interplay between bone and incretin hormones: a...

10
Please cite this article in press as: Mabilleau G. Interplay between bone and incretin hormones: A review. Morphologie (2016), http://dx.doi.org/10.1016/j.morpho.2016.06.004 ARTICLE IN PRESS +Model MORPHO-283; No. of Pages 10 Morphologie (2016) xxx, xxx—xxx Disponible en ligne sur ScienceDirect www.sciencedirect.com GENERAL REVIEW Interplay between bone and incretin hormones: A review Interaction entre l’os et les hormones incrétines : une revue G. Mabilleau a,,b a GEROM-LHEA, groupe d’études remodelage osseux et biomatériaux, institut de biologie en santé, université d’Angers, 4, rue Larrey, 49933 Angers cedex 09, France b SCIAM, institut de biologie en santé, université d’Angers, 4, rue Larrey, 49933 Angers cedex 09, France KEYWORDS Bone; GIP; GLP-1; Incretins; Digestive hormones Summary Bone is a tissue with multiple functions that is built from the molecular to anatom- ical levels to resist and adapt to mechanical strains. Among all the factors that might control the bone organization, a role for several gut hormones called ‘‘incretins’’ has been suspected. The present review summarizes the current evidences on the effects of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) in bone physiology. © 2016 Elsevier Masson SAS. All rights reserved. MOTS CLÉS Os ; GIP ; GLP-1 ; Incrétines ; Hormones digestives Résumé Le tissu osseux est un tissu conjonctif avec de multiples fonctions qui est organisé depuis l’échelle moléculaire jusqu’à l’échelle anatomique pour résister et s’adapter aux con- traintes mécaniques. Parmi tous les facteurs qui pourraient contrôler son organisation, le rôle de certaines hormones intestinales appelées « incrétines » a émergé. La présente revue résume les connaissances actuelles sur les effets du polypeptide insulinotrope dépendant du glucose (GIP) et du glucagon-like peptide-1 (GLP-1) en physiologie osseuse. © 2016 Elsevier Masson SAS. Tous droits eserv´ es. Introduction Bone is a tissue with multiple functions: it supports the body weight and protects essential organs from potential mechanical injuries (mechanical function); Correspondence. E-mail address: [email protected] it acts as a calcium, phosphate and sodium reservoir (metabolic function); it is a host tissue for hematopoietic bone marrow and; it is also an endocrine organ involved in the regulation of glucose metabolism, energy expenditure, regulation of testosterone production and phosphate homeostasis [1—4]. From the molecular to anatomical levels, bones are built to resist and adapt to mechanical strains according to http://dx.doi.org/10.1016/j.morpho.2016.06.004 1286-0115/© 2016 Elsevier Masson SAS. All rights reserved.

Upload: trantram

Post on 07-May-2018

219 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Interplay between bone and incretin hormones: A reviewokina.univ-angers.fr/publications/ua14969/1/2016b-morphologie.pdf · Please cite this article in press as: Mabilleau G. Interplay

ARTICLE IN PRESS+ModelMORPHO-283; No. of Pages 10

Morphologie (2016) xxx, xxx—xxx

Disponible en ligne sur

ScienceDirectwww.sciencedirect.com

GENERAL REVIEW

Interplay between bone and incretinhormones: A reviewInteraction entre l’os et les hormones incrétines : une revue

G. Mabilleaua,∗,b

a GEROM-LHEA, groupe d’études remodelage osseux et biomatériaux, institut de biologie en santé,université d’Angers, 4, rue Larrey, 49933 Angers cedex 09, Franceb SCIAM, institut de biologie en santé, université d’Angers, 4, rue Larrey, 49933 Angers cedex 09, France

KEYWORDSBone;GIP;GLP-1;Incretins;Digestive hormones

Summary Bone is a tissue with multiple functions that is built from the molecular to anatom-ical levels to resist and adapt to mechanical strains. Among all the factors that might controlthe bone organization, a role for several gut hormones called ‘‘incretins’’ has been suspected.The present review summarizes the current evidences on the effects of glucose-dependentinsulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) in bone physiology.© 2016 Elsevier Masson SAS. All rights reserved.

MOTS CLÉSRésumé Le tissu osseux est un tissu conjonctif avec de multiples fonctions qui est organisédepuis l’échelle moléculaire jusqu’à l’échelle anatomique pour résister et s’adapter aux con-

Os ;GIP ;GLP-1 ;Incrétines ;Hormones digestives

traintes mécaniques. Parmi tous les facteurs qui pourraient contrôler son organisation, le rôlede certaines hormones intestinales appelées « incrétines » a émergé. La présente revue résumeles connaissances actuelles sur les effets du polypeptide insulinotrope dépendant du glucose(GIP) et du glucagon-like peptide-1 (GLP-1) en physiologie osseuse.© 2016 Elsevier Masson SAS. Tous droits reserves.

Introduction

Bone is a tissue with multiple functions:

Please cite this article in press as: Mabilleau G. Interplay betw(2016), http://dx.doi.org/10.1016/j.morpho.2016.06.004

• it supports the body weight and protects essential organsfrom potential mechanical injuries (mechanical function);

∗ Correspondence.E-mail address: [email protected]

b

http://dx.doi.org/10.1016/j.morpho.2016.06.0041286-0115/© 2016 Elsevier Masson SAS. All rights reserved.

it acts as a calcium, phosphate and sodium reservoir(metabolic function);

it is a host tissue for hematopoietic bone marrow and; it is also an endocrine organ involved in the regulation

of glucose metabolism, energy expenditure, regulationof testosterone production and phosphate homeostasis

een bone and incretin hormones: A review. Morphologie

[1—4].

From the molecular to anatomical levels, bones areuilt to resist and adapt to mechanical strains according to

Page 2: Interplay between bone and incretin hormones: A reviewokina.univ-angers.fr/publications/ua14969/1/2016b-morphologie.pdf · Please cite this article in press as: Mabilleau G. Interplay

IN+ModelM

2

fihnpcpopinwcmc(madrdotciincpatsassniupapf[asctltitisemsoim

bot

nadsiaehamtms

erbairwvsTgmiepbe5dbofc[

ecteTitrsb(tGcibb4m

ARTICLEORPHO-283; No. of Pages 10

ve different levels of organization [5]. First of all, bonesave a dual composition as the bone matrix is a complexanocomposite material made of mineral and organichases. The organic phase is mostly composed of type Iollagen (∼90% of total bone proteins) and non-collagenousroteins (∼10% bone proteins). The mineral phase is madef poorly crystalline hydroxyapatite tablets with hydrogenhosphate and carbonate groups substituting for phosphateons [6]. Bone texture represents a second degree of orga-ization. In lamellar bone, collagen is oriented in a preciseay with angular changes between each lamella, giving theharacteristic appearance of bone texture in polarizationicroscopy. Woven bone, also called non-lamellar bone,

an be found in zones where osteoblast activity is very highfracture callus, microfractures, metaplastic bone in boneetastasis, Paget’s disease. . .) and is characterized by an

