international gas union (igu) · international gas union (igu) by theauthor(s) mentioned. the...

64
International Gas Union (IGU) News, views and knowledge on gas – worldwide Natural Gas Unlocking the Low Carbon Future

Upload: others

Post on 04-Mar-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

International Gas Union (IGU)News, views and knowledge on gas – worldwide

NaturalGasUnlockingtheLowCarbonFuture

Page 2: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

2 InternationalGasUnion|September2010

ForewordFollowingthesuccessful24thWorldGasConferenceinBuenosAiresinOctober2009,IGUhasdecidedtoconvertsomeofthestudyreportspresentedattheconferenceintoIGUpublications.OneoftheSpecialProjectsdevelopedduringtheArgentinetrienniumwas:“TheContributionoftheNaturalGasIndustrytoClimateChangeMitigation–NaturalGasUnlockingtheLowCarbonFuture”.

Mitigationofclimatechangehasbecomeoneofthemostimportantissuesforthegasindustry.Thereportevaluateshowthenaturalgasindustrycancontributetothecommonglobalchallenge:Provideenergytoagrowingpopulationandatthesametimereducethecarbonfootprint.Itprovidesaroadmapforfurtherreductionsofgreenhousegasesbyenhanceduseofgasintheenergymix:

• Promoteswitchingtonaturalgasinthepowersectorreplacingmorecarbonintensivefuels• Encouragetheuseofnaturalgasintransportationsector• Improveefficiencyandbestpracticesacrossthevaluechain• Implementationofappropriatepoliciesandregulations

IGUisaninternationalorganisationwiththeobjectivetopromotethetechnicalandeconomicprogressofthegasindustryworldwide,andisworkingproactivelywithgovernmentsandregulators.Itisourhopethatthispublicationcanserveasoneexampleofhowvitalinformationrelatedtogasandclimatechangecanbesharedacrossborderstothebenefitoftheglobalgasindustryandthemanystakeholdersintheenergymarkets.

TorsteinIndrebøSecretaryGeneralofIGU

Thispublicationisproducedundertheauspicesof

INTERNATIONALGASUNION(IGU)bytheAuthor(s)

mentioned.

The Author(s) and IGU enjoy joint copyright to

this publication

Thispublicationmaynotbereproducedinwholeor

inpartwithoutthewrittenpermissionoftheabove

mentionedholdersofthecopyright.

However,irrespectiveoftheabove,establishedjournals

andperiodicalsshallbepermittedtoreproducethis

publicationorpartofit,inabbreviatedoreditedform,

providedthatcreditisgiventotheAuthor(s)andtoIGU.

Page 3: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

September2010|InternationalGasUnion 3

Table of contents1. Summary of main findings............................................................................... 5

2. Introduction....................................................................................................... 8 3. The gas industry................................................................................................ 12 Thenaturalgaschain......................................................................................... 12 Reservesandproduction.................................................................................... 14 Transportationandstorage.................................................................................. 15 Utilisation............................................................................................................ 19 Electricitygenerationvsdirectuseofnaturalgas............................................. 19 Thedegreeofaccesstooil,electricity,naturalgasandhydrogen..................... 21 Thecostsofenergy............................................................................................. 21

4. Global emission................................................................................................. 23 Theelectricitygenerationsector......................................................................... 26 Theindustrialsector............................................................................................ 26 Residentialandcommercial................................................................................ 27 Thetransportationsector..................................................................................... 27 Gasflaringintheoilindustry............................................................................. 28 5. Greenhouse gas emissions from the natural gas industry............................. 30 Energyandemissionsattheproductionandprocessingstage.......................... 30 CO2-richnaturalgasinreservoirs....................................................................... 32 Energyandemissionsatthetransportationstage..................................................... 32 Aglobaloverviewofthenaturalgaschain........................................................ 33 Energyandemissionsattheend-usestage........................................................ 34

6. Opportunities today and tomorrow ............................................................... 35 6.1Mitigationwithinthenaturalgasindustry’sownoperations........................ 36 Energyefficiencyinownoperations............................................................ 36 Fuelswitching&renewablesinownoperations......................................... 36 CO2-captureand–storage(CCS)inownoperations................................... 37 Reductionoffugitivemethaneemissionsinthegasindustry...................... 39 6.2Naturalgascustomersandclimatemitigation.............................................. 41 Energyefficiencyfornaturalgascustomers................................................. 41 Residentialandcommercialbuildings......................................................... 41 Fuelswitching&renewablesfornaturalgascustomers............................. 42 Naturalgasasvehiclefuel........................................................................... 45 LNGasamaritimefuel............................................................................... 45 Switchingfromcoaltonaturalgasinelectricitygeneration....................... 48 Switchingtohydrogenmadefromnaturalgas............................................ 49 Mixinghydrogenintonaturalgas................................................................ 50 CO2-captureand–storage(CCS)fornaturalgascustomers......................... 51 Cuttingmethane&flaringemissionsfortheoilindustry............................. 52

7. Challenges.......................................................................................................... 54 Motivators.......................................................................................................... 54 Barriers................................................................................................................ 55

Abbreviations........................................................................................................... 60Conversionfactors................................................................................................... 62IGUmembersinvolvedinmakingthisreport.......................................................... 63

Page 4: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

4 InternationalGasUnion|September2010

Page 5: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

September2010|InternationalGasUnion 5

NATURAL GAS & CLIMATE CHANGE

TOOL - BOX FOR A LOWER CARBON WORLD

ENERGY EFFICIENCY

IN OWN OPERATIONS FOR NATURAL GAS CUSTOMERS IN OWN OPERATIONS FOR NATURAL

GAS CUSTOMERS

IN OWN OPERATIONS FOR NATURAL GAS CUSTOMERS IN OWN OPERATIONS FOR NATURAL

GAS CUSTOMERS

FUEL SWITCHING AND RENEWABLES

CO2 - CAPTURE, -TRANSPORTATION AND - STORAGE (CCS)

More efficient conversionto electricity & mechanical energy

Utilize reservoir pressure and heat energy

Design new gas systems based on high future energy- and CO2 cost-assumptions

Help customers find and use best available technology

Make natural gas available in more regions & locations Seek out new end-use types where natural gas is particularly efficient

Store already captured CO2 in geological for-mations (e.g. from LNG-plants)

Capture & store CO2 from high - CO2 natural gas

Use CO2 for enhanced gas recovery

Later priority: capture CO2 from gas turbine and boiler flue gas

CO2 as cushion gas in storages

Sell CO2 to oil companies for enhanced oil recovery

Sell CO2 -transport and geostorage space for customers

Use hydropower, wind etc. as part of the electricity supply to own plants

Natural gas fuel for own trucks & ships

Ultimately switch to electricity, hydrogen and heat made from natural gas with CCS

Natural gas to fuels and chemicals

Switch from coal to natural gas in elec- tricity generation

Introduce natural gas in new types of end-use (i.e. shipping, heavy trucks)

Introduce natural gas more in energy intensive industries (e.g. steel)

Produce and distribute hydrogen

Mix bio-gas into gas grid

CUTTING FLARING AND VENTING EMISSIONS

Limit (already low) gas industry flaring and venting to very low levels

Limit methane emissions from valves, flanges, start-up/stop, maintenance etc. to very low levels

Remediate old town gas systems used for natural gas where applicable

Assist oil industry to reduce their flaring/ venting by gathering and transporting this natural gas to market

Allow various forms of bio-gas into natural gas grid

Figure 1.1

Energyisfundamentaltothequalityofourlives.Today,wearetotallydependentonanabundantanduninterruptedsupplyofenergyforlivingandworking.ItisakeyingredientinallsectorsofmoderneconomiesandwithoutabundantenergysuppliestheEarthwouldnotbeanywaynearfeedingtoday’s6,8billionpeopleorthe9billionthatareexpectedby2050.

Ontheotherhand,climatechangeisakeychallengefacinghumanity.Whilesecureandaffordableenergysuppliesareneededforeconomicdevelopmentworldwide,weknowthatnearly70percentofallCO2-emissionsareenergyrelated.UnderanIEAbaselinescenario(IEA,2008a),CO2emissionsincreasefrom20,6Gtin1990to62Gtin2050,morethantriplingin60years.

Naturalgasis,togetherwithoilandcoaloneofthefossilfuelsandwill-whenburnt-contributetoincreasingtheCO2-concentrationintheatmosphere.Thisisthedownside,andarareoneforthisotherwise

cleanburningfuel.Theaimofthisreportistoillustratehownaturalgasisnotonlypartoftheclimatechangeproblem,butalsobecominganequallyimportantpartofitssolution.Thereporttellsaboutthemanywaysthatthenaturalgasindustrycananddocleanupitsownoperations.Importantasthisis,however,wefindthatthemaincontributionofnaturalgasliesinmakingitpossibleforourcustomerstoreducetheirgreenhousegasemissions.ThishappensforinstancewhenwereplacemuchmoreCO2-emittingcoalinthemarketplace.Gascustomerscanalsoreduceemissionsthroughtheuseofveryefficienttechnology(e.g.gasturbines,fuelcells)thatworkswellwithgaseousfuelandlesswell–ornotatall-withcoal,oilorbiomass.ThegasbusinessisalsothepioneeringindustryintheareaofCO2-captureand-storage(CCS)thatisexpectedtobeanimportanttechnologyformitigatingclimatechange.Thetwinenergycarrierselectricityandhydrogen–bothCO2-freeatthepointofend-use–canbeproducedfromnatural

1. Summary of main findings

Figure 1.1 The tool-box for natural gas related mitigation of climate change. We differentiate between what the natural gas industry can do within its own operations and what this industry can do for its present and emerging customers. The focus in this report is on reduction of carbon dioxide and methane emissions to atmoshere.

Page 6: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

6 InternationalGasUnion|September2010

Oil - 100 %

Electricity - 75 %

Natural gas - approx. 10 %

Hydrogen for energy - 0 %

gaswithCCSwithlowemissionstotheatmosphere.

Naturalgashaslongbeenthefuelofchoicebecauseoftheefficiencyofthisformofenergydistribution,gas’sflexibilityandcontrollabilityinuse,andonaccountofitslowemissionsofCO2andlowlevelsofpollutants.Thesequalitiesmakegasattractiveindirectutilisationinhomesandbusinesses,incentralisedpowergeneration,inlocalCHPplant(includingmicro-CHP),andinsomecountriesalsointhetransportsector.

Indiscussionsaboutsustainableenergypolicy,itisimportantthatthepositivecontributionthatnaturalgasisalreadymakingintheevolvingenergymarketisnotoverlooked.

Amongallthefossilfuels,naturalgas–aswellasbeingthecleanestandmostcontrollableatthepointofuse-isalsothemostenvironmentally-friendly,producingthelowestCO2emissionsperunitofenergy.Dependingonthequalityoffuel,thecombustionofnaturalgasresultsinatleast25-30%lessCO2thanoilandatleast40-50%lessthancoal.TheCO2emissionscanbefurtherreducedbyusingnaturalgasinhighefficiencyapplicationssuchasingasturbinebasedelectricitygeneration.Naturalgasthusoffersuniqueadvantagesintermsofgreenhousegasbenefits.

Today41percentofglobalenergy-relatedCO2originatesinelectricitygeneration(IEA,2008a).Itisimportanttonotethisimportantroleofelectricitythathasbeengrowingfordecadespartlybasedonnaturalgasfuel.Electricity’sroleisexpectedtoincreasesteadilyalsointhefutureasmoreandmorecountriesareindustrialised.Itisawidelypublishedfactthatsome1.6billionpeople-aboutoneinfouroftheworld’spopulation–livewithoutaccesstoelectricity.Unlikeelectricity,wedonotknowwithanydegreeofprecisionhowmanypeoplegloballylackaccesstoclean-burningnaturalgas.Anindicationisthatin2006EU-25with200millionhouseholdshad105millioncustomersconnectedtothegasgrid,givingcoverageofabouthalfthepopulation.InUSAnaturalgasisusedin61percentofthe160millionhouseholds.InJapanabout27millionhouseholds(outofatotalof52million)haveaccesstonatural

gas.Thesethreeregionswithabout14percentofglobalpopulationareknowntohavetheworld’smostdevelopedanddensegas-grids.Fewothercountriesandregionsareanywherenearthisgas-gridcoverageatthepresenttime.Fromthiswecandrawatentativeconclusion

thatperhapsasfewas10percentofglobalhouseholdshavedirectaccesstonaturalgastouseforheating,coolingandcooking.

Ifwebymagiccouldswitchalltheworld’scoalfiredpowerplantstomodernnaturalgasfiredcombinedcycleplants,wewouldexperienceareductionofemissionsbyover5GtCO2/yr.Thisreductionis1/5ofglobalCO2-emissions.Thisthoughtexperimentillustratesthehugepotentialforfuelswitchingtonaturalgasintheelectricitygenerationsector.

Theuseofnaturalgasasafuelforvehicles(NGV’s)areincreasingrapidlyaroundtheworld.Itisprojectedthatthisend-usesectorwillincreaseten-fold,to65millionvehiclesby2020.ThismanyNGV’swouldconsumeabout400GSm3ofnaturalgas,amountingto14percentoftoday’snaturalgasconsumption.

Themostimportantbarrier-breakersareremovalofinstitutional(mostlygovernment)barriers,deploymentofbettertechnologiesaswellasexpectationsofincreasingcosts

ofemissionsofgreenhousegasestotheatmosphere.Highenergyprices-suchasthoseexperiencedforsometimenow-willalsoworkinthedirectionofenergyanenergyefficientenergysystembothintheindustrialisedandintheindustrialisingcountriesoftheworld.

