interpreting seismic observables geoff abers, greg hirth velocities: compositional effects vs p,t...

Download Interpreting Seismic Observables Geoff Abers, Greg Hirth Velocities: compositional effects vs P,T Attenuation at high P, T Anisotropy (Hirth) Upload from

If you can't read please download the document

Upload: kayli-duffett

Post on 16-Dec-2015

220 views

Category:

Documents


0 download

TRANSCRIPT

  • Slide 1
  • Interpreting Seismic Observables Geoff Abers, Greg Hirth Velocities: compositional effects vs P,T Attenuation at high P, T Anisotropy (Hirth) Upload from bSpace -> Seismic_Properties: Hacker&AbersMacro08Dec2010.xls & various papers
  • Slide 2
  • A random tomographic image (Ferris et al., 2006 GJI) Crustal tomography: Woodlark Rift, Papua New Guinea - Transition from continental to oceanic crust
  • Slide 3
  • Arc crust velocities Arc Vp along-strike Aleutians Vs. SiO2 in arc lavas [Shillington et al., 2004] Arc lower crust predictions [Behn & Kelemen, 2006]
  • Slide 4
  • Velocity variations within subducting slab W E Green: relocated, same velocities. yellow: catalog hypocenters CAFE Transect, Washington Cascades (Abers et al., Geology, 2009) km from coast dlnVs = 10-15% dlnVs = 2-4%
  • Slide 5
  • Unusual low Vp/Vs in wedge Vp/Vs = 1.65-1.70 Alaska (Rossi et al. 2006) Andes 31S (Wagner et al. 2004) Normal N Honshu Zhang et al. (Geology 2004) Vp/Vs = 1.8-1.9 Strange: no volcanics * PREM: Vp = 8.04 km/s, Vp/Vs = 1.80
  • Slide 6
  • Velocities & H2O in metabasalts Crust Hydrated at: low P, or low T eclogite blueschist amphibolite gr-sch (Hacker et al., 2003a JGR; Hacker & Abers, 2004 Gcubed) 100 92 87 95 81 84 %Vp/Vp HARZ %Vp ~ 99-103 % (eclogite/peridotite) %Vp ~ 85-95 % (hydrated/peridotite)
  • Slide 7
  • What else affects velocities? (b) temperature (c) fluids = bulk modulus = shear modulus = bulk modulus = shear modulus Takei (2002) poroelastic theory Temperature Pore fluids melts H2OH2O Faul & Jackson (2005) anelasticity + anharmonicity aspect ratio 0.1-0.5
  • Slide 8
  • Two Approaches (1) Direct measurement of rock velocities
  • Slide 9
  • V vs. composition Arc lower crust Behn & Kelemen 2006 Crustal rock variations Brocher, 2005
  • Slide 10
  • Second Approach (2) Measure/calculate mineral properties, and aggregate Disaggregate rock into mineral modal abundances For each mineral, look up K, G, V, at STP & derivatives Extrapolate K(P,T), G(P,T), Aggregate to crystal mixture Calculate Vp, Vs Eclogite: Abalos et al., GSABull 2011 Peridotites: Lee, 2003
  • Slide 11
  • Whole-rock vs. calculated velocities (Oceanic gabbros, from Carlson et al., Gcubed 2009)
  • Slide 12
  • Measured vs predicted Vp Oceanic gabbros (data) Thick line: predictions What is going on? Behn & Kelemen, 2003 Gcubed
  • Slide 13
  • Calculating seismic velocities from mineralogy, P,T (Hacker et al., 2003, JGR; Hacker & Abers 2004, Gcubed) Thermodynamic parameters for 55 end-member minerals - 3rd order finite strain EOS - aggregated by solid mixing thy. Track V, , H 2 O, major elem., T,P minerals elastic parameters
  • Slide 14
  • Compiled Parameters o = (P=0 GPa,T=25 C) = density K T0 = isothermal bulk modulus (STP) G 0 = shear modulus (STP) 0 ; d /dT or similar = coef. Thermal expansion K = dK T /dP = pressure derivative = dlnG/dln = T derivative (G(T)) G = dG/dP = pressure derivative th = 1 st (thermal) Grneisen parameter T = 2 nd (adiabatic) Grneisen parameter (K(T))
  • Slide 15
  • Elastic Moduli vs. P, T Computational Strategy: First increase T thermal expansion Second increase P 3 rd order finite strain EoS Integrate in T Integrate in P STP From Hacker et al. 2003a
  • Slide 16
  • Aggregating & Velocities Mixture theories, simple: Voight-Reuss-Hill average K, 1/K, both Complex Hashin-Shtrikman Mixtures sorted/weighted averages Finally, turn elastic parameters to seismic velocities using the usual
  • Slide 17
  • Usage notes Raw data table: elastic parameters & derivatives Intermediate calculation table Work table: Enter compositions, P,T here Mineralinformation & stored compositions database includes references & notes on source of values
  • Slide 18
  • Usage notes: rocks mins modes Compositions from Hacker et al. 2003 Metagabbros Metaperidotites Petrology for people who dont know the secret codes
  • Slide 19
  • Usage Notes: you manipulate rocks sheet Enter compositions here (adds to 100%) and P,T here (optional: d, f for anelastic correction) then click to run (primary output) More info below
  • Slide 20
  • The mineral database how good? Dry, major mantle minerals: OK Hydrous, and/or highly anisotropic..??? Shear Modulus (& derivatives)???
  • Slide 21