narchic texture in which collagen microfibers have randomirections. Biomechanical properties of woven bone areeduced compared to those of lamellar bone. The thirdegree of organization is represented by the presence ofsteons and arch-like bone structure units. In the cortices,he bone structural units consist of osteons with a cylindri-al shape centred on a canal. Typically a complete osteons 200—300 �m in diameter with a central canal of ∼50 �mn diameter. Inside the canal, blood vessel and sympatheticerve fibres may be observed. Canals are intercommuni-ating and branched to ensure the communication betweeneriosteal and endosteal spaces. Between complete osteonsre incomplete remnants of old osteons, partially erodedhat constitute the interstitial bone. In trabecular bone,tructural units have an arch-like appearance. Theserch-like units are ∼40—45 �m in thickness and represent atack of lamellae. Trabecular bone (or cancellous bone) isometimes improperly termed ‘‘spongy bone’’; this term isow considered as improper since it underlies a biomechan-cal property that bone does not have [7]. New structuralnits are laid over the trabecular surfaces that have beenreviously eroded by osteoclasts. Between the newlypposed structural units, remnants of partially eroded unitsersist and constitute the interstitial trabecular bone. Theourth degree is represented by the bone microarchitecture5,7]. In the cortices, osteons are compacted so that thexes of the central canal run parallel with the resultingtress line exerted on bone. Trabecular bone tissue isomposed of structural units constituting two differentypes of trabeculae: large plates (arranged along the stressine) connected laterally by pillars or rods, which ensurehe cohesion of the network [8]. The role of trabecular bones to resist to compression loads and transfer the strains tohe cortices. Finally the fifth and last level of organizations represented by the bone macroarchitecture. Bones havepecial angulations and curvatures that are genetically andpigenetically determined and enable them to resist toechanical strains, including compression, tension or shear

tress loads [9,10]. As such, any modification of one of therganization level would affect the quality of the matrix,.e. an umbrella term representing microarchitectures,icrocrack propagation and tissue material properties.

Please cite this article in press as: Mabilleau G. Interplay betw(2016), http://dx.doi.org/10.1016/j.morpho.2016.06.004

To adapt to its mechanical and metabolic functions,one is remodeled permanently by a coupling betweensteoclasts, the bone-resorbing cells, and osteoblasts,he bone-forming cells responsible for the synthesis of

isof

PRESSG. Mabilleau

ew structural units. Osteocytes (‘‘the third bone cell’’)re derived from osteoblasts and are found embed-ed in the bone matrix where their main role is toerve as a mechanosensor/mechanotransducer and tonform osteoclasts and osteoblasts about bone areas thatre damaged and should be remodeled. Bone remod-ling is traditionally considered to be regulated byormones (parathyroid hormone, calcitonin, estrogen. . .),utocrine/paracrine signals from the bone microenviron-ent (receptor activator of nuclear factor kappa-B ligand,

umor necrosis factor-alpha, cell-to-cell contact, etc.),echanical loading and the central and sympathetic nervous

ystems.In the quest of better understanding the different

ndocrine factors that may regulate bone remodeling, theole of several products from the gastrointestinal tract haseen suspected. Indeed, metabolic bone disease associ-ted with long-term parenteral feeding was first describedn the early 1980s. Klein et al. reported that, in patientseceiving long-term parenteral nutrition, bone physiologyas altered with evidence of bone pain, hypercalciuria, ele-ated serum alkaline phosphatase despite normal ranges oferum calcium, phosphorus and 25-hydroxyvitamin D [11].hese findings have then been confirmed by several boneroups and are reviewed in [12]. Although these effectsay be related to the composition of parenteral nutrition

tself (low calcium and phosphorus, aluminum, fluoride,tc.), a role for the gastrointestinal tract can also be sus-ected. Further evidences are brought by a reduction inone resorption after nutrient ingestion [13]. Indeed thelegant study of Henriksen et al. highlighted reductions of2%, 39% and 52% after oral intake of glucose, triglyceri-es, and protein, respectively, in healthy individuals agedetween 30 and 40 years old and with a body mass indexf 22.7 kg/m2 [13]. Furthermore, the experimental use ofood fractionation results in higher bone mineral density asompared with a matched nutrient load given once a day14].

The gastrointestinal (GI) tract is one of the largestndocrine organs with more than 12 different endocrineells [15]. Among the plethora of bioactive peptides thathe GI tract secretes, a class of peptides called incretins hasmerged as important modulators of energy metabolism.he term ‘‘incretin’’ was initially proposed by Creutzfeld

n 1979 and represents hormones that are secreted fromhe intestine in response to glucose and stimulate insulinelease in a glucose-dependent manner [16]. Althougheveral hormones with insulinotropic action are secretedy the gut, glucose-dependent insulinotropic polypeptideGIP) and glucagon-like peptide-1 (GLP-1) are the onlywo physiological incretins identified so far [17]. GIP andLP-1 are produced by the K- and L-enteroendocrineells, respectively, that are localized sparsely in thentestinal epithelium (Fig. 1A). Once released to thelood stream, these two hormones are rapidly degradedy an endopeptidase, the dipeptidylpeptidase-4 (DPP-) found in the vicinity of capillaries in the intestinalucosa or liver. DPP-4 is expressed widely as indicated

een bone and incretin hormones: A review. Morphologie

n Table 1. However, due to the wide list of DPP-4 sub-trates, the role of DPP-4 inhibitors in bone physiology isut of the scope of this review and will not be discussedurther.

Page 3: Interplay between bone and incretin hormones: A reviewokina.univ-angers.fr/publications/ua14969/1/2016b-morphologie.pdf · Please cite this article in press as: Mabilleau G. Interplay

ARTICLE IN PRESS+ModelMORPHO-283; No. of Pages 10

Bone and incretins 3

Figure 1 GIP expression and schematic representation of GIP-producing enteroendocrine K-cells. A. GIP detection was made ona sample from a 68-year old woman using the HPA021612 antibody (Sigma Aldrich). GIP-positive cell localizations are indicated byarrows. This immunostaining is part of the human protein atlas [80] and full dataset can be found at http://www.proteinatlas.org.B. GIP-containing secretory granules are found at the basal pole of the open-type K-cells in close proximity with nerve endingsand capillaries in the lamina propria. Entry of nutrients at the apical pole of the K-cells results in a cascade of activation ofintracellular pathways leading to augmentations of protein kinase A and C activities (PKA and PKC, respectively) and ultimatelyrise in intracellular calcium responsible for GIP secretion. Several paracrine peptide (somatostatin) and neuromediators may alsomodulate GIP secretion.Expression du GIP et représentation schématique des cellules entéroendocrines K produisant le GIP. A. La détection du GIP aété effectuée dans un prélèvement chez une femme de 68 ans en utilisant l’anticorps HPA021612 (Sigma Aldrich). La localisationdes cellules positives au GIP est indiquée par des flèches. Cette détection immunologique fait partie de l’atlas des protéineshumaines [80] et l’intégralité des données est disponible à l’adresse http://www.proteinatlas.org. B. Les granules contenant duGIP sont retrouvées au pôle basal des cellules K en étroite association avec des terminaisons nerveuses et des capillaires sanguinsdu chorion. L’entrée de nutriments au pôle apical des cellules K provoque une cascade d’évènements intracellulaires conduisant àl’activation des protéines kinases A et C (PKA et PKC, respectivement) et finalement à l’augmentation du calcium intracellulaire

gissa

fmfi1grf

ttmB(atg[ii

qui est responsable de la sécrétion de GIP. D’autres peptides apeuvent également moduler la sécrétion de GIP.

The aim of the current review is to provide the readerwith a comprehensive overview of the effects of incretinhormones on bone physiology.

Glucose-dependent insulinotropic polypeptide(GIP)

GIP is produced and secreted mostly by intestinal K-cells,located primarily in proximal region of the small intestine.The K-cell is highly polarized with the GIP-containing secre-tory granules concentrated at the basal pole of the cell,ready to be released through the basolateral membrane[18,19] (Fig. 1B). Based on the morphological features, GIPsecretion from K-cells is regulated by neural stimuli, hor-mones and intraluminal contents [20]. K-cells are found inclose association with the capillary network running throughthe lamina propria allowing GIP to enter into the bloodstream rapidly after secretion. Furthermore, intraluminalcontents do not only affect GIP secretion but also GIP expres-

Please cite this article in press as: Mabilleau G. Interplay betw(2016), http://dx.doi.org/10.1016/j.morpho.2016.06.004

sion. Indeed, glucose and lipids are potent stimulator of GIPgene transcription [21,22].