Thedegreetowhichnaturalgashassucceededingainingafavourablepublicandpolicyattentionregardingclimatechangemitigationvariesfromcountrytocountryandfromregiontoregion.Wherenaturalgasandcoalcompeteinagrowingmarket,theopinionwilloftenbeinfavourofnaturalgas.Elsewhereattentionisturnedmoreinthedirectionofenergyefficiencymeasuresorvariousformsofrenewableenergytothedetrimentofallfossilfuels,includingnaturalgas.Thenuclearindustryisalsoexperiencingarenaissanceduetothethreatofclimatechange.

Thegasindustrycannotaffordtobecomplacentinaworldincreasinglyworriedaboutclimatechangeanditseffectsonthehumansociety.Thisreportillustratethatthereisstillawaytogo.Muchisalreadybeingdone,however,thatwilltransformboththegasindustryandthewayconsumersusenaturalgasinthe21stcenturytothebenefitofareducedglobalcarbonfootprint.Thebestpracticeexamplesdescribedinchapter6showthesurprisinglywidearenaonwhichnaturalgascanmitigateclimatechange.

Inchapter7weattempttoillustratewhymanyoftheclimatechangemitigationactionsinvolvingnaturalgashavenotalreadyhappenedorareonlyslowlyfallingintoplace.Someofthesearechallengesspecifictocertaingovernmentsorregions,butmostareglobalincharacter.Insumthemostimportantbarrier-breakersareremovalofinstitutional(mostlygovernmentandinternationaltreaty)barriers,deploymentofbettertechnologiesaswellasasharedexpectationofincreasingcostsovertimeofputtinggreenhousegasesintotheatmosphere.Sharedexpectationsofhighenergyprices-suchasthoseexperiencedupuntiltheautumnof2008-workinthedirectionofanenergyefficientsystemglobally.

Fig. 1.2: Shares of the global population having access to the various forms of energy. Electricity has coverage of about ¾ of the global households while the global degree of physical access to oil products is close to 100%. Natural gas is physically available to perhaps 10% of global households while for hydrogen the percentage is zero. Those without access to natural gas or electricity, have their options in general limited to more polluting fuels.

Page 7: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

September2010|InternationalGasUnion 7

“Crying wolf” effect. Difficult to keep up motivation for several decadesLack of knowledge of energy & GHG-sources

Rapidly increasing energy use & GHG-emissions in non-target developing countries

High cost of non- or low--carbon energy sources (e.g. solar)Lack of level playing field for low-carbon alternatives (e.g CDM)

Lack of decades-long targets and mitigation framework in most countries

Tendency towards “least common” denominator in international climate negotiations (e.g.Kyoto)

Not sufficient GHG-focus in standards in most countries (e.g. buildings, cars)

Lack of low-carbon technology suited for real-world application

Long-term technology lock-in for long lived infrastructure (e.g. power plants, transport networks)

Uneven country-focus and climate targets causes international trade problems

Lack of commercial incentives (e.g. monetary carrots or regulatory sticks)

START Sceptisism towards reality/impact of climate change

GOAL

Natural gas - the short version:

• Naturalgas,thecleanestfossilfuel,isahighlyefficientformofenergy.Itis composedchieflyofmethane;thesimplechemicalcompositionofnaturalgasis amoleculeofonecarbonatomandfourhydrogenatoms(CH4)• Whenmethaneisburnedcompletely,theproductsofcombustionareone moleculeofcarbondioxideandtwomoleculesofwatervapour• Naturalgasdeliveredtocustomersisalmosttotallyfreeofimpurities,is chemicallylesscomplexanditscombustionthereforeresultsinlesspollution thanotherfuels• Inmostapplicationstheuseofnaturalgasproducesnearzerosulphurdioxide (theprimaryprecursorofacidrain),verylittlenitrogenoxides(theprimary precursorofsmog)andfarlessparticulatematter(whichcanaffecthealthand visibility)thanoilorcoal• Technologicalprogressallowscleanerenergyproductiontodaythaninthepast forallfuels,althoughtheinherentcleanlinessofgasmeansthatenvironmental controlsongasequipment,ifanyarerequired,tendtobefarlessexpensive thancontrolsforotherfuels.

Pollutant (relative;coal100%) Natural Gas Oil CoalCarbon Dioxide 56% 79% 100%

• Naturalgasishighlyefficient.About90percentofthenaturalgasproducedis deliveredtocustomersasusefulenergy.Incontrast,onlyabout27percentof theenergyconvertedtoelectricityreachesconsumers• Duetoitscleanlinessnaturalgaswillnormallybeusedinsubstantiallymore efficientmachineryorappliances(e.g.gasturbines)thanotherfossilfuels, therebyincreasingtheenvironmentalgaptocoaloroil

Fig. 1.3 How a mountaineer might view barriers to climate change mitigation. Not all the indicated barriers are equally relevant to specific countries, companies or individuals, but the route to the top contains a number of difficult obstructions between the valley and the top of the mountain.

References chapter 1BPStatisticalReviewofWorldEnergy2008IEA(2007),WorldEnergyOutlook2007,IEA/OECD,ParisIEA(2008a),CO2CaptureandStorage.AkeyCarbonAbatementOption,IEAParis

Page 8: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

8 InternationalGasUnion|September2010

Northern hemisphereaverage surfacetemperature

Population

CO2 concentration

Loss of tropical rainforrest and woodlandWater use

Paper use

VehiclesSpecies extinction Ozone depletion

Fore

ign

inve

stm

ent

Fisherie

s

1750 1800 1850 1900 1950 2000

Globalclimatechangeisnolongerconsideredtobeabstractresultsfromthecomputersofclimatescientists.Dr.R.K.Pachauri,thechairmanoftheInternationalPanelonClimateChange(IPCC)saidwhenpresentingtheIPCCFourthAssessmentReporttowardstheendof2007:- Climatechangeisaseriousthreattodevelopmenteverywhere

- Today,thetimefordoubthaspassed.TheIPCChasunequivocallyaffirmed

thewarmingofourclimatesystem,andlinkeditdirectlytohumanactivity

- Slowingorevenreversingtheexistingtrendsofglobalwarmingisthedefiningchallengeofourages

Figure2.1illustratesthesechallengesfacedbysocietyduetotheglobalgrowthinpopulationandthesecondaryeffectsthatmarchinstepwiththismaindriver.

2. Introduction

Fig. 2.1 The problems of global growth – including CO2-levels and northern hemisphere temperature - from 1750 to 2000 (Adapted for this report from New Scientist 16 October 2008, special report)

Page 9: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

September2010|InternationalGasUnion 9

Naturalgasisatthisearlystageintheclimatemitigationeffortperformingwellcomparedtootherfossilenergysources.Continuedeffortswill,however,beessentialtokeepthispositioninachangingglobalmarketheavilyinfluencedbyclimatechangeconcerns.Otherfossilfuelsareworkingontheirenvironmentalimpactswithcoalmakingacomebackinbothdevelopingandalreadyindustrialisedcountries.Nuclearpowerisagainontheriseinmanycountries,ridingonthewaveofclimatechangeconcern.Renewableenergytogetherwithenergyefficiencyislikewiseattheforefrontofenergypoliciesinmostindustrialisedcountries.Withtheexceptionofhydropower,however,renewablesaregenerallygrowingfromaverylowbase.Thismaketheircontributionlessprominentthanwecouldbeledtobelievebasedonreportedhighgrowthpercentages.

Figure2.2servestoillustratethattheconversionofprimaryenergyformstoelectricityisofmajorimportance.Theshareofelectricityinend-use(finalconsumption)hasbeengrowingforseveraldecades.Duetoelectricity’sintrinsiceaseofuseforthefinalconsumer,itislikelytokeepgrowingitsshareevenifthecostsishigherthanforcoal,oilproductsorgridsuppliednaturalgas.Naturalgasmay,however,keepincreasingitsattractivenesscomparedtoelectricityby

The Intergovernmental Panel on Climate Change (IPCC, 2007) says:

•Warmingoftheclimatesystemisunequivocal,asisnowevidentfromobservationsofincreasesinglobalaverageairandocean temperatures,widespreadmeltingofsnowandiceandrisingglobalaveragesealevel•GlobalatmosphericconcentrationsofCO2,CH4andN2haveincreasedmarkedlyasaresultofhumanactivitiessince1750 andnowfarexceedpre-industrialvaluesdeterminedfromicecoresspanningmanythousandsofyears•TheatmosphericconcentrationsofCO2andCH4in2005exceedbyfarthenaturalrangeoverthelast650,000years•GlobalincreasesinCO2concentrationsaredueprimarilytofossilfueluse,withland-usechangeprovidinganothersignificant butsmallercontribution•ItisverylikelythattheobservedincreaseinCH4concentrationispredominantlyduetoagricultureandfossilfueluse•TheincreaseinN2Oconcentrationisprimarilyduetoagriculture.•Mostoftheobservedincreaseinglobalaveragetemperaturessincethemid-20thcenturyisverylikelyduetotheobserved increaseinanthropogenicGHGconcentrations•Thereishighagreementandmuchevidencethatallstabilisationlevelsassessedcanbeachievedbydeploymentofaportfolio oftechnologiesthatareeithercurrentlyavailableorexpectedtobecommercialisedincomingdecades,assumingappropriate andeffectiveincentivesareinplacefordevelopment,acquisition,deploymentanddiffusionoftechnologiesandaddressing relatedbarriers

Coal 3136Coal industrial

to mostly transport and industrial

to industrial and residential commercial

Oil

Gas

Electricity16800 TWh/yr

Crude oil 3906

Natural gas 2654

Nuclear 622

Hydropower other renewables 709

to el. ÷ conversion losses

to el. ÷ conversion losses

to el. ÷ conversion losses

promotingenergyefficientandeasy-to-usedevicesfortheindustrysectoraswellasforthecommercial/residentialandtransportationsectors.Figure2.2alsoshowsthatcoaltodayisusedprimarilyforelectricitygeneration(therestbeingmostlycementandiron/steel).Oilhassincethe1970’sbeenphasedoutofelectricitygenerationandisincreasingly

identifiedwithfuelsuppliesformotor-vehicles,shipsandairplanes.Naturalgas,ontheotherhand,continuestoservearatherdifferentiatedgroupofconsumers,thelargestofwhichisthepowerindustryaswellasabroadcustomerbaseinindustryandintheresidentialandcommercialsectors.

Fig. 2.2 Simplified global energy flow diagram showing (to the left) primary energy inputs (coal, oil, natural gas) plus uranium and hydropower plus other renewable resources converted into electricity. The share of the various primary energy forms being converted to electricity is illustrated (Sources: BP Statistical Review of World Energy 2008, EIA World Energy Outlook 2007, IEA

Page 10: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

10 InternationalGasUnion|September2010

The Kaya Equation and natural gas as a low carbon energy carrier ProfessorYoichiKayaistheDirector-GeneraloftheJapaneseResearchInstituteofInnovativeTechnologyfortheEarth(RITE)justoutsideoftheoldcityofKyoto.Heistheoriginatorofthefollowingilluminatingequation:

CO2 emissions =Carbon content of

the energyX

Energy intensity of economy

XProduction per person

X Population

Themathematicsisnothard–itisjustmultiplication,butwhatdoesitmean?Firstlythereareacoupleoffactorsintheequationthatisguaranteedtoincrease.Startingfromtherighthandsideoftheequation,wearereasonablysurethatpopulationwillcontinuetoincreasetowards2050byaperhaps40%,therebydrivingCO2-emissions.

Secondlyweexpecttoseeproduction per personincreasingconsiderably-indevelopingcountriesinparticular-towards2050,therebydrivingCO2-emissionsfurther.

Canwedividetheenergy intensity of our economybyalargefactorto2050?Theenergyintensityhasindeedgonedownsubstantiallyinmostindustrialisedcountriesasillustratedbythebelowgraph.Moreefficientuseofenergyexplainsmuchofthedecline.Itisnot,however,nearlyenoughbyitselftocounterglobalpopulationgrowthorgrowthineconomicoutputperperson.

InconclusionitseemsthatthebruntoftheneededCO2-reductionsforthenextdecadeswillhavetobetakenbysubstantiallyreducingthecarboncontentofenergyintheKayaequation.Inthefuturedeliveredenergywillhavetobedecarbonised.

Naturalgas(CH4)withitslowcarbonandhighhydrogencontentaswellasitsglobalreachisaprimecandidateforthrowingabridgetothislowercarbonfuture.Otherlowcarbonprimaryenergysourcesarerenewablesandnuclearenergy.CapturingCO2forundergroundgeologicalstorageisafourthcandidateforloweringtheamountofcarbon(intheformofCO2)thatreachestheatmospherefromuseofenergy.

