EA – EB = -60 mV

Examples of uses of the Nernst equation 1.

0.1 M

HCO3-

EA – EB = +100 mV

A B

1 M

HCO3-

Is there equilibrium in any of the two cases?

15

Page 21: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

A B

0.1 M

K+

0.01 M

K+

EA – EB = −−−−60 mV

Examples of uses of the Nernst equation 2.

A B

At –60 mV the K+ is in electrochemical equilibrium

across the membran

No electric force !!!

+++++++

–––––––

16

1 M

HCO3-

0.1 M

HCO3-

Page 22: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

A B

0.1 M

K+

0.01 M

K+

EA – EB = −−−−60 mV

Examples of uses of the Nernst equation 3.

EA – EB = +100 mV

A B

At –60 mV the K+ is in electrochemical equilibrium

across the membran

No electric force

At the given membran potential the HCO3

- is not in electrochemical equilibrium

Electric force: +40 mV

+++++++

–––––––

––––––––

++++++++

17

1 M

HCO3-

0.1 M

HCO3-

Page 23: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

A B

[K+] = 0.1 M

[P-] = 0.1 M

[K+] = 0.1 M

[Cl-] = 0.1 M

A B

[K+] =

[Cl-] =

[P-] = 0.1 M

[K+] =

[Cl-] =

Initial state

Before Gibbs-Donnan equilibrium is established

1. The principle of electroneutrality should be preserved !!!

2. The electrochemical potential should be zero for each diffusible ion !!! (Not for the undiffusible ion !!!)

Equilibrium?

18

Page 24: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

A B

[K+] = 0.1 M

[P-] = 0.1 M

[K+] = 0.1 M

[Cl-] = 0.1 M

A B

[K+] = 0.133 M*

[Cl-] = 0.033 M*

[P-] = 0.1 M

[K+] = 0.066 M*

[Cl-] = 0.066 M*

Initial state Equilibrium state* (!?)

Gibbs-Donnan equilibrium has been attained

1. The principle of elektroneutrality is, indeed, valid !!!

2. The electrochemical potential is zero for K+ and Cl- !!!

3. * So, is there any problem ???

19

Page 25: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

A B

[K+] = 0.1 M

[P-] = 0.1 M

[K+] = 0.1 M

[Cl-] = 0.1 M

A B

[K+] = 0.133 M

[Cl-] = 0.033 M

[P-] = 0.1 M

[K+] = 0.066 M

[Cl-] = 0.066 M

Starting state Equilibrium state

In Gibbs-Donnan equilibrium a transmembrane

hydrostatic pressure gradient is present

(There is no equilibrium between pressures !!!)

∆∆∆∆PH = 2.99 atm !!!

20

Page 26: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

3. Resting potential

Page 27: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

The „concentration battery”

A B

0.1 M

NaCl

0.01 M

NaCl

If the membrane is permeable for cations, but unpermeable for anions, cation current is

needed to reach equilibrium !!!

21

Page 28: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

The „concentration battery”

A B

+

+

+

+

+

+

+

In case of electrochemical equilibrium

EA – EB = - 60 mV

Na+

22

0.1 M

NaCl

0.01 M

NaCl

Page 29: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

“Measured” intra- and extracellular ionconcentrations

23

Page 30: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

A simplified model of the resting membrane potential in

the human skeletal muscle

mV

P

mV

mV

mV

Na

90E 4)

0Prot 3)

P )2

- - 150 Prot

90- 115 3,6 Cl

100- 3,5 160 K

65 145 12 Na

E (mM) EC (mM) IC 1)

m

100K

-

-

eq

−=

=

⟩⟩

+

++

+

+

-90 mV

Cl- Na+

cc cc

cc

E E

E

K+

24

Page 31: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

+++

+++

−−−

−=

−=

≈−=

=∆

=

KKmK

NaNamNa

ClClmCl

gEEI

gEEI

gEEI

Rg

R

UI

)(

)(

0)(

1

Conditions for the “chord conductance” equation

Theoretical estimation for the resting potential 1.