The human proGIP is a 153-amino acid polypeptide thatis encoded by six exons representing a 459-bp open reading

alep

nt par voie paracrine (somatostatine) et des neuromédiateurs

rame and whose gene is localized in humans on chro-osome 17q [23,24]. The mature 42-amino acid bioactive

orm of GIP (GIP1-42), mainly encoded by exons 3 and 4,s released from its precursor via prohormone convertase/3-dependent post-translational cleavage at flanking sin-le arginine residues [25]. The peptides encoded within theemaining fragments of the proGIP have no known biologicalunctions [26].

To exert its biological actions, GIP binds to its recep-or, the GIPr. The human GIPR gene comprises 14 exonshat span approximately 14.2 kb and is localized on chro-osome 19q13.3 [27]. The GIPr belongs to the class

7-transmembrane-spanning G-protein coupled receptorGPCR) superfamily [28] and is composed of 466 aminocids. The GIPr is expressed in the endocrine pancreas, gas-rointestinal tract, adipose tissue, adrenal cortex, pituitaryland, vascular endothelium and several regions in the CNS26]. The principal physiological role of the GIP/GIPr is toncrease insulin secretion from the pancreatic beta-cellsn a glucose-dependent manner. However, extrapancreatic

een bone and incretin hormones: A review. Morphologie

ctions of this pathway have been reported. GIP acts onipid metabolism including augmentation of plasma triglyc-ride clearance, increased lipoprotein lipase activity andromotion of fat storage in adipocytes [29—31]. In animal

Page 4: Interplay between bone and incretin hormones: A reviewokina.univ-angers.fr/publications/ua14969/1/2016b-morphologie.pdf · Please cite this article in press as: Mabilleau G. Interplay

ARTICLE IN PRESS+ModelMORPHO-283; No. of Pages 10

4 G. Mabilleau

Table 1 Expression profile of the dipeptidylpeptidase4 (DPP-4) in human. The original data are part of theHuman Proteome Atlas project and can be found athttp://www.proteinatlas.org. The mRNA has been detectedby RNA seq whereas the Origene TA500733 has been used todetect DPP-4 at the protein level by immunohistochemistry[80].Profil d’expression de la dipeptidylpeptidase 4 (DPP-4)chez l’homme. Les données originales font partie du pro-jet «Human Proteome Atlas» qui peut être consulté àhttp://www.proteinatlas.org. L’ARNm a été détecté parARN seq tandis que l’Origene TA500733 a été utilisé pourdétecter la DPP-4 au niveau protéique par immunohis-tochimie [80].

Tissue mRNA expression Protein expression

Placenta High HighProstate High HighSmall intestine High HighKidney Medium HighSalivary gland Medium MediumEndometrium Low HighColon Low LowLiver Low LowGallbladder Low Not detectedPancreas Low Not detectedUrinary bladder Low Not detectedTestis Low Not detectedOvary Low Not detectedEsophagus Low Not detectedStomach Low Not detectedSkin Low Not detectedSmooth muscle Low Not detectedHeart muscle Low Not detectedAdipose tissue Low Not detectedBone marrow Low Not detectedLymph node Low Not detectedSpleen Low Not detectedThyroid gland Low Not detectedAdrenal gland Low Not detectedLung Low Not detectedCerebral cortex Low Not detected

mnrap

oearllebmn

Figure 2 Alterations of bone microarchitectures observed inGIPr-deficient mice. Bone microarchitectures were assessed byX-ray microcomputed tomography (Skyscan, Bruker MicroCT,Kontich, Belgium). Representative 3D models of wild-type (WT)and GIPr KO mice are presented here. Arrows point out at thedifferences in bone microarchitecture between the two models.Altérations des microarchitectures osseuses observées dansles souris invalidées pour le récepteur du GIP. Les microar-chitectures trabéculaires et corticales ont été étudiées parmicrotomographie à rayons X (Skyscan, Bruker MicroCT, Kon-tich, Belgique). Les modèles 3D représentatifs des sourissauvages (WT) ou invalidées (GIPr KO) sont présentés ici. Lesflèches indiquent les différences microarchitecturales entre lesdeux modèles.

mpddGctmwbi[wrrbr

saoahkw

odel of GIP deficiency or chemically-induced GIPr antago-ism, interrupting GIP signaling appears to be beneficial ineducing high fat diet induced obesity [30,32—34]. GIP haslso been reported to play a role in neural progenitor cellroliferation and behavior [35].

The GIP/GIPr pathway is also an important regulatorf bone physiology. First of all, the GIPr is physiologicallyxpressed at the mRNA and protein level in osteoblastsnd osteoclasts [36—39]. In osteoblasts, GIP administrationesults in increases in intracellular calcium and cAMP thatead to augmentations in type I collagen expression, alka-ine phosphatase and lysyl oxidase activities, and higher

Please cite this article in press as: Mabilleau G. Interplay betw(2016), http://dx.doi.org/10.1016/j.morpho.2016.06.004

nzymatic collagen cross-linking [37,40]. GIP is also capa-le of reducing the extent of bone resorption by fullyature osteoclasts although the exact molecular mecha-

isms remain to be elucidated [39,41]. At the organ level,

ratp

uch of our understanding of the actions of the GIP/GIPrathway arises from genetically-modified mice. Indeed, toate, two animal models of GIPr deletion exists with eithereletion of exons 4—5 or exons 1—6. These portions of theipr gene either code for several amino acids of the extra-ellular domains, involved in GIP binding (exons 4—5) or forhe totality of the extracellular domain and the first trans-embrane segment (exons 1—6). These animals, althoughith opposite trabecular bone phenotype, suggest that tra-ecular and cortical bone are dramatically compromisedn the absence of a functional GIPr as presented in Fig. 241—44]. Furthermore, these animal models also presentith alterations of tissue material properties represented by

educed mineralization degree (Fig. 3) and collagen matu-ity in the bone matrix [43]. Overall these modifications ofone mass, microarchitecture and tissue material propertiesesult in skeletal fragility.

However, lack of GIPr action leads to increased GLP-1 sen-itivity [45]. As such, to answer whether the observed abovelterations observed in GIPr KO mice resulted from the lackf a functional incretin receptor or by a compensatory mech-nism induced by elevated sensitivity to the other incretinormone, the bone phenotype of double incretin receptornock-out (DIRKO) animals, lacking both the GIPr and GLP-1r,as investigated [46]. DIRKO animals also exhibit profound

eductions in bone mass as well as alterations of trabecularnd cortical microarchitectures and tissue material proper-

een bone and incretin hormones: A review. Morphologie

ies demonstrating the important role of incretins in bonehysiology.