  • Inside the macro Yellow: extrapolated, calculated from related parameters, or otherwise indirect V KTKT KGG th Big problems w/ shear modulus
  • Slide 22
  • A couple of Apps Hydrated metabasalts (after Hacker, 2008; Hacker and Abers, 2004) use Perple_X to calculate phases, HAMacro to calculate velocities
  • Slide 23
  • Predict T(P) from model (Abers et al., 2006, EPSL) & Facies from petrology (Hacker et al., 2003)
  • Slide 24
  • H2O Vs 2D model predictions Predictions from thermal/petrologic model
  • Slide 25
  • Serpentinization effect on Vp [Hyndman and Peacock, 2003] Are downgoing plates serpentinized? (Nicaragua forearc)
  • Slide 26
  • Result: low Vp/Vs in deeper wedge Where slab is deep: Vp/Vs = 1.64-1.69 (consistent w/ tomography)
  • Slide 27
  • The Andes [Wagner et al., 2004, JGR] 31.1S Flat Slab 32.6S Vp/Vs < 1.68-1.72
  • Slide 28
  • Vp/Vs and composition: need quartz Andes AK wedge AK wedge
  • Slide 29
  • Slide 30
  • What is seismic attenuation? Q = E/E - loss of energy per cycle EE Amplitude ~ exp(- ftT/Q) T 1/f
  • Slide 31
  • What Causes Attenuation? Upper Crust: cracks, pores Normal Mantle: thermally activated dissipation Cold Slabs: ?? (scattering may dominate if 1/Q intrinsic is low)
  • Slide 32
  • Seismic Attenuation (1/Q) at high T Faul & Jackson (2005), adjusted to 2.5 GPa d=1 mm 10 mm At High T, Q Has: strong T sensitivity some to H 2 O, grain size, melt weak compositional sensitivity shear, not bulk 1/Q
  • Slide 33
  • High-Temperature Background (HTB) Simple model (Jackson et al. 2002) grain size period activation energy temperature = 0.2-0.3 (frequency dep.) m = (grain size dep.)
  • Slide 34
  • Attenuating Signals 2 s DH1 = 0.92 RCK = 0.91 wedge RCKDH1 updip P waves depth 126 km (Stachnik et al., 2004, JGR)
  • Slide 35
  • Q Measurements Fit P, S spectra: T/Q, M 0, f c 0.5 (10-20) Hz Forearc PathWedge Path S waves, slab event, ~ 100 km u(f) = U 0 A source (f) e - fT/Q Q and amplitude u(f):
  • Slide 36
  • Path-averaged Qs assumes Q(f) from laboratory predictions Invert these tomographically
  • Slide 37
  • Test of Q theory: Ratio of Bulk / Shear attenuation high 1/Qs high 1/Qk Alaska cross-section (Stachnik et al., 2004)
  • Slide 38
  • Test of HTB: Frequency Dependence Q = Q 0 f Lab: Faul & Jackson 2005 Observations from Alaska
  • Slide 39
  • Forearcs: cold; subarc mantle: hot Heat flow in northern Cascadia: step 20-30 km from arc (Wada and Wang, 2009; after Wang et al. 2005; Currie et al., 2004)
  • Slide 40
  • Results from Alaska (BEAAR): 1/Q S In wedge core: Q S ~ 100-140 @ 1 Hz 1200-1400C (dry) lo Q hi Q (Stachnik et al., 2004 JGR)
  • Slide 41
  • Attenuation in Central America (TUCAN) (Rychert et al., 2008 G-Cubed)
  • Slide 42
  • Anisotropy
  • Slide 43
  • EXTRAS
  • Slide 44
  • Attenuation vs Velocity: Physical Dispersion No attenuation Attenuation + Causality = Delay in high-frequency energy Attenuation without causality
  • Slide 45
  • Attenuation vs Velocity: Physical Dispersion No attenuation Attenuation + Causality This means: Band-limited measurements of travel time are late Band-limited measures give slower apparent velocities As T increases, both V and Q decrease
  • Slide 46
  • Physical Dispersion: Faul/Jackson approx. K G anharmonic anharmonic + anelastic
  • Slide 47
  • Physical Dispersion: Karato approx. Karato, 1993 GRL
  • Slide 48
  • Net effect: interpreting T from Vs Faul & Jackson, 2005 EPSL
  • Slide 49
  • Slide 50
  • Deep under the hood: adiabatic vs. isothermal Important distinction between adiabatic (const. S) and isothermal (const. T) processes Useful: Bina & Helffrich, 1992 Ann. Rev.; Hacker and Abers, 2004 GCubed Labs & petrologists usually measure this Seismic waves see this (not the same!)
  • Slide 51
  • Deep under the hood: 1 st Grneisen parameter relates elastic to thermal properties E is the internal energy, related to temperature S is entropy e.g. defines the adiabat A more useful relationship can be obtained with some definitions/algebra = coef. Thermal expansion K T, K S = (isothermal, isentropic) bulk modulus C V, C P = specific heat at const. (volume, P) Useful: Bina & Helffrich, 1992 Ann. Rev.; Anderson et al., 1992 Rev. Geophys.
  • Slide 52
  • The other parameters & scalings - Relates thermal expansion (of volume) to thermal changes of bulk modulus K = K/P is usually around 4.0 see Anderson et al., 1992 T ~ + K In absence of any data - Same for shear modulus
  • Slide 53
  • Related/useful: Adiabatic Gradient Some monkeying around gives Useful: Bina & Helffrich, 1992 Ann. Rev.; Hacker and Abers, 2004 GCubed So that the adiabatic gradient is This is a useful formulism: ~ 0.8 1.3 for most solid-earth materials (1.1 is good average) g ~ 10 m s 2 throughout upper mantle HOMEWORK: what is the geothermal gradient?