SwedenEU27FinlandGermanyUnited States

400

360

320

280

240

200

160

120

80

40

01991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

Energy consumption in relation to GDP (tons of oil equivalents per 1,000,000 euro)

Page 11: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

September2010|InternationalGasUnion 11

References chapter 2BPStatisticalReviewofWorldEnergy2008EIAWorldEnergyOutlook2007IEAWorldEnergyOutlook2006-08IEAEnergyTechnologyPerspective2008(IEA2008)IPCCClimateChange2007:SynthesisReport

Useful web-sites for this chapter:•IntergovernmentalPanelonClimateChange(IPCC):http://www.ipcc.ch/index.htm•RealClimate(FAQ’sonclimatefromclimatescientists):http://www.realclimate.org/

Climate mitigation cost curves

NumerouscostcurvesforemissionreductionofthetypeshowninthebelowgraphfromIEA(2008)havebeenmadeforspecificcountries,forbranchesofindustryandsoforth.Suchcostcurveshaveseveralthingsincommonthatarerelevantalsoforthenaturalgasindustryanditscustomers:

•Energyefficiencymeasuresaregenerallyshowntobeeconomicintheirownright(belowzeroonthex-axis)•Thentherewillbearelativelylow-costpartjustabovethex-axisofvaryingsize.Inthegraphindicatedbythepowersector,but fuelswitchingtolowercarbonfuelsandemissionreductionofthenon-CO2greenhousegasessuchasmethaneareoftenfoundhere

•Aswemovetowardstherightendofthegraphwefindthemorecostlytechnologies–oftenimmature–suchasalternative transportfuels,CCS,geothermalandsoforth

Atpresentnoattempthasbeenmadetoassembleaglobalcostcurvefortheuseofnaturalgasasaclimatemitigationtool,butitsgeneralshape(ifnotcontent)willbeasillustratedbythisIEAgraph.

Source:IEAEnergyTechnologyPerspectives2008

0

1000

800

600

400

200

0

-2000

2050 CO2 emissions reduction (GT CO2/yr)

Transport alternative fuels

Industry fuel switching and CCS

Power sectorEnd-use efficiency

Mar

gina

l cos

t (U

SD

/t C

O2)

5 10 15 20 25 30 35 40 45 50

50

TechnologyOptimism

BLUE Map

ACT Map

TechnologyPessimism

100

200

500

Page 12: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

12 InternationalGasUnion|September2010

3. The gas industry

Itisoftenoverlookedthatthegasindustryisamajorconsumer–aswellasaproducer–ofenergy.Theindustryisinherentlyquiteenergy-intensive.Thatis,largeamountsofenergyareneededtoextractgasresourcesfromthegroundandprocess,transform,transportanddeliverthoseresourcestothefinalusers.

Thisdoesnotmeanthatthegasindustryisinefficientcomparedwithotherindustries:efficiencycanonlybecomparedforprocessesinvolvingthesameinputsandoutputs.Thiscanbeshownbycomparingforinstancetheproductionofonekilowatt-hourofelectricityfromacoaloralternativelyfromnaturalgaswhentakingintoaccountthewholechainfromthemine/reservoirthroughtransportationtothefinalconversiontoelectricity.Infact,thegascompanieshavebeeninvestingheavilyintheefficiencyoftheiroperations,therebyfreeingupgastobesoldtocustomers.

The natural gas chainAnaturalgaschainstartswithagasfieldcontainedinageologicalstructuresuchasasandstoneperhapsseveralthousandmetersunderground.Sometimesnaturalgasisproducedtogetherwithoil,whichisseparatedandmarketedthroughotherinfrastructureandcommercialchannels.Thegaschaintypicallyterminatesattheburnertip,motororturbineatthesiteoftheconsumer.Whathappensbetweenthegasfieldandtheburnerismostlyhiddenfromthepubliceye.Buriedpipelines,remotegasfieldsandgasprocessingfacilitiesorgasshipsplyingtheoceansarenotoftenseenandrarelyreceivemediaattention.Gasolineordieselcanbeseenatpetrolstationsandelectricity-wherethehighvoltagelinesanddistributiongridisveryvisible–aremorerealtomostofus.Energy-andinparticularnaturalgas–issociety’sinvisiblecommodity.

Oil reservoirsw/associated gasNatural gas reservoirs

Pipeline - Transportation - LNG-ship

CNG - Storage - LNG

Local pipe-grid - Distribution - LNG-regasification/distribution

Processing

To pipelinespecification

Residential andcommercial

Electricitygeneration

Industrialend-use

Transportation; natural gas, LPG,

LNG, hydrogen

To LNG

To oil chain

Oil

Gas

Exploration

Production

Process-ing

Storage

Transpor-tation

Distribution

End-use

Ethane, propane, butane

The oil chain

The gas chain

Fig. 3.1 Natural gas occur both in gas reservoirs and as so-called associated natural gas in oil reservoirs. Transportation of natural gas is primarily by pipelines, but transport in ships as liquefied natural gas (LNG) is on the increase from a modest beginning in the 1960s. At the present time nearly 8% of global natural gas is moved in the form of LNG (for part of the route to the end-user), the rest is pipelined all the way from the reservoir to the consumer.

Page 13: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

September2010|InternationalGasUnion 13

Naturalgasasfoundinagasreservoircanvaryconsiderablyincompositionfromfieldtofield.Insomecasesitcanconsistofalmost100%methanewithonlyafewpercentofothercomponents.Inextremecasesnaturalgasfieldscanbesocontaminatedbyhydrogensulphide(H2S),CO2ornitrogenastobeverydifficultandcostlytodevelop.

Whenproducingatypicaloilfield,somenaturalgaswillbefounddissolvedintheoil.Thisso-calledassociatedgasisseparatedfromtheoilandprocessedtothesamecustomerspecificationsasnaturalgasfrompuregasfields.

Afterproductionfromthegeologicalreservoir,thegasisprocessedtoremoveso-calledpetroleumgases(LPG;ethane,propane,butane),heavierhydrocarbonsandanyimpuritiessuchaswater,sand,CO2 andH2Sdependingonthelocalconditions.

Mostnaturalgasistransportedthroughhighpressurepipelinestolocalandlowerpressuredistributionpipeline(grids)thateventuallyextendintobuildings,powerplantsandthesitesofindustrialconsumers.Inheavilyinhabitedregionswithextensive

Methane – the main component of natural gasThemainconstituentofnaturalgasisthemethanemolecule-CH4-whichcontainsfourhydrogenatomsclusteredaroundonecarbonatom.Methaneisacolourlessgaswithamolecularweightof16andadensityof0,717kg/m3inthegasphase(at25°C,100kPa).Methanehasaboilingpointof−161oC(LNG-condition)atapressureofoneatmosphere.Asagasitisflammableonlyoveranarrowrangeofconcentrations(5–15%)inair.Itsflammabilityisadesiredfeatureforafuel,butlessdesirableforinstanceinacoalminewhere“firedamp”releasedfromthecoalmaycausedangerousexplosions.

Onemoleculeofmethaneburnswithtwomoleculesofoxygen(O2)intheairtoformcarbondioxide(CO2)andwater(H2O)accordingtotheequation:CH4+2O2 CO2+2H2O(+809kJofenergypermole).Whenburningfuelssuchascoal(containinglittlehydrogen),moreCO2isproducedduringcombustionperproducedunitofenergy,resultinginsubstantiallymoreclimateeffect.

Methaneincombinationwithwaterisalsousedextensivelyinthechemicalindustrytomakeso-called“synthesisgas”throughsteamreformingaccordingtotheequation:CH4+H2O CO+3H2.Thissynthesisgasmixtureofcarbonmonoxide(CO)andhydrogenisusedforproducingammoniaforfertilizerproduction,formakingmethanol,plasticsandnumerousotherchemicalsandmaterials.Steamreformingiscurrentlytheleastexpensivemethodofproducingpurehydrogen.

Today,mosthydrogenintheUnitedStates,andabouthalfoftheworld’shydrogensupply,isproducedthroughsteamreformingofnaturalgas.Mostoftherestisproducedfromthegasificationofcoalandheavyoilinsomewhatsimilarprocessestosteamreformingofnaturalgas.

naturalgasconsumptiontheinvisiblegasgridisalmostasdenseasthemorevisibleelectricitygrid.

Inthosecaseswheremovingnaturalgasbypipelinesisnottopographicallypossibleoreconomical,gascanbetransportedbyspeciallydesignedcryogenic(lowtemperature)ships(LNGvessels;-161oC,atnearatmosphericpressure)orcryogenicroadtankers.Theshipalternativeisusedmostlyforinternationalmovementoverseveralthousandkilometres.Therelativelyrarecryogenicroadtankersaremostlyusedforlowvolumesforshortdistances.

1990 2000 2010 2020 2030

Oil

Coal

Gas

Nuclear

Hydro

Other renewables

Biomass

18 000

16 000

14 000

12 000

10 000

8 000

6 000

4 000

2 000

01980

Mto

e

1 part carbon + 4 parts hydrogen

Fig. 3.2 Development of world energy consumption from 1980 with projections to 2030 in the IEA 2008 reference scenario (Redrawn based on: IEA World Energy Outlook 2008)

Page 14: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

14 InternationalGasUnion|September2010

Reserves and productionGlobalprovednaturalgasreserveshavegrownabout2½timessince1980basedongrowthofnon-OECDgas.Provedreservesroseby1trillioncubicmetres(Tcm)in2007toatotalof177Tcm.Almostthree-quartersoftheworld’snaturalgasreservesarelocatedintheMiddleEastandEurasia.Russia,Iran,andQatarcombinedaccountedforabout58percentoftheworld’snaturalgasreserves.Reservesintherestoftheworldaremoreevenlydistributedonaregionalbasis.Despitehighratesofincreaseinnaturalgasconsumption,particularlyoverthepastdecade,mostregionalreserves-to-productionratiosaresubstantial.Worldwide,thereserves-to-productionratiofornaturalgasisestimatedat60years(BPRWE2008).

RESERVES

RESOURCES

Feas

ibili

ty o

f eco

nom

ic re

cove

ry

Degree of geological certainty

Increasing “accessibility”

BP Statistical Review of World Energy 2008

41,3

33,5

Middle EastEurope & EurasiaAfricaAsia PacificNorth AmericaSouth & Central America

1987Total 106.86 trillion cubic metres

Distribution of proved reserves in 1987, 1997 and 2007Percentage

1997Total 146.46 trillion cubic metres

2007Total 177.36 trillion cubic metres

8,2

8,2

4,54,4

33,829,2

41,742,2

7,39,5

7,9

6,9

4,4 7,3

5,74,2

Less than 6 TCF

6-120TCF

480-960 TCF

Larger than 960 TCF

120-240 TCF

240-480 TCF

Asindicatedinfig.3.3,theamountofnaturalgasresourcesinthegroundwillalwaysbesubstantiallylargerthanwhatcanberecoveredeconomicallyatanypointintime.Thereisnofixedcut-off,however.Withimprovedtechnology-suchasenablingthemoveintodeepwateroffshore-andnot

leasthigherenergyprices,therewillbeasubstantialshiftfromresourcestowardsprovedreserves.

Figure3.4illustratesboththegrowthandthegeographicalshiftofprovedreservesthathastakenplacesincethe1980’s.

Fig. 3.3 Resources are always much larger than proved reserves. One example of how geological resources such as oil and natural gas are characterised; the main aim of such classification systems for geological resources (minerals, coal, oil, natural gas) is to differentiate between reserves that can be economically produced with today’s technology and commodity prices and those resources (contingent or prospective) that may – or may not – be produced at some future time with improved technology or higher prices or both in combination.

Fig. 3.5 The United States Geological Survey (USGS) map of the conventional natural gas endowment of the world (2000). The USGS released an updated assessment of gas resources north of the Artic circle in July 2008. The mean estimate of natural gas in this region was 1670 Tcf (47300 GSm3), amounting to about 30% of remaining undiscovered natural gas. Most of this located in the west Siberian Basin, the East Barents Basin and Artic Alaska (Source: USGS)

Fig 3.4 Distribution of proved natural gas reserves and their development over time (1987, 1997 and 2007). (Redrawn based on: BP SRWE, 2008)

Page 15: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

September2010|InternationalGasUnion 15

TheInternationalEnergyAgency(IEA),BPandothersprovideyear-by-yeardataonproduction,consumption,importsandexportsofnaturalgas.InFigure3.6,theproductionisgivenasapercentageoftheglobalproductionformajorregions.

Naturalgasisproducedinalargenumberofcountriesaroundtheglobe,butafewofthemprovidealargepercentageofthetotalvolume.ThenlargestareUSA,Canada,Russia,Iran,NorwayandAlgeria.Theseventeencountriesintable3.1providenearly80%ofthetotalworldproductionofnaturalgas.

Transportation and storageMajornaturalgastrademovementsareshowninFigure3.7and3.8.Thelargestflowsin2007werefromRussiaandAlgeriatoEurope,fromCanadatoUSAandfromtheMiddleEastandSouth-EastAsia(Indonesia,Malaysia)toJapan.SomelargeproducerssuchasUSandRussiaarealsothelargestconsumers.OnlyUSA,throughbeingthesecond-largestproducersofnaturalgasafterRussia,areinfactthelargestimporteraswell(fig.3.8).

0 5 10 15 20 25 30

North America

Eurasia(other)

Russia

Middle East

Asia - Pacific

Latin America

Africa

Percent

Table 3.1

177,36100%2654SUM WORLD

140,2779%2088COUNTRIESSUM LISTED

0,441,540Argentina

6,091,744United Arab Emirates

1,742,053Uzbekistan

25,602,054Qatar

2,482,155Malaysia

1,252,258Netherlands

3,002,360Indonesia

1,882,462China

0,412,565UK

7,172,668Saudi Arabia

2,672,361Turkmenistan

4,522,875Algeria

2,963,081Norway

27,803,8101Iran

1,636,2165Canada

5,9818,8499USA

44,6520,6547Russia

Proved reserves(Tcm)

% of global production

Production (Mtoe)

2,5

2,6

2,3

2,8

3,0

3,8

6,2

Production & reserves 2007

0 20 40 60 80 100 120 140 160

RussiaCanadaNorwayAlgeria

Netherlands

QatarMalaysia

IndonesiaNigeria

Australia

Trinidad& Tobago

Billion cubic meters/yr

Pipelined gas LNG

Fig. 3.6 Share (%) of global natural gas production for different regions of the world in 2007 (Source: BP SRWE, 2008).