Page 5: Interplay between bone and incretin hormones: A reviewokina.univ-angers.fr/publications/ua14969/1/2016b-morphologie.pdf · Please cite this article in press as: Mabilleau G. Interplay

ARTICLE IN+ModelMORPHO-283; No. of Pages 10

Bone and incretins

Figure 3 Tissue mineral density in wild-type (WT) and GIPr-deficient animals. Calcium map was obtained by quantitativebackscattered electron imaging at the mid-diaphysis of thefemur. The calcium content was calculated with a lab-maderoutine in Matlab and clearly demonstrated lower tissue mineraldensity in GIPr-deficient mice.Densité minérale de la matrice osseuse dans les souris sauvages(WT) et invalidées pour le récepteur du GIP (GIPr KO). Lescartographies de concentration massique en calcium ont étéobtenues par microscopie quantitative en électrons rétrodif-fusés (sur microscopie électronique à balayage) au centre de ladiaphyse fémorale. La concentration massique en calcium a étécalculée avec une routine du logiciel Matlab et montre claire-

idwrdotbidhpp[

G

Gpng(g6aTetp

1fetl[laan

csspetrpptae

ttof wrong primer pairs [59], or the use of non-selective

ment la diminution de densité minérale de la matrice osseusedans les souris invalidées pour le récepteur du GIP.

Pre-clinical data on the use of GIP mimetic in animalmodels are scarce nevertheless, administration of N-acetyl-GIP (N-AcGIP) ameliorated tissue material properties whenadministered for 28 days in healthy rodents [47]. Fur-thermore, in streptozotocin-injected mice, developing aclassical picture of type 1 diabetes, with a compromisedbone mass and microarchitecture as well as tissue mate-rial properties, the administration of (D-ala2)GIP for 21 daysresulted in bone turnover almost similar to non-diabeticanimals, and reduction in matrix collagen destruction [48].These results are particularly interesting as insulin release

Please cite this article in press as: Mabilleau G. Interplay betw(2016), http://dx.doi.org/10.1016/j.morpho.2016.06.004

was unchanged in (D-ala2)-treated as compared with saline-treated mice, suggesting that these beneficial effects of GIPmimetic is independent of insulin secretion.

ats

PRESS5

In healthy humans, although initially GIP had been shownneffective in reducing bone resorption [13], recent evi-ences suggested that exogenous administration of GIPas effective in reducing circulating markers of bone

esorption [49]. However, whether these results reflectirect actions of GIP on osteoclast-mediated resorptionr indirect actions of other GIP-targeted tissues remaino be determined in the future. Furthermore, the linketween GIP/GIPr pathway and bone mass/strength is def-nitely established and represented by low mineral boneensity at the femoral neck and total hip, as well asigher incidence of non-vertebral fractures, in a cohort oferimenopausal women with a single-nucleotide polymor-hism (rs1800437), that results in decreased GIPr activity50,51].

lucagon-like peptide-1 (GLP-1)

lucagon-like peptide 1 is produced by post-translationalrocessing of the glucagon gene (Fig. 4). Indeed, in intesti-al L-cells, the glucagon gene (160-amino acids) gives rise tolicentin (amino acids 1—69), glicentin-related polypeptideamino acids 1—30), oxyntomodulin (amino acids 33—69),lucagon (amino acids 33—61), peptide 1 (amino acids4—69), GLP-1 (amino acids 72—107), peptide 2 (aminocids 111—123) and GLP-2 (amino acids 126—158) [52] [53].hus, processing of proglucagon in intestinal cells generatesquimolar concentration of GLP-1 and GLP-2. Until now, lit-le is known about the biological actions of glicentin andeptide 2.

Two forms of GLP-1 are produced in the intestine, GLP-7-36NH2 and GLP-17-37, although the major circulatingorm is GLP-17-36NH2 [54]. L-cells are also an open-typendocrine cells highly polarized with secretory granules atheir basolateral pole. GLP-1 secretion from L-cells is regu-ated by intraluminal contents, neural stimuli and hormones26]. L-cells are found in close association with the capil-ary network running through the lamina propria. GLP-1 haslso been suspected to act via the autonomous nerve systemnd vagal afference on specific hypothalamic and brainstemuclei to exert its action [55].

To act, GLP-1 engages its receptor, the GLP-1r that isoded by the human GLP1R gene comprises 13 exons thatpan approximately 13.8 kb [56] and is localized on chromo-ome 6p21 [27]. The GLP-1r is expressed in the endocrineancreas, gastrointestinal tract, lung, heart, kidney and sev-ral regions of the brain [26]. Recent evidences also suggesthat GLP-1 can bind in specific circumstances to the glucagoneceptor [57]. The principal physiological role of GLP-1 is tootentiate glucose-dependent insulin secretion [58]. Extra-ancreatic actions of GLP-1 result in reduction of food intakehrough the CNS, inhibition of gastric emptying, positivections on the cardiovascular system and a role in energyxpenditure [58].

Presence of the known GLP-1r in bone cells was con-roversial until recently. Indeed, this confusion was due tohe use of poorly-characterized cell lines [36], selection

een bone and incretin hormones: A review. Morphologie

nti-GLP-1r antibodies [60] that were not very specific ofhe mouse Glp1r gene. Recent evidences by Pereira et al.eem suggest the presence of the known GLP-1r in skeletal

Page 6: Interplay between bone and incretin hormones: A reviewokina.univ-angers.fr/publications/ua14969/1/2016b-morphologie.pdf · Please cite this article in press as: Mabilleau G. Interplay

ARTICLE IN PRESS+ModelMORPHO-283; No. of Pages 10

6 G. Mabilleau

Exon 1 Exon 2 Exon 6Exon 5Exon 4Exon 3

SP

GRPP

GLG GLP-1 GLP-2

P1 P25’-UTR 3’-UTR

Pancreatic α-cellMPGF

CNS and intestineOxm Glicentin

Figure 4 Post-translational processing of proglucagon. Theproglucagon gene spans over 12.4 kb located in human on chro-mosome 2q36-q37. The proglucagon gene comprised 6 exonsthat encode several peptide: a signal peptide (SP, in blue),glicentin-related polypeptide (GRPP, in green), glucagon (GLG,in orange), peptide-1 (P1, in black), glicentin, oxyntomodulin(Oxm), glucagon-like peptide-1 (GLP-1, in pink), peptide-2 (P2,in violet), glucagon-like peptide-2 (GLP-2, in yellow) and themajor proglucagon fragment (MPGF). Depending on the tissue,post-translational processing by prohormone convertase 1 and2 may give rise to several combinations of these peptides.Modifications post-traductionnelles du proglucagon. Chezl’homme, le gène du proglucagon s’étend sur 12,4 kb aulocus 2q36-q37. Le gène du proglucagon comprend 6 exonsqui encodent plusieurs peptides : un peptide signal (SP,en bleu), le glicentin-related polypeptide (GRPP, en vert),le glucagon (GLG, en orange), le peptide-1 (P1, en noir),la glicentine, l’oxyntomoduline (Oxm), le glucagon-like pep-tide 1 (GLP-1, en rose), le peptide-2 (P2, en violet), leglucagon-like peptide-2 (GLP-2, en jaune) et le fragmentmajeur du proglucagon (MPGF). En fonction du tissu, lesmodifications post-traductionnelles par les prohormones con-vertases 1 et 2 peuvent donner plusieurs combinaisons de cesp

ttotsrfIco

Figure 5 Skeletal phenotype observed in GLP-1r-deficientanimals. Bone microarchitectures were assessed by X-raymicrocomputed tomography. Three-dimensional models of tibiaproximal metaphysis observed in wild-type (WT) and GLP-1r-KOmice.Phénotype osseux observé dans les souris invalidées pour lerécepteur du GLP-1. Les microarchitectures trabéculaires etcorticales ont été analysées par microtomographie à rayons X.Des modèles 3D de la métaphyse proximale du tibia des sourissauvages (WT) et invalidées pour le récepteur du GLP-1 sontp

Nsctcwl

tabasmrabseutoaahoteT

eptides.

issues [61]. However, other studies failed to demonstratehe presence of GLP-1r in MC3T3-E1 [62] or primary murinesteoblasts or osteoclasts [42] and this discrepancy needso be investigated in the future. Nevertheless, previoustudies in other tissues such as liver and skeletal muscleevealed the presence of a second GLP-1 receptor different