25

Page 32: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

+

++

+

+

++

+

++++

++

++

+=

−−=−

=+

Na

NaK

Na

K

NaK

Km

KKmNaNam

KNa

Egg

gE

gg

gE

gEEgEE

II

)()(

0

++

++

+=

NaKm EEE1100

1

1100

100

+6

0

0

-70

-90

Na+

K+

Em

The “chord conductance” equation

gNa+ = 1 gK+ = 100

26

Page 33: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

The “constant field” (Goldman-Hodgkin-Katz) equation

opClipNaipK

ipClopNaopKm

ClkNakKk

ClkNakKk

F

RTE

][][][

][][][ln

−++

−++

++++

=

Theoretical estimation for the resting potential 2.

27

Page 34: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Major factors affecting resting potential

C

28

Page 35: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Also in cardiac cells the resting potential is supposed to

be [K+] dependent

29

Page 36: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

In cardiac cells the resting potential is, indeed, primarily

[K+] dependent

30

Page 37: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

4. Ion channels

Page 38: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

4.1 Experimental techniques

Page 39: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Major configurations of the „patch clamp” technique

31

Page 40: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

„Single channel” current

32

Page 41: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Determination of the mean open time

33

Page 42: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Current-voltage relationship of the „inward” and

„outward” rectifying channels

34

Page 43: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

4.2 Principles of regulation

Page 44: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

State diagram of a simple, “dual-state” ion channel

35

Page 45: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

State diagram of a “multiple-state” ion channel

36

Page 46: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Basic regulatory mechanisms of ion channels

37

Page 47: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

„Background” channels spontaneously oscillate between

open and closed states

37

a

Page 48: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

„Voltage-gated” channels also oscillate between the two

states, but voltage shifts the equilibrium

37

b

Page 49: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

The open state of „neurotransmitter-gated” channels is

altered by the binding of a neurotransmitter to the

channel (e.g. nicotinic receptor)

37

c

Page 50: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

The open state of “G-protein gated” channels is altered

by binding of activated G-protein subunits to the channel

(following receptor activation – e.g. muscarinic receptor)

37

d

Page 51: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

„Modulated” channels may be voltage-gated, but the

ability of voltage to open the channel may be influenced

by covalent modification (e.g. phosphorilation)

37

e

Page 52: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

4.3 Structure

Page 53: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Ion channel “superfamilies”

38

Page 54: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

2D model of the Na+ channel 1.

39

Page 55: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

2D model of the Na+ channel 2.

40

Page 56: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

4.4 Structure-function relation

Page 57: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

S4 helices are the “voltage-sensors” of voltage-gated

channels –amino acid homology is extensive

41

Page 58: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Model of the function of the S4 helix as „voltage sensor”

A total of 6 charges should relocare in the membrane to open the channel

42

Page 59: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Top view of the Na+ channel showing how the central ion

channel is proposed to be lined by one of the helices

from each domain

43

Page 60: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Functional model of a K+ channel

44

Page 61: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Cardiac ion channels

45

Page 62: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

5. Local and action potentials

Page 63: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

5.1 Local response

Page 64: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Local (subthreshold) response

46

Page 65: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Temporal summation

47

Page 66: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Spatial summation

48

Page 67: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

5.2 Action potential

Page 68: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Responses in the membrane potential to increasing

pulses of depolarizing current

49

Page 69: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Action potentials from three vertebrate cell types

50

Page 70: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

5.3 Action potentials in the heart

Page 71: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Ion concentrations in mammalian heart

51

Page 72: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

“Fast” and “slow” response in the heart

52

Page 73: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Regional variations in the shape of the action potential of

the heart cells

53

Page 74: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Explanation of the kinetic differences

„Fast”

sodium

„Funny”

„Delayed

rectifier”

Calcium

„Tranzient

outward”

„Background”

Sodium

„Inward

rectifier”

Ion currents

∅∅∅∅!

I

≈≈≈≈0

≈≈≈≈0

∃∃∃∃

„L”

„T+L”

54

Page 75: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

The effect of tetrodotoxin on the fast response

55

Page 76: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

6. Propagation of the stimulus

Page 77: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

6.1 Basic principles of propagation

Page 78: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Potential changes recorded by an extracellular electrode

located at different distances from the current electrode

56

Page 79: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Maximum change in recorded membrane potential plott-

ed versus distance from the point of current passage

57

Page 80: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Potencial changes in a model RC-circuit

58

Page 81: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Electric model of the axon membrane

59

Page 82: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Time constant determined in a membrane

CRR im ⋅

60

Page 83: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Model of decremental propagation (voltage divider -

resistance ratio)

61

Page 84: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Length constant determined in the membrane

i

m

R

R

62

Page 85: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Model of conduction of the local (subthreshold) response