Table 3.1 Natural gas production volumes in mill tons of oil equivalent (Mtoe) and proved reserves (in Tcm) of the 17 largest natural gas producing countries. (1 Tcm equals about 800 Mtoe. Data-source: BP SRWE 2008)

Fig. 3.7: Major natural gas exporters in 2007. While most natural gas is still being transported by pipelines, LNG is a form of transport of increasing importance (Data-source: BP SRWE, 2008)

Page 16: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

16 InternationalGasUnion|September2010

0 20 40 60 80 100 120 140

Billion cubic meters/yr

Pipelined gas LNG

United StatesJapan

GermanyItaly

FranceTurkeySpain

South KoreaUnited Kingdom

BelgiumNetherlands

TaiwanHungary

IndiaBrazil

Thailand

Intotal,aboutaquarteroftheglobalproductionisexportedtobeconsumedinadifferentcountry.Thisalsotellsusthat3/4ofallnaturalgasproductionisconsumedinthesamecountryasitisproduced.Theglobalgasmarketconsistsofanumberoffairlycoherentandseparateregionsthatconsumenaturalgasthatoriginatesfromonlyafewcountries.ThesemajornaturalgasconsumingregionsareNorthAmerica,EU,Russia,theMiddleEastandAsiaincludingChina.WithLNGontheincrease,thegasmarketis,however,slowlybecomingmoreglobalisedandmoreresemblingtheoilmarket.

LNGisamediumsizeenergycommodityatpresentasitmakesupnearly8%ofthetotalglobalgasmarket.Itis,however,fastbecomingamoreimportantpartoftheinternationaltradeflowwith29%oftotalinternationalgasexchangein2007.LNGisatypicaloutletforremotegasfieldswithnosufficientlylargeconsumermarketinthevicinityandwithnoaccesstonearbylongdistancepipelines.Itisacapitalintensiveactivityrequiringhighinvestmentsforbothliquefactionplants,ocean-goingtankers,

regasificationterminalsandcryogenictankfarmsinbothendsofthechain.LNGisforthisreasonmostcompetitiveformarketsatdistanceslargerthanabout4.000kilometressuchasJapanandSouthKoreabeingsuppliedfromSouth-EastAsia.LNGis,however,anenergycommodityundergoingrapidgrowthaswellastechnologicaldevelopment.

Theglobalnaturalgasmarketisexpectedtobecomemorecomplexovertime.Deregulation,growingconcernsoverclimatechange,improvedLNG-technologiesandlongtermanticipationsofhighgaspricesareexpectedtobethemaindriversforchangeinthegasmarkets.Mostnotably,wehaveseentheexpandingmarketforLNG.For2030,theInternationalEnergyAgencyexpectmorethanhalfofinternationalgastradetobeinLNG.Anotherlikelydevelopmentisanincreaseduseofundergroundgasstoragetoincreaseflexibilityofthesupplychain(daily,seasonal)aswellasforenergysecurityreasons.

Pipelinesaregenerallythemosteconomicalwaytotransportlargequantitiesofnaturalgasoroiloverland.Comparedtotrucksor

rail,pipelineshavelowercostsperunitandhighercapacity.Pipelinesareconstructedofcarbonsteelandvaryinginsizefrom2inches(51mm)to56inches(1,40metres)indiameter,dependingonthecapacityrequiredforthepipeline.Naturalgaspipelinesareinmostcasesburiedacoupleofmetresbelowgroundtoprotectthemfromexternaldamage.Suchburialalsomeansthatthevisualfoot-printisminimisedandinterferencewithnatureandinfrastructurearekepttoaminimum.Thelongdistancetrunklinesoverlandwillnormallytransportgasatapressurelimitedupwardtobetween60and100atmospherespressure.Offshorepipelinesontheotherhandcarriesgasatupto240atmospherepressure.Pressurereductionstationswillthentakethepressuredowntosuitthedistributiongridextendingintoindustrialplants,commercialbuildingsandresidentialareas.

Fig. 3.8: Major natural gas importers 2007. Also shown is the extent to which LNG-imports differs between mostly land-locked economies and sea-based economies (e.g. Japan, South Korea) (Data-source: BP SRWE, 2008).

Page 17: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

September2010|InternationalGasUnion 17

Thousand kilometres0 100 200 300 400 500 600

United StatesRussia

CanadaUkraine

ArgentinaChina

AustraliaGermany

MexicoIranUK

ItalyFranceAlgeriaPoland

BrazilPakistanNorway

Fig. 3.9: The most extensive natural gas pipeline networks of the world are located in USA, Russia, Canada and Ukraine. This list does not differentiate between size and pressure rating of the pipelines. Taken together, the pipelines listed above could be laid 27 times around the Equator (Source: World Fact Book).

Fig. 3.10: An outline map of the Russian natural gas pipeline system with some of the compressor stations indicated. (Source: Gazprom)

Fig. 3.11: From the laying of the Gazprom Bluestream pipeline (left). The pipeline is buried in a deep trench and leaves only a limited visual footprint once buried. The map to the right shows the incredible concentration of large diameter (56”; 1,40 meter diameter) pipelines in the Urengoy and Yamburg areas of northern Russia. This is part of the huge infrastructure of gas pipelines around the world. (Source: Gazprom)

Page 18: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

18 InternationalGasUnion|September2010

Ahighpressuretrunk-lineforlongdistancetransmissionofhighnaturalgasvolumeswillnormallybeequippedwithcompressorstationsevery250kilometresorsotocounterfrictionlossesresultingfromthegasflowinthepipes.Thesecompressorstationsarenormallydrivenbygasmotors(forsmalldutyapplications)orbygasturbines,bothsourcesofcombustionCO2.Infig.3.10and3.12itispossiblenotonlytoseetheextentofthepipelinesystemitself,butalsothenumbersandlocationsofthesecompressorstations.

Whilelonggaspipelinesmayactasshorttermstoragetotacklepartofthedailyswinginconsumption,largerswingssuchasseasonaldifferencesinend-useofgasaretackledbybuildinglargenaturalgasstorages.Theseareeitherdepletedoilornaturalgasfields,leachedsaltcavernsorothergeologicalstoragereservoirs.Mostoftheover600naturalgasstoragesitesoftheworldarelocatedinUSAandEurope/CentralAsiaasshowninfig.3.13.Allsuchstoragefacilitiesareequippedwithcompressorsandtheirassociateddriverswhichcanbeelectricmotors,butmoreusuallywithgasturbines,therebybecomingsourcesofcombustion-CO2.Anothertypeofnaturalgasstorage–notshowninfig.3.13–isLNGproductionandregasificationfacilitieswheretherearesubstantialcryogenicstoragetankstoallowthelogisticchallengesofdiscontinuousshipping.

Legend

= Interstate Pipeline= Intrastate Pipeline= Comperssor Station

Europe/Central Asia

USA

Fig. 3.12: Example of an extensive national (US) pipeline transmission grid with compressor stations indicated. These compressors are driven by gas fuelled motors or gas turbines which are the main sources of CO2-emissions for a pipeline system. (Source: EIA)

Figure 3.13: Underground natural gas geological storage sites in Europe (plus part of Asia) and USA. In the US the southern storage sites are mostly salt caverns, in the Mid West many aquifers and the rest are mostly converted oil or gas fields. These storage sites can also be considered as analogues for geological storage of CO2, so-called CCS. Operators of natural gas storage facilities have a key role to play, based on hands on experience from 610 storage projects and feedback from day to day design, construction and operation (technical, monitoring, permitting, communication with the public etc...) gained over many years by the storage operators community. (graphics source : Keeping the Lights on, Freund and Kaarstad, 2007).

Page 19: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

September2010|InternationalGasUnion 19

ImportstoNorthAmericaareexpectedtoincreasesubstantiallybetweennowand2030.TheMiddleEastwillbecomeamajorsuppliertoseveralregions.ProductioninEuropewilldecline,whiledemandinIndiaandChinaisgrowingrapidlybecauseofthefasteconomicgrowthinthesecountries.ApartfromanexpectedmajorshifttoLNG,theproductionof“gastoliquids”(GTL;convertingnaturalgastooilproductsthroughchemicalprocessing)isexpectedtobecomeapartoftheoilmarketoverthenextdecades.Thetechnologyhasexistedforseveraldecades,butitseconomicviabilitywasuncertainatlowoilpricesandthereforecurrentproductionisnegligible.

UtilisationTheend-usepartofthenaturalgaschainishighlydiverse,duetoalargevarietyofapplicationsandforeachapplicationawideassortmentoftechnologies.Insomewayswecancomparenaturalgasend-usecomplexitywiththatofelectricityend-usewhichwearemorefamiliarwith.

Themainapplicationsare:- Electricpowergeneration,oftenas co-generationofelectricityandheat(CHP;combinedheatandpower)

- Industrialapplicationssuchasdrying,heatingandmechanicaldrives(turbines,gasmotors)aswellasindustriallyintegratedCHP

- Residentialandcommercial(heating,cooking,cooling)

- Asfuelforbuses,trucks,cars,trainsorshipsintheformofcompressednaturalgas(CNG),LPGorLNG

- Hydrogenproductionforenergypurposes(e.g.refineries)

- Material(non-energyuse,chemicalindustry,plastics,fertiliseretc.)

Worldwide,some35%ofconsumednaturalgasgoestowardpowergeneration(IEAWEO,2004)and25%towardresidentialandcommercialheating,coolingandcooking.Transportapplicationsforbuses,trucks,carsandshipsonlyconsumesome3%ofthegassupplywithinOECD(IEAWEO,2002).Theremainingthirdgoesprimarilytowardenergy(plussomenon-energy)applicationsinindustry.

Naturalgastodaycompeteswithalltheotherenergycarriers,butmoresoincertainapplications.(e.g.electricitygeneration)andlessinothersuchastransportationfuelsandcementproduction.

Electricity generation vs direct use of natural gasTheworldwidetransformationsoftheenergymarketandthemergingoflargeenergyutilitiesmakequestionsaboutthefutureroleofnaturalgaslessrelevantthaninthepast.Manyelectricityandgasutilitieshavebecomemulti-energyproviders.Theelectricityordistrictheatingdeliveredtohomesorcommercialpremisesmightverywellbeproducedbyburninggasinlargerplants.Thenaturalgasmaybedeliveredtoyoubyaformerpurelyelectricutilityalongwithfibreopticcablesforbroad-bandcommunication.Thereforethefactthattheendconsumersarenotdirectlyusinggasdoesnotnecessarilymeanthattheyarenotcontributingtothegasmarketexpansion.Electricityandnaturalgasaretwinsinthe

energymarket.Today41percentofglobalenergy-relatedCO2originatesinelectricitygeneration(IEA,2008a).Itisimportanttonotethisimportantroleofelectricity,asharethathasbeengrowingfordecadesandisexpectedtoincreasesteadilyalsointhefuture.

Thereasonswhyelectricityisuniversallyemployedasamediumofenergytransferanduseare:- Itcanbeproducedfromanyformofprimaryenergy(fossil,renewable,nuclear)

- Itcanbeefficientlytransportedinagridfromgeneratorstothepointofuse

- Itisemission-freeatthepointofenduse(exceptforelectricfields)

- Itcanbeconvertedathighefficiencyintoheat,mechanical,andchemicalenergy

- Itcanbeappliedequallywelltothenano-scaleastoindustrialsmelterscale

- Itpowerselectronicdevices- Itprovideslight- Itisinstantlycontrollableatthepointofuse-ittakesonlyaflickofaswitch

Thereare,however,alsodraw-backstoelectricity.Sinceithastobeproducedfromotherprimaryfuelsatmoderateconversionefficiencies(typicallybetween30uptoarare60percent)andhighconversioncosts,itspriceperdeliveredunitofenergyishigh.Theelectricgrid-inparticularthehigh-voltagegridforlongdistancetransport–isbothcostly,oflimitedcapacity,canhave

0

50

100

150

200

1980 1990

Trillion Cubic Feet

History Projections

Total

Non-OECD

OECD

2005 2020 2030

Fig.3.14: History and forecast of natural gas consumption by world region. While the consumption in the OECD countries are expected to level out, the non-OECD countries are expected to grow fast over the period to 2030. (Redrawn based on: US EIA, World Energy Outlook 2008)

Page 20: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

20 InternationalGasUnion|September2010

highlossesandarehighlyvisibleandthereforecontroversial.Buildingnewgridsisbecomingdifficultinmanycountries.Athirdandimportantdraw-backisthatthecostsofmediumandlargescalestorageofelectricityareprohibitive.Thisiswhyelectriccarssofarhavehadadraw-backcomparedtopetrolordieselfuelledcarsandthatintermittentrenewableelectricityneedscostlyback-upfromother–mostlyfossilfuelled-capacity.

Despiteitsdraw-backs,electricityisgrowingfasterasashareofenergyend-usesthanotherenergycarriers.Theresultisthatelectricityintensity(kWhperunitofGDP)hasremainedrelativelyconstanteventhoughtheoverallglobalenergyintensitycontinuestodecrease.