Please cite this article in press as: Mabilleau G. Interplay betw(2016), http://dx.doi.org/10.1016/j.morpho.2016.06.004

rom the known GLP-1r in function and/or structure.ndeed, this second GLP-1 receptor does not activate theAMP pathway as GLP-1r does but rather the productionf inositolphosphoglycan as a second messenger [63,64].

iabc

résentés.

uche-Berenguer et al. revealed the presence of thisecond GLP-1 receptor in the MC3T3-E1 murine osteoblasticell line [62]. However, as recent evidences pointed outhat GLP-1 could bind to the glucagon receptor in certainircumstances [57], it would be compulsory to ascertainhether this second GLP-1r correspond to a modulation of

igand specificity at the glucagon receptor.Here again, our understanding of GLP-1 actions in skele-

al physiology arises from GLP-1r-KO mouse. At 10 weeks ofge, GLP-1r-KO animals exhibited a mild reduction in tra-ecular bone volume at the tibia, although not significant,ssociated with increased number of osteoclasts and erodedurfaces [65]. Unpublished observation from our laboratoryade in the same KO model at 16 weeks of age corrobo-

ated these findings (Fig. 5). On the other hand, the mineralpposition and bone formation rates appeared unaffectedy GLP-1r inactivation [65]. Taken together these resultsuggested a control of bone resorption (osteoclast differ-ntiation and/or action) by the GLP-1r. However, GLP-1 wasnable to directly control osteoclast formation and resorp-ion in osteoclast cultures [65], suggesting that the controlf bone resorption was indirect. Indeed, these authors found

reduction in calcitonin gene expression in GLP-1r-deficientnimals. Now, we know that in rodents, but not in non-uman primate or humans, GLP-1r is expressed in C-cellsf the thyroid gland, and responsible for a rise in calci-onin secretion [66]. However, in humans, administration ofxogenous GLP-1 does not result into lower CTx levels [13].he effect of GLP-1r deficiency in cortical bone has been

een bone and incretin hormones: A review. Morphologie

nvestigated in 16 week-old GLP-1r-deficient mice. Thesenimals presented with reduction in bone strength observedy 3-point bending [42]. In these animals, modification ofortical microarchitecture was evidenced with reduction in

Page 7: Interplay between bone and incretin hormones: A reviewokina.univ-angers.fr/publications/ua14969/1/2016b-morphologie.pdf · Please cite this article in press as: Mabilleau G. Interplay

ARTICLE IN+ModelMORPHO-283; No. of Pages 10

Bone and incretins

Figure 6 Tissue mineral density in wild-type (WT) and GLP-1r-deficient animals. Calcium map was obtained by quantitativebackscattered electron imaging at the mid-diaphysis of thefemur. The calcium content distribution was also plotted anddid not show any sign of tissue mineral density alterations inGLP-1r-deficient mice [42].Densité minérale de la matrice osseuse dans les animauxsauvages (WT) ou invalidés pour le récepteur du GLP-1. Lescartographies de concentration massique de calcium ont étéobtenues par microscopie quantitative en électrons rétrodif-fusés au centre de la diaphyse fémorale. La distribution desconcentrations calciques a été représentée graphiquement etn’a pas montré d’altération de densité minérale de la matrice

aoevtr

ticnmaDt2tbtatTottithaicebafcmrlfr[

dmaromiiiebdatbmimetic. Nevertheless, it is also important to bear in mind

osseuse dans les souris invalidées pour le récepteur du GLP-1[42].

cortical thickness [42]. Tissue material properties are alsoreduced at cortical site in GLP-1r-deficient animals and areassociated with reduced collagen maturity with a normaldistribution of the degree of mineralization [42] (Fig. 6).These data highlight that a functional GLP-1r is not onlyrequired for the control of bone resorption but also for thepreservation of an optimal bone matrix quality.

Several stable GLP-1 analogues, resistant to enzymaticdegradation and with amelioration of renal clearance havebeen designed and already approved for the treatment oftype-2 diabetes mellitus. Several pre-clinical and proof-of-

Please cite this article in press as: Mabilleau G. Interplay betw(2016), http://dx.doi.org/10.1016/j.morpho.2016.06.004

concept studies have been undertaken in animal models withskeletal fragility (T1DM, T2DM and OVX-induced osteoporo-sis). As such, administration of GLP-17-36NH2 or exendin-4,

tit

PRESS7

GLP-1r agonist, results in a rapid augmentation ofsteocalcin gene expression and reductions in sclerostinxpression and in the balance RANKL/OPG (receptor acti-ator of nuclear factor kappa-B ligand/osteoprotegerin) inhe bones of normal, type 2 diabetic or insulino-resistantats [59,67,68].

In type-1 diabetes mellitus, administration of liraglu-ide for 21 days contributed to significant improvementn bone strength at the tissue levels and reduction inollagen degradation in the bone matrix [48]. However,o improvements in neither trabecular nor cortical boneicroarchitecture were observed. Nevertheless, these mild

meliorations occurred in the absence of insulin secretion.ue to the marketing of GLP-1 mimetic for type 2 diabetes,he efficacy of GLP-1 analogues has been performed in type

diabetic rodent models. In this condition, the adminis-ration of liraglutide ameliorated trabecular and corticalone microarchitectures [69]. It is however worth notinghat the administration of liraglutide has been performedt a dose regiment of 0.4 mg/kg/day as compared withhe 0.02 mg/kg/day used in human clinical trials [70,71].he effects of GLP-1 mimetic have also been conducted insteoporotic rodent models. Indeed, 16 weeks administra-ion of exendin-4 (dose regimen of 10 �g/kg/day similar tohe dose used in humans [72]) in OVX rats, is capable ofmproving trabecular bone mass and microarchitecture athe femur and lumbar vertebra, bone strength and revertyper-resorption observed after ovariectomy [61,73]. It islso noteworthy that at this dose regimen, exendin-4 wasncapable of reversing the observed deterioration of corti-al microarchitecture. Pereira et al., also reported positiveffects of liraglutide (0.3 mg/kg/day) in improving tra-ecular but not cortical microarchitecture [61]. However,dministration of liraglutide at a dose of 1.8 mg/kg/dayor 8 weeks, significantly improved trabecular and corti-al microarchitecture [74]. This dose regimen is 90 timesore elevated than the dose given to humans. Moreover,

ecently, evidences have been provided that undercarboxy-ated osteocalcin was capable of inducing GLP-1 releaserom the L-cells and as such this complementary mechanismeinforced the role of osteocalcin in energy expenditure75,76].

Now several GLP-1 analogues, enzymatically resistant toegradation by DPP-4, have been approved for the treat-ent of type-2 diabetes mellitus. Regarding the skeletal

lterations observed in animals deficient in GLP-1r and theapid and favorable effects of GLP-1 or GLP-1r agonistsn bone gene expression, one could expect an improve-ent in bone quality in type-2 diabetic patients. However,

n a recent meta-analysis conducted by our group on thencidence of bone fractures in type-2 diabetic patients tak-ng GLP-1 mimetic, we failed to evidence any beneficialffects of GLP-1 mimetic [77]. This was further confirmedy investigation of the British clinical practice researchatalink, where 216,816 diabetic patients were screenednd dichotomized depending on their anti-diabetic medica-ions [78,79]. No significant reduction in the occurrence ofone fractures have been evidenced under the use of GLP-1

een bone and incretin hormones: A review. Morphologie

hat no increase of fracture risk was noted with these med-cations and that GLP-1 mimetics in humans are neutral inerm of bone safety.