63

Page 86: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Electric model for the propagation of potential changes

64

Page 87: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Model of conduction of the AP in nonmyelinated fibers

65

Page 88: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

“Saltatory” conduction of the action potential in

myelinated fibers

66

Page 89: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Conduction velocity of the action potential determined in

unmyelinated and myelinated fibers

67

Page 90: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

6.2 AP propagation in heart

Page 91: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Structure of the electric synapse (gap junction)

MW <<<< 1500Ca2+ ↑↑↑↑pH ↓↓↓↓Em ↑↑↑↑

68

Page 92: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Electric model of the cardiac cells

69

Page 93: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Computer simulation of impulse propagation at the

microscopic level

70

Page 94: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

The significance of gap junctions in

normal stimulus propagation in the

heart

Page 95: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Subcellular stimulus propagation

71

Page 96: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Differences in delays of intra- and intercellular activation

– single cell wide network

72

Page 97: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Differences in delays of intra- and intercellular activation

– multi-cell wide network

73

Page 98: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Impulse propagation (isochron lines) in case of normal

gap junction coupling (homogenious AP-population)

74

Page 99: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Impulse propagation (isochron lines) in severe gap

junction uncoupling (heterogenous AP-population)

75

Page 100: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

In severe gap junction uncoupling propagation velocity

may decrease TWO orders of magnitude (!!!)

(from 36.7 cm/s to only 0.31 cm/s)

76

Page 101: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

In case of normal gap junction coupling isochron lines

are relatively regularly placed, AP-population is

homogenous

77

Page 102: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

In case of critical gap junction uncoupling action

potentials form ”clusters” with significant delays

78

Page 103: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Distribution of the cells forming the different clusters in

case of critical uncoupling – turn back behaviour of the

stimulus easily leading to „reentry” can be observed

79

Page 104: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Questions

What are the principal differences between the following iontransporters?

Sodium-calcium exchanger

Sodium-hidrogen exchanger

Calcium pump of the sarcolemma

What does equilibrium potential mean for a given ion?

How the Nernst equation can be used to analyze ion movements in case of

diffusible ions?

What will happen, if the membrane is not permeable for at least one ion?

When is Gibbs-Donnan equilibrium present across a living cell membrane?

In Fig. 22 how much Na+ has to pass the membrane to reach equilibrium?

Which are the primary conditions for establishing and maintaining steady

resting potential ?

What is the reason, for in one cell type (rbc) the resting potential equals –30 mV,

while in an other (cardiac) cell type it equals –90 mV?

What are the major factors determining the actual value of the membrane

potential?

Page 105: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Questions

What is the difference between a membrane receptor and an ion channel?

Are there membrane receptors, which are also ion channels?

How is possible, that Na+ ions can pass an ion channel, but K+ ions don’t?

How is possible, that K+ ions can pass an ion channel, but Na+ ions don’t?

Which are the most important properties of the ion channels?

What is the difference between electrochemical potential and membrane potential?

Which are the most important features of the local response?

Special forms of local response?

What are the major differences between local response and action potential?

What is the reason for the very different kinetic properties of the action potentials

recorded in different cell types?

How could you change the shape of the action potential?

What is the effect of tetrodotoxin on fast response?

Why is “good for us” to maintain a resting potential in the cells of our body, if it

costs such a substantial amount of energy (ATP)?

Page 106: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

Questions

What is the explanation for the fact, that postsynaptic action potentials are

generated at the axon hillock?

Which factors determine action potential conduction velocity in myelinated fibers?

And in unmyelinated fibers?

Why is conduction velocity significantly higher in myelinated than in unmyelinated

fibers?

How would you explain the expression that cardiac muscle is “functional

syncytium”?

Where are electric synapses (i.e. gap junctions) located in the mammalian body?

Which are the major functional differences between electric and chemical

synapses?

What is the prime factor determining direction of impulse propagation in the three

dimensional cardiac muscle?

Why is the transmission of stimulus through AV node dramatically slower than in

other parts of the heart?

Is there „fast” and „slow” action potential propagation? What may be the reason?

Page 107: Introduction to electrophysiologyweb.med.u-szeged.hu/phcol/jegyzet/TA_1E06c.pdf · Before Gibbs-Donnan equilibrium is established 1. The principle of electroneutrality should be preserved

THE END