Whileelectricityasanenergycarrierhasexcellentqualitiesattheend-usestage,itisnecessarytoexaminecloselythetotalprimaryenergychainleadinguptoconsumerbeforeitispossibletodrawenvironmentallyrelatedconclusions.

Whataretheareaswherenaturalgascancompetewithelectricitytoday–andtomorrow?Firstlyitischeaperthanelectricityperunitofenergy.Sincenaturalgaspipelinegridsareburied,theyarealsomuchlessconspicuousthanabove-groundelectrictransmissionlines,inparticularforlargeenergyvolumes.

0

50

100

150

200

250

Coal Gas Oil HydroNuclear Wind Restrenewables

Gig

awat

t cap

acity

OEC

DN

on-O

EC

D

150 mPipeline

Thirdlynaturalgasismoreeasilystoredbothonlargescale(e.g.undergroundstorage)andevenonsmalltomediumscale(e.g.CNGinbuses)thanelectricity.Naturalgastechnologiesare–ormaybedevelopedtobe–equaltoelectricitywithrespecttoeaseofcontrol(flipofaswitch).Naturalgastechnologiescouldmakeevenlargerinroadsintoheating(e.g.naturalgasfiredheatpumps)andcoolingaswellasbecomingthefuelofchoiceforon-siteelectricitygenerationatcommercialfacilities(e.g.shoppingmalls),schools,hospitalsdowntoindividualhomes(Fig.3.17).

Fig. 3.15: Power generation capacity under construction worldwide 2007 (Redrawn based on IEA World Energy Outlook 2008)

Fig. 3.16: An example of the foot-print of energy transmission. The drawing shows a case where 40 TWh of electricity is wanted by the end-user based on natural gas from a distant source. Should the power station(s) be located at the gas production or at the end-use site? In this example 6 Bcm/yr as gas carried in the pipeline versus 40 TWh/yr electricity produced from the same amount of gas. The foot-print is very different. This is of particular importance when the energy is to be transmitted for hundreds or even thousands of kilometres or through populated areas. There are several gas pipelines (existing or under construction) with capacities exceeding the above mentioned by five to ten times carrying an amount of energy totally unrealistic for electricity transmission (Source: Statkraft 1988).

Fig. 3.17: Micro-CHP equipment (internal combustion engine) fuelled by natural gas provides electricity and heat to small and medium premises. The electric efficiency of such devices are not particularly high, but in applications with considerable heating (or cooling) loads this does not matter since the combined electricity plus heat efficiency will be high (Picture: EC Power, Denmark)

Page 21: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

September2010|InternationalGasUnion 21

The degree of access to oil, electricity, natural gas and hydrogenNotfarfrom100%oftheglobalpopulationhassomelevelofaccesstooil,evenifaffordableonlyinverysmallquantitiesforoil-lampsorsimilar.Incomparisonthereareatpresentsome1.6billionpeople-aboutoneinfouroftheworld’spopulation-livingwithoutaccesstoelectricity.Asanexample,inIndiatheshareofhouseholdswithaccesstoelectricityisabout55percent.Altogethereightypercentofallpeoplewithoutelectricityliveinruralareasofthedevelopingworld,mainlyinSouthAsiaandSub-SaharanAfricawhererapidurbanmigrationandpopulationgrowthwilloccuroverthenextdecades.Onaglobalscaleover90percentofurbanpopulationhasaccesstoelectricitywhiletheruralelectrificationrateisestimatedat62percent.Withoutelectricityorcleanburningfuelssuchasnaturalgas,itisvirtuallyimpossibletocarryoutproductiveeconomicactivityorimprovehealthandeducation.

Unlikeaccesstoelectricity,wedonotknowwithanydegreeofprecisionhowmanypeoplegloballylackaccesstoclean-burningnaturalgas.Anindicationisthatin2006,EU-25with200millionhouseholdshad105millioncustomersconnectedtothegasgrid,givingacoverageofabouthalfthepopulation.InUSAnaturalgasisusedin61percentofallhomes.InJapanabout27millionhouseholds(outofatotalof52million)haveaccesstonaturalgas.Thesethreeregions–whichtakentogetherhaveabout14percentofglobalpopulation–havetheworld’smostdevelopedanddensegas-grids.Fewothercountriesandregionsareanywherenearthisgas-gridcoverageatthepresenttime.Fromthiswecandrawtheinformalconclusionthatperhapsasfewas10percentofglobalhouseholdshavedirectaccesstonaturalgastouseforcooking,heating,coolingorsmallscaleelectricitygeneration.

The costs of energyEnergycustomers-inparticularthelargercustomers–takegreatinterestinthecostsofthevariousenergycarriersfromwhichtheycanchoose.Fig.3.19indicatesthatthesecosttoend-userscanbequitedifferentbetweencountriesandenergycarriers.Inthecaseofenergyintensiveindustries,thecostsofenergywilloftenbethemostimportantfactordecidingthelocationofsuchindustries.Whendecidingtoswitchfromahighcarbonfuel(e.g.coal)toalowercarbonfuel(e.g.naturalgas)thedifferenceinend-userprice(incl.taxesandanyCO2-costs)willbeanimportantpartofthedecision.Anotherrouteforenergypricestoinfluencesemissionsisthathighpriceswillresultincustomersinvestinginmoreefficientenergytechnologies(e.g.increasedcarmileage)andtosomeextentalsoinreducingactivitylevel(e.g.lessdriving).

Oil - 100 %

Electricity - 75 %

Natural gas - approx. 10 %

Hydrogen for energy - 0 %

Fig. 3.18: How large shares of the global population has access to which forms of energy? The global degree of access to oil products, electricity, natural gas and hydrogen for energy purposes as illustrated here. Those without access to natural gas (or hydrogen in the future), have their options limited to more polluting fuels.

Page 22: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

22 InternationalGasUnion|September2010

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.00

Electricity

VAT (GST)Excise priceEx-Tax price

Total priceTotal taxes

DK JP CH FR GB HU NZ TR PO AU ME US KR CT CA ZA KZ RU

US$/MJ

US$/MJ

Natural gas

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.00

VAT (GST)Excise priceEx-Tax price

Total priceTotal taxes

JP DK NZ CN MX FR KR GB US CA PL HU CT TR KZ RU ZA

References chapter 3BPStatisticalReviewofWorldEnergy2008CIA,TheWorldFactBook2008IEAWEO(2007),WorldEnergyOutlook2007,IEA/OECD,ParisIEAWEO(2008),WorldEnergyOutlook2008,IEA/OECD,ParisIEA,(2008a),CO2CaptureandStorage.AkeyCarbonAbatementOption,IEAParis,Freund,Kaarstad;KeepingtheLightsOn,OsloUniversityPress,2007 Useful web-sites for this chapter:EIAInternationalEnergyOutlook2008:http://www.eia.doe.gov/oiaf/ieo/index.html

BPStatisticalReviewofWorldEnergy:http://www.bp.com/productlanding.do?categoryId=6929&contentId=7044622

Fig. 3.19: The costs of energy to consumers: Electricity and natural gas prices, including taxes for households. From these charts it is evident that the costs of energy to consumers varies a lot, but also that taxation plays an important role in many countries (Source: http://www.ipcc.ch/pdf/assessment-report/ar4/wg3/ar4-wg3-chapter6.pdf )

Page 23: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

September2010|InternationalGasUnion 23

TherehasbeenasteadygrowthofglobalCO2-emissionsovertheyearsasillustratedinfig.4.1whichshowstheglobalaggregatefrom1970uptotoday.TheCO2-emissiongrowthfromelectricitygenerationplantshasbeenformidable,hintingattheimportanceofthissectorwhenplanningclimatemitigationefforts.Anotherhighgrowthsectorisroadtransport.

Electricity plants

Industry (excl. cement)

1098765432101970 1980 1990 2000 2005

Gt CO2 yr

International transport

Refineries etc.OtherDeforestationResidential and service sectorsRoad transport

Whatwillthefuturebring?Worldcarbondioxideemissionsareincreasingsteadilyinabusiness-as-usualcase,from28.1billionmetrictonsin2005toaprojected34.3billionmetrictonsin2015andgrowingto42.3billionmetrictonsin2030(EIA,2008).Thisismorethana50percentincreasefromtodayuntil2030.Withstrongeconomicgrowthandcontinuedheavyrelianceonfossilfuelsexpectedformostofthenon-OECDeconomies,muchoftheincreasein

carbondioxideemissionsisprojectedtooccuramongthedeveloping,non-OECDnations.In2030non-OECDemissionsareprojectedtoexceedOECDemissionsby72percent(fig.4.2).

DuetothelowerCO2-emissionfromnaturalgas(comparedtocoalandoil)perunitofenergy(seefig.5.5),gascomesoutasamoderateglobalemitterasseeninfig.4.3.

OECDNon-OECD

28.131.1

34.337.0

38.842.3

50

40

30

20

10

02005 2010 2015 2020 2025 2030

Bill

ion

met

ric to

ns p

er y

ear

4. Global emission

Fig. 4.2: World carbon dioxide emissions and business-as-usual projections 2005 – 2030. (Redrawn based on: EIA CO2, 2008)

Fig. 4.1: Historical development of each source of global CO2-emissions (1970–2004). The most remarkable sectors with respect to growth over time are electricity generation, road transport and deforestation. Cement manufacture is not shown in this graph. This sector emitted 1,8 Gt CO2 in 2005, about 6 percent of total global CO2-emissions (Source: IPCC AR4, WG3, chapter 1)

Page 24: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

24 InternationalGasUnion|September2010

InordertobetterunderstandthesourcesofCO2andtheothergreenhousegases,weneedtogobelowthelevelsofregions,countriesandtheshareoftheprimaryfuels.Fig.4.4illustrates–onaglobalbasis–whichsectorscontributeswhattypeofgreenhousegasandinwhatrelativeamount.

1990 2000 2010 2020 2030

OECD - Gas

OECD - CoalOECD - Oil

Non-OECD - Gas

International marine bunkers and aviation

Non-OECD - CoalNon-OECD - Oil

45

40

35

30

25

20

15

10

5

01980

Gig

aton

nes

per y

ear

CO2 from energy

Transportation

Electricity & heat

Other fuel combustion

Industry

Industried processes

Deforestation (mostly)

Agriculture (mostly) + waste + O&G-activity

MethaneCH4 - 14%

CO2Carbon dioxide

77%

Nitrous Oxide N2O 8%

HFC´s, PFC´s and SFG 1%

Transportation

CO2 from land usechange

Methan fromagriculture + waste + O&G

N2O fromagricultureChemical

Fig. 4.3: World energy-related carbon dioxide emissions by fuel from 1980 with projections to 2030 in the IEA 2008 reference scenario. Coal is – in this projection – the primary fuel that increases CO2-emissions the most to 2030, continuing a trend that has been seen for a number of years already. An increased switch from coal to natural gas would be highly beneficial from the point of view of CO2-load on the atmosphere. (Source of graph: IEA World Energy Outlook 2008)

Fig. 4.4: Where do the global greenhouse gases come from? This much simplified world greenhouse gas emissions flow chart tries to illustrate the main contributing sectors and their relative weight. Land use change includes both emissions and absorptions. US EPA estimates that about one in twelve anthropogenic methane molecules entering the atmosphere arise from the oil and gas industry (more in chapter 6). (Redrawn and updated from a World resources Institute graph from 2005).

Page 25: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

September2010|InternationalGasUnion 25

The global warming potential of various greenhouse gases:

Thetwomostabundantgasesintheatmosphere,nitrogen(comprising78%ofthedryatmosphere)andoxygen(comprising21%),exertalmostnogreenhouseeffect.Instead,thegreenhouseeffectcomesfrommoleculesthataremorecomplexandmuchlesscommon.Watervapouristhemostimportantgreenhousegas,andcarbondioxide(CO2)isthesecond-mostimportant.Methane,nitrousoxide,ozoneandseveralothergasespresentintheatmosphereinsmallamountsalsocontributetothegreenhouseeffect.Inthehumidequatorialregions,wherethereissomuchwatervapourintheairthatthegreenhouseeffectisverylarge,addingasmalladditionalamountofCO2orwatervapourhasonlyasmalldirectimpactondownwardinfraredradiation.However,inthecold,drypolarregions,theeffectofasmallincreaseinCO2orwatervapourismuchgreater.Thesameistrueforthecold,dryupperatmospherewhereasmallincreaseinwatervapourhasagreaterinfluenceonthegreenhouseeffectthanthesamechangeinwatervapourwouldhavenearthesurface.

Normallythe100yeartimehorizon(seetable)isusedforevaluatingtheefficiencyofaparticulargasforitspotentialforclimatechange(globalwarmingpotential-massbasis-orGWP).CO2isassignedthestrength1asreferencegas.Methaneandnitrousoxidethenhave25timesand298timestheglobalwarmingeffectperkilogramrespectivelythantheCO2reference.

Gas Global warming potential (GWP) time horizon

20years 100years 500years

Carbon dioxide CO2 1 1 1

Methane CH4 72 25 7,5

Nitrous oxide N2O 289 298 153

Sources:IPCCWG1(http://ipcc-wg1.ucar.edu/wg1/FAQ/wg1_faq-1.3.html)andIPCCWG1FourthAssessmentReport

Withoutunderstandingenergyflowsandtheassociatedgreenhousegasflowsthroughsociety,wecannotmakegoodplansfortheirreduction.Figure4.5isanexampleofCO2-flowsfromcoal,oilandnaturalgasuseintheUnitedStates.