Page 8: Interplay between bone and incretin hormones: A reviewokina.univ-angers.fr/publications/ua14969/1/2016b-morphologie.pdf · Please cite this article in press as: Mabilleau G. Interplay

ARTICLE IN+ModelMORPHO-283; No. of Pages 10

8

Figure 7 Summary of actions of incretin hormones on bonephysiology. Incretin hormones improved bone mass, microarchi-tecture and quality by acting on several targets. First of all,GIP is capable of direct modulation of osteoblast and osteoclastbiology as well as modulation of adipokines and insulin secre-tion. GLP-1 can also modulate osteoblast and osteocyte actionsalthough further studies would be required in ascertaining themolecular mechanisms involved in such process. Furthermore,GLP-1 in rodents, but not in humans, is capable of increasing cal-citonin from the thyroid gland and hence interferes with calciummetabolism and bone physiology.Résumé des actions des hormones incrétines en physiolo-gie osseuse. Les hormones incrétines améliorent la masse,la microarchitecture et la qualité osseuse en agissant surplusieurs cibles. Premièrement, le GIP est capable de modulerdirectement la biologie des ostéoblastes et des ostéo-clastes mais également de moduler la sécrétion d’adipokineset d’insuline. Le GLP-1 peut aussi moduler les actionsdes ostéoblastes et des ostéocytes bien que des étudescomplémentaires soient requises pour identifier les mécan-ismes moléculaires impliqués dans cette voie. De plus, chezles rongeurs, mais pas chez l’homme, le GLP-1 est capabled’augmenter la sécrétion de calcitonine par la glande thyroïdeeg

C

AdosHfesc

D

T

R

[

[

[

[

[

[

[

[

[

[

[

[

[

t ainsi interférer avec le métabolisme calcique et la physiolo-ie osseuse.

onclusions

clear link between incretins and bone physiology has beenemonstrated and incretins appear as potent modulatorsf bone mass but also of bone quality and ultimately bonetrength. A summary of incretin actions is presented Fig. 7.owever, the major challenge to face in this field in the

uture will be to ascertain by which mechanisms incretinsxert their control on skeletal physiology and to demon-trate the efficacy of incretin therapies in bone diseases withompromised bone strength.

isclosure of interest

he author declares that he has no competing interest.

Please cite this article in press as: Mabilleau G. Interplay betw(2016), http://dx.doi.org/10.1016/j.morpho.2016.06.004

eferences

[1] Ferron M, Hinoi E, Karsenty G, Ducy P. Osteocalcin differentiallyregulates beta cell and adipocyte gene expression and affects

[

PRESSG. Mabilleau

the development of metabolic diseases in wild-type mice. ProcNatl Acad Sci USA 2008;105:5266—70.

[2] Ferron M, McKee MD, Levine RL, Ducy P, Karsenty G. Intermit-tent injections of osteocalcin improve glucose metabolism andprevent type 2 diabetes in mice. Bone 2012;50:568—75.

[3] Oury F, Ferron M, Huizhen W, Confavreux C, Xu L, LacombeJ, et al. Osteocalcin regulates murine and human fertilitythrough a pancreas-bone-testis axis. J Clin Invest 2013;123:2421—33.

[4] Quarles LD. Skeletal secretion of FGF-23 regulates phosphateand vitamin D metabolism. Nat Rev Endocrinol 2012;8:276—86.

[5] Chappard D, Basle MF, Legrand E, Audran M. New labora-tory tools in the assessment of bone quality. Osteoporos Int2011;22:2225—40.

[6] Boskey AL. Bone composition: relationship to bone fragility andantiosteoporotic drug effects. Bonekey Rep 2013;2:447.

[7] Chappard D, Baslé MF, Legrand E, Audran M. Trabecular bonemicroarchitecture: a review. Morphologie 2008;92:162—70.

[8] Parfitt AM, Mathews CH, Villanueva AR, Kleerekoper M, FrameB, Rao DS. Relationships between surface, volume, and thick-ness of iliac trabecular bone in aging and in osteoporosis.Implications for the microanatomic and cellular mechanismsof bone loss. J Clin Invest 1983;72:1396—409.

[9] Bertram JE, Biewener AA. Bone curvature: sacrificing strengthfor load predictability? J Theor Biol 1988;131:75—92.

10] Lanyon LE, Bourn S. The influence of mechanical function onthe development and remodeling of the tibia. An experimentalstudy in sheep. J Bone Joint Surg Am 1979;61:263—73.

11] Klein GL, Targoff CM, Ament ME, Sherrard DJ, Bluestone R,Young JH, et al. Bone disease associated with total parenteralnutrition. Lancet 1980;2:1041—4.

12] Buchman AL, Moukarzel A. Metabolic bone disease associatedwith total parenteral nutrition. Clin Nutr 2000;19:217—31.

13] Henriksen DB, Alexandersen P, Bjarnason NH, Vilsboll T, Hart-mann B, Henriksen EE, et al. Role of gastrointestinal hormonesin postprandial reduction of bone resorption. J Bone Miner Res2003;18:2180—9.

14] Li F, Muhlbauer RC. Food fractionation is a powerful tool toincrease bone mass in growing rats and to decrease bone lossin aged rats: modulation of the effect by dietary phosphate. JBone Miner Res 1999;14:1457—65.

15] Furness JB, Rivera LR, Cho HJ, Bravo DM, Callaghan B.The gut as a sensory organ. Nat Rev Gastroenterol Hepatol2013;10:729—40.

16] Creutzfeldt W. The incretin concept today. Diabetologia1979;16:75—85.

17] Drucker DJ. The biology of incretin hormones. Cell Metab2006;3:153—65.

18] Buchan AM, Polak JM, Capella C, Solcia E, Pearse AG. Elec-tron immunocytochemical evidence for the K-cell localizationof gastric inhibitory polypeptide (GIP) in man. Histochemistry1978;56:37—44.

19] Sykes S, Morgan LM, English J, Marks V. Evidence for preferen-tial stimulation of gastric inhibitory polypeptide secretion inthe rat by actively transported carbohydrates and their ana-logues. J Endocrinol 1980;85:201—7.

20] Cho YM, Kieffer TJ. K-cells and glucose-dependentinsulinotropic polypeptide in health and disease. VitamHorm 2010;84:111—50.

21] Higashimoto Y, Opara EC, Liddle RA. Dietary regulation ofglucose-dependent insulinotropic peptide (GIP) gene expres-sion in rat small intestine. Comp Biochem Physiol C PharmacolToxicol Endocrinol 1995;110:207—14.

22] Tseng CC, Jarboe LA, Wolfe MM. Regulation of glucose-

een bone and incretin hormones: A review. Morphologie

dependent insulinotropic peptide gene expression by a glucosemeal. Am J Physiol 1994;266:G887—91.

23] Inagaki N, Seino Y, Takeda J, Yano H, Yamada Y, BellGI, et al. Gastric inhibitory polypeptide: structure and

Page 9: Interplay between bone and incretin hormones: A reviewokina.univ-angers.fr/publications/ua14969/1/2016b-morphologie.pdf · Please cite this article in press as: Mabilleau G. Interplay

IN+Model

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

ARTICLEMORPHO-283; No. of Pages 10

Bone and incretins

chromosomal localization of the human gene. Mol Endocrinol1989;3:1014—21.

[24] Takeda J, Seino Y, Tanaka K, Fukumoto H, Kayano T, TakahashiH, et al. Sequence of an intestinal cDNA encoding human gas-tric inhibitory polypeptide precursor. Proc Natl Acad Sci USA1987;84:7005—8.