Whenconsideredfromanaturalgasviewpoint,figure4.5cangiverisetoquestionssuchas:Whyisthenaturalgasshareoftotalenergysupplysolowcomparedtocoalandoil?Whyisthenaturalgasshareofelectricitygenerationsolowcomparedtocoalwhentheenvironmentalbenefitissolarge?Whyisthenaturalgasshareinthetransportationsectorsolow?Graphicalrepresentationslikefig.4.5mayhelpusaskthe“large”questionsbeforegoingontothemoredetailedissueswithintheresidential/commercial,industrialandtransportationsectors.

Residential/commercial

2249

Industrial1651

Transportation19901952

399

399

392

1698

641

1938

340

Petroleum2559

Coal2135

Natural gas1164

Electricitypower sector

2344

15355

18933 57

Fig 4.5: An example of energy flows for one of the largest natural gas consuming countries (USA) with a substantial share of gas in its residential, commercial and industrial sectors. Natural gas consumption arises in almost equal amounts from electricity generation, residential/commercial use and for industrial consumption. There is a small discrepancy between figures on the left and right hand side due to losses and rounding (Source: Updated from 2002 to 2006 figures on the basis of a LLNL original, https://eed.llnl.gov/flow/carbon02.php).

Page 26: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

26 InternationalGasUnion|September2010

The electricity generation sector Today41percentofglobalenergy-relatedCO2originatesinelectricitygeneration.Generatingelectricityfromcoalaccountedgloballyfor72percentofallCO2emissionsinthissectorin2005.Naturalgasbasedplantsaccountedfor20percentwithoilfiredpowerplantsaccountingfortherest.Totalemissionsfromabout1000coalfiredpowerplantsgloballywere7,9GtCO2in2007,thisbeingabout27percentofglobaltotal.The100largestplantseachemittedontheaverage21MtCO2peryear. Theaverageefficienciesofexistingcoal-basedpowergenerationisbelow35percent,whilenew-builtplantsaretypically48%(LHV)forcoalfiredplantsand57%(LHV)forgasturbinecombinedcycleplantsfiredwithnaturalgas(IEA,2008a).

The industrial sectorIndustrialsectorGHGemissionsgloballyarecurrentlyestimatedtobeabout12GtCO2eqperyear.Thedevelopingnations’shareofindustrialCO2emissionsfromenergyusegrewfrom18%in1971to53%in2004followingtheglobalisationofproductionofgoods.Industrialsectoremissionsofgreenhousegasesincludecarbondioxidefromenergyuse,fromnon-energyusesoffossilfuelsandfromnon-fossilfuelsourcessuchascementmanufactureaswellasnon-CO2gases.Energy-relatedCO2emissions(includingemissionsfromelectricityuse)fromthe

industrialsectorgrewfrom6.0GtCO2in1971to9.9GtCO2in2004.DirectCO2 emissionstotalled5.1Gt,thebalancebeingindirectemissionsassociatedwiththegenerationofelectricityandotherenergycarriers.However,sinceenergyuseinothersectorsgrewfaster,theindustrialsector’sshareofglobalprimaryenergyusedeclinedfrom40%in1971to37%in2004.Approximately85%oftheindustrialsector’senergyusein2004wasintheenergy-intensiveindustries:ironandsteel,nonferrousmetals,chemicalsandfertilizers,petroleumrefining,minerals(cement,lime,

glassandceramics)aswellaspulpandpaper.Developingcountriesaccountedfor42%ofironandsteelproduction,57%ofnitrogenfertilizerproduction,3/4ofcementmanufactureandabouthalfofprimaryaluminiumproduction.

Theproductionofenergy-intensiveindustrialgoodshasgrowndramaticallyandisexpectedtocontinuegrowingaspopulationandpercapitaincomeincrease.Since1970,globalannualproductionofcementincreased271%;aluminium,223%;steel,84%(USGS,2005),ammonia,200%(IFA,2005)andpaper,180%(FAO,2006).Muchoftheworld’senergy-intensiveindustryisnowlocatedindevelopingnations.Chinaistheworld’slargestproducerofsteel(IISI,2005),aluminiumandcement(USGS,2005).

Fig. 4.6: Coal fired power plants generates 72% of all power generation CO2. Here the Eggbourough power station in UK. Modernising the power sector by replacing aging coal fired power plants by state of the art natural gas fired power plants can drastically reduce CO2-emissions through increased energy conversion efficiency and use of low carbon fuel.

Fig. 4.7: Energy intensive industries are responsible for about 10 GtCO2-emissions (10 000 million tons of CO2 per year) through using about 37 percent of global energy. The contribution of renewables to this already highly energy-efficient sector is – and will stay - low.

Page 27: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

September2010|InternationalGasUnion 27

Residential and commercialThedirectemissionsfromthebuildingssector(2004)wereabout3GtCO2.Asmitigationinthissectorincludesalotofmeasuresaimedatelectricitysaving,itisusefultocomparethemitigationpotentialwithcarbondioxideemissions,includingthosethroughtheuseofelectricity.Whenincludingtheemissionsfromelectricityuse,energy-relatedcarbondioxideemissionsfrombuildingswere8.6Gt/yr,oralmostaquarteroftheglobaltotalcarbondioxideemissions.Thisexemplifiestheimportanceofefficientandlow-carbonproductionofelectricity,suchasfromnaturalgasfiredheatandpower(CHP)plants.

Fromfig.4.8weseethatdirectheatingthroughcombustioninresidentialandcommercialbuildingsrepresentsonly1/3ofallbuildingenergyconsumption.Theremindercomesfromelectricityand(toamuchlesserextent)fromdistrictheatingandcooling.

The transportation sectorTransportofgoodsandpeopleintoday’sworldpredominantlyreliesonoilthat supplies95%ofthetotalenergyusedinthissector.Transportisresponsiblefor23%ofworldenergy-relatedGHGemissionswithabout3/4ofthiscomingfrom road vehicles. Over the pastdecadeGHGemissionsfromthissectorhaveincreasedatafastrate(fig.4.1). Transportactivitywillcontinuetoincreaseinthefutureaseconomicgrowthfuelstransportdemandandtheavailabilityoftransportdrivesdevelopment,byfacilitatingspecializationandtrade.Themajorityoftheworld’spopulationstilldoesnothaveaccesstopersonalvehiclesandmanydonothaveaccesstoanyformofmotorizedtransport.Thissituationis,howeverchangingatafastpace.

10

8

6

4

2

0

Gt CO2

all energy sources direct combustionin buildings

emissionsfrom electricityuse and district

heating in buildings

44%other uses

12%space heating

45%space heating

14%space cooling

32%space heating

7%cooking

27%water heating

9%lighting

21%appliances

4%other uses

22%water heating

19%lighting and other

10%space cooling

7%water heating2%cooking

21%lighting4%

refrigeration

29%space heating

3%cooking

11%water heating

11%lighting

8%refrigeration

11%space cooling

27%other uses

U.S. commercial building energy use 2005

U.S. residential buildingenergy use 2005

China commercial building energy use 2000

China residential building energy use 2000

Fig. 4.9: A comparison of the United States (2005) and China (2000) with respect to residential and commercial sector energy use. As shown by these graphs, there are great differences in what energy consumption in commercial (upper) and residential (lower) buildings are used for in USA and China. In China water heating and space heating dominates while in the US the uses are more diverse (Source: IPCC AR4, WG3).

Fig. 4.8: The graph (left) shows the estimated emissions of CO2 from energy use in buildings from two different perspectives. The bar at the left represents emissions of CO2 from all energy end-uses in buildings. The bar at the right represents only those emissions from direct combustion of fossil fuels. The picture to the right is “A town of Energy” indicating the many ways energy is consumed in an urban environment (Graphic source: IPCC AR4, WG3).

Page 28: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

28 InternationalGasUnion|September2010

Thetransportationoffreighthasbeengrowingevenmorerapidlythanpassengertransportanditisexpectedtocontinuetodoso.Freightmovementsincitiesaredominatedbytrucks,whileinternationalfreightmovementsaredominatedbyoceanshipping.Transportactivityisexpectedtogrowrobustlyoverthenextseveraldecades.Unlessthereisamajorshiftawayfromcurrentpatternsofenergyuse,worldtransportenergyuseisprojectedtoincreaseattherateofabout2%peryear,withthehighestratesofgrowthintheemergingeconomies,andtotaltransportenergyuseandconnectedcarbonemissionsisprojectedtobeabout80%higherthancurrentlevelsby2050(fig.4.11).

EJ200

150

100

50

02000 2010 2020 2030 2040 2050 2000 2010 2020 2030 2040 2050

Ships

Air

Freight Trucks

Rail

AfricaLatin AmericaMiddle EastIndiaOther AsiaChinaEastern EuropeEECCAOECD PacificOECD Europe

OECD N. America

Bunker fuel

Buses

2-3 wheelers

Light Duty Vehicle

Gas flaring in the oil industryGasflaringisnotalargeprobleminthenaturalgasindustryitself,butisratherabyproductoftheproductionintheoilindustry.Whenso-calledassociatedgasareproducedtogetherwithoil-inlargerorlesseramounts-,thegasissometimesflared.AccordingtotheWorldBankGlobalGasFlaringPartnership(GGFRP),theoilindustrygloballyflares150billioncubicmeters(Bcm)ofnaturalgas.Forcomparison,thegasflaredgloballyonanannuallybasis

isequivalentto25percentoftheUnitedStates’gasconsumptionor30percentoftheEuropeanUnion’sgasconsumption.Theannual40bcmofgasflaredinAfricaaloneisequivalenttohalfofthatcontinent’spowerconsumption.Flaringofgashasaglobalimpactonclimatechangebyaddinganestimated400milliontonsofCO2inannualemissions.Numeroustechnicalandpracticalbarrierscomplicateeffortstoputthegastogooduse.Oilwellsareoftenlocatedinremotelocationsfarfrompipelines,marketsandcustomers.Gascannotbeaseasilystoredandshippedasoil.Pumpingthegasbackintoanundergroundreservoirforstorageforpossiblelaterutilisationisnotalwayspossible.Alotofgasisflaredindevelopingcountrieswherethereislittleornoinfrastructuretousethegas,oralegalframeworktoregulatethemarket.Eachyeartheoilindustryflaringistherebyresponsibleforemittingroughly1,5%oftheworld’sCO2emissions.Fewerthan20countriesaccountfornearly90percentofgasflaringandventingasshownintable4.1.

Fig. 4.10: Gasoline and diesel fuelled cars, freight trucks and buses are major culprits not only with respect to CO2-emissions, but figures very heavily in smog generation, NOx- and fine particle emissions and other local pollution. More natural gas fuelling of the transport sector can help alleviate both global and local pollution

Fig. 4.11: Historical and projected CO2-emissions from the transportation sector globally 1970 to 2050 (LDV; Light Duty Vehicle). Road transport is set to dominate with light duty vehicles and freight taking the most sizable share and growth. Air transport is also projected to grow fast. Among regions Asia is projected to have the fastest growth (Redrawn based on: IPCC AR4, WG3)

Page 29: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

September2010|InternationalGasUnion 29

147World Total

14,8Rest of the World

132,2Total top 20

1.6United Kingdom20

2.2Congo19

1,7Mexico18

2,0Uzbekistan17

2,5China16

3,7Libya15

5,3Kazakhstan14

2,4Indonesia13

2,1Kuwait12

1,9USA11

5,2Algeria10

2,9Qatar9

2,1Venezuela8

3,4Saudi Arabia7

3,5Angola6

5,3Kazakhstan5

7.0Iraq4

10,6Iran3

50*Russia2

16,8Nigeria1

Flared,Bcm/yrin 2007

Top 20 CountriesRank

Forthepast20years,overallglobalflaringlevelshaveremainedvirtuallyconstantataround150Bcm/yr,despitemanyindividualgovernmentsandcompaniessuccessesinreducingflaring.Theseeffortshavebeenlimitednotonlybecauseoftheincreaseinglobaloilproductionandtheassociatedgasproduction,butalsobecauseofthemajorconstraintsthathinderthedevelopmentofgasmarkets,gasinfrastructure,andflaring

reductionprojects.Theontheaveragehigherpricesfornaturalgasinrecentyearshave,however,mademoreflaringreductionprojectseconomicallyfeasibleandlargeprojectsareunderway.Moreaboutthisinchapter6.

References chapter 4EIA 2008:USEnergy InformationAdministration,WorldEnergyOutlook2008BPStatisticalReviewofWorldEnergy2008IEA,(2008a),CO2CaptureandStorage.AkeyCarbonAbatementOption,IEAParisIEAGreenhouseGasR&DProgramme,CementReport(draft),2008WorldBankGlobalGasFlaringReductionPartnership

Useful web-sites for this chapter:IPCC:http://www.ipcc.ch/EIAInternationalEnergyOutlook2008:http://www.eia.doe.gov/oiaf/ieo/index.htmlBPStatisticalReviewofWorldEnergy:http://www.bp.com/productlanding.do?categoryId=6929&contentId=7044622WorldBankongasflaring:http://web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTOGMC/EXTGGFR/0,,menuPK:578075~pagePK:64168427~piPK:64168435~theSitePK:578069,00.htmlEIACO2,2008:http://www.eia.doe.gov/emeuinternational/carbondioxide.htmlIISI-InternationalIronandSteelInstitute:http://www.worldsteel.org/IPCCAR4,WG3:http://www.ipcc.ch/ipccreports/ar4-wg3.htm

Table 4.1: The natural gas industry can sometimes assist the oil industry in reducing the amount of gas (produced with oil) that is flared. This table shows the 20 largest flaring countries as of 2007 and their flaring measured in billion cubic meters per year (Bcm) based on estimates derived from satellite data * Figures and estimates for gas flaring in Russia vary substantially. Much lower figures are found in some sources. In general flaring figures are not very reliable. (Source: World Bank GGFRP).

Page 30: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

30 InternationalGasUnion|September2010

Thischaptersurveysthepresentstatusofthenaturalgasindustry’sownemissionsofgreenhousegases in the formofcarbondioxideandmethane.ItdrawsheavilyonapreviousInternationalGasUnionworkonlifecycleassessmentfrom2006(IGULCA,2006),updatedwithmorerecentdatawhenavailable. Energy and emissions at the production and processing stageUnlikeoilfields,thereisasarulenoattempttoincreasetherecoveryofnaturalgasfromapuregasfieldthroughenergyintensiveincreasedrecoverymethodsinthereservoir(increasedcondensaterecoverythroughrecirculationofgasbeingtheexception).Whengasfieldsareemptied,theirpressureisreducedandthelowerwellheadpressurewillatsomepointintimerequireinstallationofacompressorfacilitythatisusuallydrivenbyagasturbineoragasmotor.Energyconsumptionandemissionsattheprocessingstagedependonthecomposition,pressure

andtemperatureoftherawnaturalgas,theageandqualityofthetechnologyoftheplant,availabilityofcoolingwater(ifany)aswellasonoperationalpractices.Thisisindicatedintable5.1.Whencomparingownconsumptionofenergyaswellasfugitiveemissionsbetweencountries,regionsandcompanies,itisnecessarytotakesuchdifferencesanduncertaintiesintoaccount.

Notwonaturalgasfieldsarealikewithrespecttoin-situreservoirpressureandtemperatureandgascomposition(includingLPGandliquidscontent).Inthoseinstanceswherenaturalgasandliquidsareco-produced,itisnecessarytoallocatepartoftheemissionstogasandparttotheliquids,usuallyonthebasisoftheirrespectiveenergycontent.

5.Greenhouse gasemissions from the natural gas industry

Fig. 5.1: Natural gas processing plant with gas/liquids separation columns, compressors, storage tanks etc. at Kårstø, Norway (Picture: Øivind Hagen/StatoilHydro).

Page 31: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

September2010|InternationalGasUnion 31

Type of emission source NW Europe Russia USA Average

Energy

Fugitive and venting

Flaring

Total gas consumption and losses

Greenhouse effect (g CO2eg/Nm3)

1,2 - 1,5%

0,04 - 0,13%

0,12 - 0,29%

1,3 - 1,7%

25 - 44

0,6 - 1,0%

0,44 - 0,5%

Uncertain

1,1 - 1,5%

120

5,4%

0,81%

0,55%

6,7%

250

2,7%

0,58%

0,48%

3,5%

150

InUSAbetween5and6%ofthenaturalgasisusedforenergyattheprocessingstage.MethanecontentoftherawnaturalgasmayintheUSbeaslowas75%,whichgoesalongwaytowardsexplainingtherelativelyhighenergyconsumptioninthatcountry.InNWEurope,energyconsumptionishigherthanforRussiangasprocessing,butconsiderablylowerthaninUSA.Theemissionsofmethaneandtheamountflareddonotdependonthegasqualitybutratherreflectthetechnologyusedthroughoutthegaschain.Inthenorth-westernpartEurope,thetotaloffugitiveandventingemissionsandgasflaredmayrangefrom0.16%upto0.3%,comparedtomorethan1.3%inUSA.Intotal,gasconsumptionandlossesintheprocessingstepamountto1.3-1.7%forEU/RUandalmost7%fortheUSA.Theaveragedtotalforthesecountriesandregionsisabout3.5%.

DespitethelowenergyconsumptionintheRussiancase,thegreenhouseeffectofUSandRussiangasproductionishigherthantheWestEuropeancaseduetofugitiveemissions.Indeterminingthegreenhouseeffectoftheprocessingstep,thefugitiveemissionsareanimportantfactor,asmethaneitselfhasa25timeshighergreenhouseimpactperkgemitted(seetextboxonglobalwarmingpotentials–GWP–inch.4)thantheCO2resultingfromflaring/combustionofthesameweightofnaturalgas. Fromtimetotimeinthepast,confusionhasarisenwithrespecttoownconsumptionandfugitiveemissionsinthegasindustry.Somepartieshascountedownconsumptionasfugitiveemissionsofmethane,resulting

inhuge(andverywrong)estimatesofgreenhousegaseffectfromthegasindustry.Inrealityownconsumptionisburntinturbines,motorsandburnersandendsupasCO2.ForLNG,theamountofenergyneededforprocessingishigherduetotheadditionalcoolingandliquefactionstep.Datahavebeencollectedforseveralindividualexistingproductionlocationsaswellaslocationsunderconstruction.InTable5.2therelativegasconsumptionislistedforthose.TheJapanesemixconsistsofLNGproducedinBrunei,Australia,MalaysiaandIndonesia.

Thedataforexistingcapacitycoverapproximately3/4oftheglobalLNGproduction.Theaveragegasconsumptionovertheseplantsisabout10%oftheplantnaturalgasthroughput.FortheLNG-capacityunderconstruction,thisfigureisabout8%withthebest–typicallybenefitingofcoldcoolingwater-about6%.

LNG process step

Refrigeration cycle

Auxiliary electricity

Hot oil system

Venting

Flaring

Total

Capacity under construction

6,2 - 6,9%

1,5 - 1,4%

0 - 0,3%

(0,005%)

7,9 - 8,7%

Existing capacity

Japan mix(existing)

Average (existing)

Ecoinvent study (altn. source)

8,8%

0,2%

0,7%

9,6%

0,2 - 0,4%

9,9 - 12,9%

0,5%

10,3%

14,94%

0,05%

15%

AsindicatedthereisatrendtowardhigherefficiencyinLNGproduction.TheactualemissionsarisingfromLNGproductionarelistedinTable5.3.

Correspondingtothetendencytowardshigherefficiency,thespecificCO2emissionsarealsolowerfortheplannedcapacitythanfortheexistingcapacity.Theemissionsassociatedwithbestavailabletechnology(BAT)is116g/Nm3.Asaresult,thereisapotentialreductionbyafactorof1.7intotalgreenhouseeffectbetweenexistingandfutureprocessingplants.Asisthecaseforprocessingtopipelinegas,themethaneemissionsareanimportantcontributorto

thetotalclimateimpactpotential.Whencomparingnormalnaturalgasprocessing(forpipelines)andLNGprocessing,itisclearthatLNGtakesmoreenergyonaverage.Theaveragegasconsumptiontodayisabout4%intheformercaseandabout10%inthelatter.

Table 5.1: Consumption and losses of natural gas (volume percentage) at the production stage (non LNG) (Source: IGU LCA-report 2006).

Table 5.2: Gas consumption in LNG processing (Source: IGU LCA-report 2006)

Page 32: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

32 InternationalGasUnion|September2010

CO2-rich natural gas in reservoirs Increasedinterestinhydrocarbongasexplorationinsomegeologicalbasinsistemperedbytheriskofencounteringhighlevelsofnon-hydrocarbongaseswhichreduceenergydensityandincreaseproductioncosts.ThisisespeciallytrueforgasoccurrencesinSoutheastAsiawhereCO2abundancecanrangefromlessthan10%togreaterthan90%infieldsfromthesamebasinandoccasionallyamongreservoirsinthesamefield.Onaverage,theglobalriskofencounteringmorethan1%concentrationsofCO2inagasaccumulationislessthan1in10,andtheriskofencounteringahigherthan20%concentrationsofCO2islessthan1in100.

AccumulationsoflargevolumesofCO2 insedimentarybasinsarealsofoundinplacesliketheCentralEuropeanPannonianBasininHungary,theAustralianCooper-EromangaBasin,theIbleaplatforminSicily,theTaranakibasininNewZealand,intheGulfofThailandandintheSouthVikingGrabenintheNorthSea.

InsomeothergasregionsCO2-contaminationwillbeless,butstillsufficienttocauseremovalatagasprocessingplant.SometimessuchcontaminationbyCO2occurtogetherwithhydrogensulphide(H2S).ThesecontaminantsarenormallyremovedtoalowlevelinordertofulfilagascustomerspecificationortomakeittechnicallypossibletoproduceLNG.ProductionplantsforLNGareofparticularinterestbecausetheyneedtoreduceCO2-contentdowntopartpermillionconcentrationsinordertoavoidclogginguptheheatexchangerswithso-calleddryice(solidCO2).Sincethey

Type ofemission

Carbon dioxide - CO2

Methane - CH4

Oxides of nitrogen - NOX

Sulphur dioxide - SOX

Greenhouse effect pf CO2and CH4 (g CO2eq/Nm3)

Capacity underconstruction

Existingcapacity

Japan mix(existing)

Average (existing)

214 - 221

(0,036)

0,14 - 0,19

(0,0011)

(222)

202 - 280

(5,9)

(0,99)

(0,0029)

(377)

299 280

processverylargevolumesofnaturalgas,theextractedCO2maybeofsubstantialtonnageeveniftheCO2-concentrationintheincomingnaturalgasismoderate.ThenaturalgasindustrythereforehasavailableanumberofconcentratedCO2-sourcesthatmaybesuitableforundergroundstorageiftheframeconditionsareright.Todaysuchframeconditionsexistinonlyafewcountries(e.g.Norway,West-Australia).

CarbondioxidecapturedfromnaturalgashasanimportantplaceinclimatemitigationeveniftheamountofthisCO2-contaminationdoesnotamounttogreattonnages.Thisisbecausethesesourcesconsistofalmost100%pureCO2involumesrangingfromafractionofamilliontontoseveralmilliontonsper

Four Corners Area(25 occurences)

Gordon CreekFarmham Dome

St John’s

Popocatepetl VolcanoMasaya & Cerro Negro Volcanos

Galeras Volcano

El Trapial

San Juan BasinJackson DomeParadox basin

Indian Creak

Alberta BasinKevin Sunburst

Barents Sea

SleipnerMillerBrae

VorderrhöhnNievreVichy

Montmirail

MatraerecskeMihälyiFlorina

Dodan

YinggenhaiPanyu sagHuizhou sag

Oujiang sagHuangoiaoJiyang sag

Huanghua sag

WanjintaPrimoyre

Chukchi PeninsulaKamchatka vocanic region

Shanshui Basin

Middle East

Taranaki Basin

Carnarvon Basin

Java BasinSumatran Basin

CakerawalaWest Thailand Coast

Gulf of Thailand

Timor Sea

Irian Jaya

Yolla

Latera

Central SaharaPelagian Shelf

SW Sirt Basin

Ladbroke Grove Caroline

La BargeSlawter- Brown Sunrise

Gas Composition

5 - 50% CO2

50 - 100% CO2

Area with multiple occurences

source.ThefirstgeologicalCO2-storageprojects(CCS-projects)forclimatechangereasonsareinthiscategory(Sleipner,InSalah,Snøhvit,andGorgon).TheseCCS-projectsarefurtherelaboratedinchapter6.

Energy and emissions at the transportation stageTheenergyconsumptionandCO2-emissionsarisingfromtransportationofnaturalgasiscloselyconnectedtothedistancecoveredbothforpipelinesandfortheshippingpartofanLNG-chain.

Tradingisapprox750BNm3/yearofwhich540BNm3istransportedbypipelineand210BNm3asLNG.

Table 5.3 Emissions and climate impacts for LNG production in g/Nm3 natural gas (between brackets if only one data set available) (Source: IGU LCA-report 2006).

Figure 5.2: Examples of some natural accumulations of CO2 around the world. Regions containing many occurrences are enclosed by a dashed line. Natural accumulations can be useful as analogues for certain aspects of CO2-storage and for assessing the environmental impacts of any leakage from such storage sites. Data quality is variable and the apparent absence of accumulations in South America, southern Africa and central and northern Asia is likely a reflection of lack of data rather than a lack of CO2 accumulations (Redrawn based on: IPCC SRCCS, 2005).

Page 33: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

September2010|InternationalGasUnion 33

EmissiondataforpipelinetransmissionareavailableforseveralEuropeancountriesaswellasfromUSA,Canada,Russia,Australia,Iran,AlgeriaandArgentina.Togetherthesecountriesareresponsibleforabout80%oftheglobalproductionvolume,henceanalmostequivalentpercentageofglobalpipelinetransportationiscovered.

Regionalaveragesareshownintable5.4,aswellasthetotalaverageandspreadperconsumptionandemission.ForEurope,thedataaretakenfromEurogas-Marcogaz.

Asindicatedintable5.4thereisawiderangeinconsumptionsandemissions,muchofitduetolargevariationsintheaveragedistanceoftransportationinthevariousregions.Thevariationingasconsumptionforunderwaycompression(tocounterfrictionalpressurelossesinthepipelines)isingeneralcloselyrelatedtothedistanceofthetransmission.

A global overview of the natural gas chainInordertoidentifythemostattractiveoptionsforimprovementintheproduction,transportationandend-useofnaturalgas,furtherexpansionofthein-depthknowledgeofthewholenaturalgaschaingloballyisdesirable.Thedatawehaveavailabletodayaresomewhatfragmented,butstillcoverafairfractionoftheglobalvolumeandgiveusefulinsightsintoissuesandoptionsalongthegaschain.