[25] Ugleholdt R, Poulsen ML, Holst PJ, Irminger JC, Orskov C,Pedersen J, et al. Prohormone convertase 1/3 is essential forprocessing of the glucose-dependent insulinotropic polypep-tide precursor. J Biol Chem 2006;281:11050—7.

[26] Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP.Gastroenterology 2007;132:2131—57.

[27] Gremlich S, Porret A, Hani EH, Cherif D, Vionnet N, FroguelP, et al. Cloning, functional expression, and chromosomallocalization of the human pancreatic islet glucose-dependentinsulinotropic polypeptide receptor. Diabetes 1995;44:1202—8.

[28] Usdin TB, Mezey E, Button DC, Brownstein MJ, BonnerTI. Gastric inhibitory polypeptide receptor, a member ofthe secretin-vasoactive intestinal peptide receptor family,is widely distributed in peripheral organs and the brain.Endocrinology 1993;133:2861—70.

[29] Eckel RH, Fujimoto WY, Brunzell JD. Gastric inhibitorypolypeptide enhanced lipoprotein lipase activity in culturedpreadipocytes. Diabetes 1979;28:1141—2.

[30] Miyawaki K, Yamada Y, Ban N, Ihara Y, Tsukiyama K, Zhou H,et al. Inhibition of gastric inhibitory polypeptide signaling pre-vents obesity. Nat Med 2002;8:738—42.

[31] Wasada T, McCorkle K, Harris V, Kawai K, Howard B, Unger RH.Effect of gastric inhibitory polypeptide on plasma levels of chy-lomicron triglycerides in dogs. J Clin Invest 1981;68:1106—7.

[32] Althage MC, Ford EL, Wang S, Tso P, Polonsky KS, WiceBM. Targeted ablation of glucose-dependent insulinotropicpolypeptide-producing cells in transgenic mice reduces obe-sity and insulin resistance induced by a high fat diet. J BiolChem 2008;283:18365—76.

[33] Gault VA, Irwin N, Green BD, McCluskey JT, Greer B, BaileyCJ, et al. Chemical ablation of gastric inhibitory polypeptidereceptor action by daily (Pro3)GIP administration improvesglucose tolerance and ameliorates insulin resistance and abnor-malities of islet structure in obesity-related diabetes. Diabetes2005;54:2436—46.

[34] Irwin N, McClean PL, O’Harte FP, Gault VA, Harriott P, Flatt PR.Early administration of the glucose-dependent insulinotropicpolypeptide receptor antagonist (Pro3)GIP prevents the devel-opment of diabetes and related metabolic abnormalitiesassociated with genetically inherited obesity in ob/ob mice.Diabetologia 2007;50:1532—40.

[35] Nyberg J, Anderson MF, Meister B, Alborn AM, Strom AK, Bred-erlau A, et al. Glucose-dependent insulinotropic polypeptideis expressed in adult hippocampus and induces progenitor cellproliferation. J Neurosci 2005;25:1816—25.

[36] Pacheco-Pantoja EL, Ranganath LR, Gallagher JA, Wilson PJ,Fraser WD. Receptors and effects of gut hormones in threeosteoblastic cell lines. BMC Physiol 2011;11:12.

[37] Bollag RJ, Zhong Q, Phillips P, Min L, Zhong L, Cameron R,et al. Osteoblast-derived cells express functional glucose-dependent insulinotropic peptide receptors. Endocrinology2000;141:1228—35.

[38] Mabilleau G, Gaudin-Audrain C, Irwin N, Flatt PR, Basle MF,Chappard D. Deficiency in glucose-dependent insulinotropicpeptide receptor results in higher bone mass in male mice.Osteoporos Int 2012;23:S407—8.

[39] Zhong Q, Itokawa T, Sridhar S, Ding KH, Xie D, KangB, et al. Effects of glucose-dependent insulinotropic pep-

Please cite this article in press as: Mabilleau G. Interplay betw(2016), http://dx.doi.org/10.1016/j.morpho.2016.06.004

tide on osteoclast function. Am J Physiol Endocrinol Metab2007;292:E543—8.

[40] Mieczkowska A, Bouvard B, Chappard D, Mabilleau G. Glucose-dependent insulinotropic polypeptide (GIP) directly affects

[

[

PRESS9

collagen fibril diameter and collagen cross-linking in osteoblastcultures. Bone 2015;74:29—36.

41] Tsukiyama K, Yamada Y, Yamada C, Harada N, Kawasaki Y, OguraM, et al. Gastric inhibitory polypeptide as an endogenous fac-tor promoting new bone formation after food ingestion. MolEndocrinol 2006;20:1644—51.

42] Gaudin-Audrain C, Irwin N, Mansur S, Flatt PR, Thorens B, BasleM, et al. Glucose-dependent insulinotropic polypeptide recep-tor deficiency leads to modifications of trabecular bone volumeand quality in mice. Bone 2013;53:221—30.

43] Mieczkowska A, Irwin N, Flatt PR, Chappard D, Mabilleau G.Glucose-dependent insulinotropic polypeptide (GIP) receptordeletion leads to reduced bone strength and quality. Bone2013;56:337—42.

44] Xie D, Cheng H, Hamrick M, Zhong Q, Ding KH, Correa D, et al.Glucose-dependent insulinotropic polypeptide receptor knock-out mice have altered bone turnover. Bone 2005;37:759—69.

45] Pamir N, Lynn FC, Buchan AM, Ehses J, Hinke SA, Pospisilik JA,et al. Glucose-dependent insulinotropic polypeptide receptornull mice exhibit compensatory changes in the enteroinsularaxis. Am J Physiol Endocrinol Metab 2003;284:E931—9.

46] Mieczkowska A, Mansur S, Bouvard B, Flatt PR, Thorens B,Irwin N, et al. Double incretin receptor knock-out (DIRKO) micepresent with alterations of trabecular and cortical micromor-phology and bone strength. Osteoporos Int 2015;26:209—18.

47] Mabilleau G, Mieczkowska A, Irwin N, Simon Y, Audran M,Flatt PR, et al. Beneficial effects of a N-terminally modifiedGIP agonist on tissue-level bone material properties. Bone2014;63:61—8.

48] Mansur SA, Mieczkowska A, Bouvard B, Flatt PR, Chappard D,Irwin N, et al. Stable incretin mimetics counter rapid deterio-ration of bone quality in type-1 diabetes mellitus. J Cell Physiol2015;230:3009—18.

49] Nissen A, Christensen M, Knop FK, Vilsboll T, Holst JJ,Hartmann B. Glucose-dependent insulinotropic polypeptideinhibits bone resorption in humans. J Clin Endocrinol Metab2014;99:E2325—9.

50] Torekov SS, Harslof T, Rejnmark L, Eiken P, Jensen JB, HermanAP, et al. A functional amino acid substitution in the glucose-dependent insulinotropic polypeptide receptor (GIPR) gene isassociated with lower bone mineral density and increased frac-ture risk. J Clin Endocrinol Metab 2014;99:E729—33.

51] Fortin JP, Schroeder JC, Zhu Y, Beinborn M, Kopin AS. Pharma-cological characterization of human incretin receptor missensevariants. J Pharmacol Exp Ther 2010;332:274—80.

52] Holst JJ. Gut glucagon, enteroglucagon, gut glucagon-likeimmunoreactivity, glicentin — current status. Gastroenterology1983;84:1602—13.

53] Hartmann B, Johnsen AH, Orskov C, Adelhorst K, Thim L, HolstJJ. Structure, measurement, and secretion of human glucagon-like peptide-2. Peptides 2000;21:73—80.

54] Orskov C, Rabenhoj L, Wettergren A, Kofod H, Holst JJ. Tissueand plasma concentrations of amidated and glycine-extendedglucagon-like peptide I in humans. Diabetes 1994;43:535—9.

55] Holst JJ, Deacon CF. Glucagon-like peptide-1 mediatesthe therapeutic actions of DPP-IV inhibitors. Diabetologia2005;48:612—5.

56] Yamada Y, Hayami T, Nakamura K, Kaisaki PJ, Someya Y,Wang CZ, et al. Human gastric inhibitory polypeptide receptor:cloning of the gene (GIPR) and cDNA. Genomics 1995;29:773—6.

57] Weston C, Lu J, Li N, Barkan K, Richards GO, Roberts DJ,et al. Modulation of glucagon receptor pharmacology byreceptor activity-modifying protein-2 (RAMP2). J Biol Chem2015;290:23009—22.

een bone and incretin hormones: A review. Morphologie

58] McIntosh CH, Widenmaier S, Kim SJ. Pleiotropic actions of theincretin hormones. Vitam Horm 2010;84:21—79.

59] Kim JY, Lee SK, Jo KJ, Song DY, Lim DM, Park KY, et al. Exendin-4 increases bone mineral density in type 2 diabetic OLETF rats

Page 10: Interplay between bone and incretin hormones: A reviewokina.univ-angers.fr/publications/ua14969/1/2016b-morphologie.pdf · Please cite this article in press as: Mabilleau G. Interplay

IN+ModelM

1

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

ARTICLEORPHO-283; No. of Pages 10

0

potentially through the down-regulation of SOST/sclerostin inosteocytes. Life Sci 2013;92:533—40.

60] Aoyama E, Watari I, Podyma-Inoue KA, Yanagishita M, Ono T.Expression of glucagon-like peptide-1 receptor and glucose-dependent insulinotropic polypeptide receptor is regulatedby the glucose concentration in mouse osteoblastic MC3T3-E1cells. Int J Mol Med 2014;34:475—82.

61] Pereira M, Jeyabalan J, Jorgensen CS, Hopkinson M, Al-JazzarA, Roux JP, et al. Chronic administration of glucagon-likepeptide-1 receptor agonists improves trabecular bone mass andarchitecture in ovariectomised mice. Bone 2015;81:459—67.

62] Nuche-Berenguer B, Portal-Nunez S, Moreno P, Gonzalez N, Aci-tores A, Lopez-Herradon A, et al. Presence of a functionalreceptor for GLP-1 in osteoblastic cells, independent of thecAMP-linked GLP-1 receptor. J Cell Physiol 2010;225:585—92.

63] Luque MA, Gonzalez N, Marquez L, Acitores A, RedondoA, Morales M, et al. Glucagon-like peptide-1 (GLP-1)and glucose metabolism in human myocytes. J Endocrinol2002;173:465—73.

64] Villanueva-Penacarrillo ML, Delgado E, Trapote MA, AlcantaraA, Clemente F, Luque MA, et al. Glucagon-like peptide-1 bind-ing to rat hepatic membranes. J Endocrinol 1995;146:183—9.

65] Yamada C, Yamada Y, Tsukiyama K, Yamada K, Udagawa N,Takahashi N, et al. The murine glucagon-like peptide-1 recep-tor is essential for control of bone resorption. Endocrinology2008;149:574—9.

66] Madsen LW, Knauf JA, Gotfredsen C, Pilling A, Sjogren I,Andersen S, et al. GLP-1 receptor agonists and the thyroid:C-cell effects in mice are mediated via the GLP-1 recep-tor and not associated with RET activation. Endocrinology2012;153:1538—47.

67] Nuche-Berenguer B, Moreno P, Esbrit P, Dapia S, Caeiro JR,Cancelas J, et al. Effect of GLP-1 treatment on bone turnoverin normal, type 2 diabetic, and insulin-resistant states. CalcifTissue Int 2009;84:453—61.

68] Nuche-Berenguer B, Moreno P, Portal-Nunez S, Dapia S, EsbritP, Villanueva-Penacarrillo ML. Exendin-4 exerts osteogenicactions in insulin-resistant and type 2 diabetic states. RegulPept 2010;159:61—6.

69] Sun HX, Lu N, Luo X, Zhao L, Liu JM. Liraglutide, the glucagon-

Please cite this article in press as: Mabilleau G. Interplay betw(2016), http://dx.doi.org/10.1016/j.morpho.2016.06.004

like peptide-1 receptor agonist, has anabolic bone effects indiabetic Goto-Kakizaki rats. J Diabetes 2015;7:584—8.

70] Nauck M, Frid A, Hermansen K, Thomsen AB, During M, Shah N,et al. Long-term efficacy and safety comparison of liraglutide,

[

PRESSG. Mabilleau

glimepiride and placebo, all in combination with metformin intype 2 diabetes: 2-year results from the LEAD-2 study. DiabetesObes Metab 2013;15:204—12.

71] Pratley R, Nauck M, Bailey T, Montanya E, Cuddihy R, Filetti S,et al. One year of liraglutide treatment offers sustained andmore effective glycaemic control and weight reduction com-pared with sitagliptin, both in combination with metformin, inpatients with type 2 diabetes: a randomised, parallel-group,open-label trial. Int J Clin Pract 2011;65:397—407.

72] Mabilleau G, Chappard D, Flatt PR, Irwin N. Effects of anti-diabetic drugs on bone metabolism. Expert Rev EndocrinolMetab 2015;10:663—75.

73] Ma X, Meng J, Jia M, Bi L, Zhou Y, Wang Y, et al. Exendin-4,a glucagon-like peptide-1 receptor agonist, prevents osteope-nia by promoting bone formation and suppressing boneresorption in aged ovariectomized rats. J Bone Miner Res2013;28:1641—52.

74] Lu N, Sun H, Yu J, Wang X, Liu D, Zhao L, et al. Glucagon-like peptide-1 receptor agonist Liraglutide has anabolic boneeffects in ovariectomized rats without diabetes. PloS One2015;10:e0132744.

75] Mizokami A, Yasutake Y, Gao J, Matsuda M, Takahashi I,Takeuchi H, et al. Osteocalcin induces release of glucagon-like peptide-1 and thereby stimulates insulin secretion in mice.PloS One 2013;8:e57375.

76] Mizokami A, Yasutake Y, Higashi S, Kawakubo-Yasukochi T,Chishaki S, Takahashi I, et al. Oral administration of osteocal-cin improves glucose utilization by stimulating glucagon-likepeptide-1 secretion. Bone 2014;69C:68—79.

77] Mabilleau G, Mieczkowska A, Chappard D. Use of glucagon-likepeptide-1 receptor agonists and bone fractures: a meta-analysis of randomized clinical trials. J Diabetes 2014;6:260—6.

78] Driessen JH, Henry RM, van Onzenoort HA, Lalmohamed A, Bur-den AM, Prieto-Alhambra D, et al. Bone fracture risk is notassociated with the use of glucagon-like peptide-1 receptoragonists: a population-based cohort analysis. Calcif Tissue Int2015;97:104—12.

79] Driessen JH, van Onzenoort HA, Starup-Linde J, Henry R, Bur-den AM, Neef C, et al. Use of glucagon-like-peptide 1 receptoragonists and risk of fracture as compared to use of other anti-

een bone and incretin hormones: A review. Morphologie

hyperglycemic drugs. Calcif Tissue Int 2015;97:506—15.80] Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P,

Mardinoglu A, et al. Proteomics. Tissue-based map of thehuman proteome. Science 2015;347:1260419.