Inthelastcoupleofdecadesoneoftheissuesinthenaturalgaschainwasthelossofproductthroughfugitiveemissionsplusintentionalgasventing.Naturalgas–mostlymethane–hasahighglobalwarmingpotential(GWP25timesofCO2)andlossofmethanetotheatmosphereandclimateimpactarethereforecloselyrelated.Thismeansthatreducinglossesleadstoimprovedenvironmentalaswellaseconomicperformance.Whileventing–orflaring-maynotalwaysbeeasytoavoid,thefugitiveemissionscanbesubstantiallyreduced,ashavebeenshowninmanyprojectsaroundtheworld.Theenergyefficiencyofprocessingandtransportingnaturalgasmayalwaysbeimprovedasplantsarerefurbishedandbettertechnology

Type of emission

Gas (energy)

Gas (fugitive and venting)

Carbon dioxide - CO2 (g/Nm3)

Methane - CH4 (g/Nm3)

Nitrogen oxides NOx (g/Nm3)

Europe

0,39%

0,02%

7,81

0,11

0,02

North America

2,19%

0,35%

51,02

2,51

0,06

Asia

8,67%

0,67%

310,59

6,67

Other

0,96%

0,08%

20,83

0,11

0,10

Average

4,1%

0,4%

132,12

3,35

0,05

Max

9,08%

0,74%

332,77

7,39

0,34

introduced.Mostofthisenergyisprovidedbythenaturalgasitselfandthusalsoresultsintheundesirablelossofsaleableproduct.

Fig. 5.3: A gas pipeline in Tierra del Fuego, South America. The world’s most southerly natural gas production facility was put into operation in June, 2005 by the ownership consortium (Photo: BASF)

Table 5.4: Regional data for energy use and emissions for natural gas transmitted by pipelines (Source: IGU LCA-report 2006)

Fig. 5.4: Airborne systems are used to quickly and efficiently detect and locate concentrations of natural gas associated with leaks from transmission pipelines with a high degree of confidence (Source: NETL)

Page 34: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

34 InternationalGasUnion|September2010

Atthispointintimeithasnotbeenpossibletoassembleemissiondatafromallnaturalgasproducingcompaniesandcountries(seepercentagecoverageintable5.5),butitisbelievedthattheassembleddataarereasonablyrepresentativeforthesituationintheglobalnaturalgasindustry.

Ascanbeseenfromtable5.5,theproductionandtransmissionstagesarethemostenergy-consumingpartsoftheexistingnaturalgaschain(excludingend-use)andhavethehighestclimateimpact.Ingeneralthenewergasinfrastructureperformsbetterthantheolder.Plantsonthedrawingboardtodaywillemitmarkedlylessgreenhousegasesthantoday’saverage.

LNGproductionhasaclimateimpactperunitofenergyproducedalmost3timeslargerthanforproductionofpipelinequalitynaturalgas.Whenlookingatthecombinationofproductionandtransport,however,theimpactofLNGisonly35%higherthanforpipelinednaturalgaswhenassumingatransportdistanceof5,000kilometre.

Energy and emissions at the end-use stage Foremissionsintheutilizationphase,asetofIPCCemissionsfactorsforCO2 existsforuseinnationalgreenhousegasmonitoring.Figure5.5showsthesefactors

Production Transmission LNGproduction

LNGtransport

LNGregasification

Storage Distribution

Average Average Average(existing)

BAT (1000 km)

Average Min Max Average

Percentage covered

54% 79% 69% N.A. 27% N.A. 34%

Natural gas consumption:

3,52% 10,3%

- Energy 2,73% 4,1% 8,8% 0,21% 0,43% 0,13% 2,0% 0,16%- Fugitive/venting 0,58% 0,4% 0,2% 0,00% 0,00% 0,10% 0,42%- Flaring 0,48% 0,5%Electricity (MJ/Nm3) 0,042 0,047 0,205 0,003Fuel oil (MJ/Nm3) 73,8Emissions (g/Nm3)

CO2 62,05 132,12 280,22 9,59 8,88 3,39 10,80 0,16CH4 4,01 3,35 5,90 0,03 0,16 0,75 4,32NOx 0,07 0,05 0,99 0,01 0,004 0,002 0,10SO2 0,003 0,01

0 20 40 60 80 100 120

Natural gas

LPG

Petrol

Crude oil

Anthrasite

Lignite

Oil shale

Tonne CO2/TJ

35

30

25

20

15

10

5

0

35

30

25

20

15

10

5

01850 1870 1890 1910 1930 1950 1970 1990 2010 2030 2050

Kg

C/G

J

forarangeoffuels.Naturalgashasthelowestemissionfactorforutilizationofallsolid,liquidandgaseousfossilfuels.

Figure5.5doesnottellthewholestory,however,sincenaturalgasinmanyimportantend-usescanbeusedinmoreefficientmachinerythancoalorheavyoil.Thebestknownexampleiselectricpowergenerationwhereagasturbinebasedplantcanachieveefficienciesofconversionapproaching60%(LHV),whileamodernsupercriticalcoalfiredplantwillbeinthe42-45%efficiencyrange.ThecombinedeffectofemissionfactorsandefficienttechnologycutsCO2-emissionsmorethaninhalffromnaturalgascomparedwithcoalforelectricitygeneration.

Theworldofenergyisdecarbonisingonaslow,butpersistenttrackasillustratedbyfigure5.6.Decarbonisationinthiscontextmeanstheamountofcarbonperunitofprimaryenergyconsumed.Thisdecarbonisationhasbeengoingonforalongtimewithoutanyconsciousdecisiontomakethishappenforanyclimaterelatedreason.

Theexplanationforthisdecarbonisationismultifaceted,butanimportantreasoncanbefoundintheglobalproportionofurbanpopulationwhichhasrisendramaticallyfrom13%(220million)in1900,to29%(732million)in1950,toover50%todayandislikelytoriseto60%(4.9billion)by2030.Rich,densecitiestendtoacceptonlyelectricityplusclean-burningnaturalgasandLPG.Thesecleanfuelsreachconsumerseasilythroughpervasiveinfrastructuregrids,righttotheelectricswitchorburnertipinthekitchen.Muchdecarbonisationhasoccurredalready,butitisnotalawofnatureandcannotbereliedontosolveourclimatechangeconcerns.ThemainreasonforthisisthegrowthinglobalpopulationaswellasthegrowthofpercapitaenergyuseinthelargedevelopingeconomiesofAsiaandothercontinents.

References chapter 5BPStatisticalReviewofWorldEnergy2008IGULCA-report(2006),TheNaturalGasChain.Towardagloballifecycleassessment,CE,Delft,2006Usefulweb-sitesforthischapter:LLNLflowdiagrams:https://eed.llnl.gov/flow/carbon02.phpIPCCSRCCS,2005:http://www.ipcc.ch/ipccreports/srccs.htmIIASA:http://www.iiasa.ac.at/NETL:http://www.netl.doe.gov/ETC/ACCtechnicalpaper2003/10onemissionfactors:http://airclimate.eionet.europa.eu/reports/ETCACC_TechPaper2003_10_CO2_E F_fuels

Table 5.5 A global look at the natural gas chain. Empty cells indicate lack of sufficient data, not necessarily zero value (Source: IGU LCA-report, 2006).

Fig. 5.5: IPCC default emissions factors (Source: ETC/ACC technical paper 2003/10).

Figure 5.6: Decarbonisation as falling global carbon intensity of total world primary energy (Source: IIASA)

Page 35: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

September2010|InternationalGasUnion 35

NaturalgasisthemostbenignandcleanburningofthefossilfuelswithrespecttobothglobalCO2-emissionsaswellaslocalandregionalpollutioneffects.Boththeglobalandthemorelocalaspectsshouldbefactoredin.ThisweseeclearlyillustratedinthischapterthroughtheexampleofnaturalgasasafuelincitytrafficinNewDelhiandothercrowdedmetropolitanareas.

Weliveinaworldofsteeplyclimbingenergydemand,inparticularfromthedevelopingworldaspiringtotheleveloflivingstandardenjoyedbythealreadyindustrialisedcountries.Inthissituationtherealcompetitionforthenextfewdecadesisnotbetweenfossilfuels,renewablesandnuclear,butbetweenthethreefossilfuelscoal,oilandnaturalgas.TheresultofthiscompetitionwilloverthedecadeshavelargeconsequencesforglobalCO2-emissions.

6.Opptunities today and tomorrow

COAL

NATURALGAS

Thenaturalgasindustrycontributes-inthissituationofinter-fossil-fuelcompetition-intwoprincipalareastomitigateclimatechange:• thefirstisthroughcleaningupthegasindustry’sownoperations

• thesecondbeingtohelpourcustomerstocleanuptheiremissions

Ofthesetwobroadgroupsthegasindustryhasmostcontrolovermitigationeffortswithinownoperations.Ontheotherhand,mostclimatechangemitigationeffectfromnaturalgasisexpectedtobeatthepremisesofourcurrentandprospectivenaturalgascustomers.

Thenaturalgasindustryisabletoreduceemissionsofgreenhousegasesthroughfourbasicmeasures:• energyefficiency• fuelswitchingandrenewables• cuttingmethaneandflaringemissions• CO2-captureand–storage

Thisisshowninthe“Tool-boxforalowercarbonworld”(fig.6.2)andillustratedbyexamplesthroughoutthischapter.

Fig. 6.1: In a fast-growing global energy market, the next few decades will see more of a competition between coal, oil and natural gas than a competition between fossil fuels as a group and nuclear plus various renewables on the other. Renewables will grow fast, but from a low base. Nuclear is likely to grow in certain countries while at the same time struggle to replace aging reactors in several of the already industrialised countries.

Page 36: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

36 InternationalGasUnion|September2010

NATURAL GAS & CLIMATE CHANGE

TOOL - BOX FOR A LOWER CARBON WORLD

ENERGY EFFICIENCY

IN OWN OPERATIONS FOR NATURAL GAS CUSTOMERS IN OWN OPERATIONS FOR NATURAL

GAS CUSTOMERS

IN OWN OPERATIONS FOR NATURAL GAS CUSTOMERS IN OWN OPERATIONS FOR NATURAL

GAS CUSTOMERS

FUEL SWITCHING AND RENEWABLES

CO2 - CAPTURE, -TRANSPORTATION AND - STORAGE (CCS)

More efficient conversionto electricity & mechanical energy

Utilize reservoir pressure and heat energy

Design new gas systems based on high future energy- and CO2 cost-assumptions

Help customers find and use best available technology

Make natural gas available in more regions & locations Seek out new end-use types where natural gas is particularly efficient

Store already captured CO2 in geological for-mations (e.g. from LNG-plants)

Capture & store CO2 from high - CO2 natural gas

Use CO2 for enhanced gas recovery

Later priority: capture CO2 from gas turbine and boiler flue gas

CO2 as cushion gas in storages

Sell CO2 to oil companies for enhanced oil recovery

Sell CO2 -transport and geostorage space for customers

Use hydropower, wind etc. as part of the electricity supply to own plants

Natural gas fuel for own trucks & ships

Ultimately switch to electricity, hydrogen and heat made from natural gas with CCS

Natural gas to fuels and chemicals

Switch from coal to natural gas in elec- tricity generation

Introduce natural gas in new types of end-use (i.e. shipping, heavy trucks)

Introduce natural gas more in energy intensive industries (e.g. steel)

Produce and distribute hydrogen

Mix bio-gas into gas grid

CUTTING FLARING AND VENTING EMISSIONS

Limit (already low) gas industry flaring and venting to very low levels

Limit methane emissions from valves, flanges, start-up/stop, maintenance etc. to very low levels

Remediate old town gas systems used for natural gas where applicable

Assist oil industry to reduce their flaring/ venting by gathering and transporting this natural gas to market

Allow various forms of bio-gas into natural gas grid

Thesefourtoolsinourtool-boxandtheirareasofapplicationstretchesfromthemostroutineenergyefficiencyeffortinindustryandinthehomethroughhugeindustrialprojectstoswitchfromcoaltogas,and–nottheleast–toafutureoflargescaleCO2-captureandgeo-storage(CCS)andhydrogen-to-energyproduction.Thenaturalgasindustrycannotpredictthefuturemorethananyoneelse.Thereare,however,somerecognisable–andsometimessurprising-contourstobeseeninthecrystalball.

Naturalgaswillcertainlyplayanimportantbridgingrolewhenitcomestoshapingourcommonlow-carbonfuture.

Naturalgasplaysanimportantclimatemitigationroleinreducingtheindustry’sownclimatefoot-print.Moreimportantly,however,thegasindustrywillmakeitpossibleforexistingandfuturegascustomerstoreducetheirclimateimpact.Sometimesthiscanhappeninwaysnotwellknowntothegeneralpublic,bypeopleformulatingenergypoliciesorevenbypeopleemployedinthegasindustryitself.Letusfollowthelogicofthetool-boxandstartbyseeingwhatthegasindustrycandoonitsownplotofground.

6.1 Mitigation within the natural gas industry’s own operationsThenaturalgasindustryisaglobalandcomplexbranchofindustrywithmanydecadesofexperienceofcooperationwithregardtopracticalissuescommontothegaschain.Thisisalsothecasewithregardtoenvironmentalissuesamongwhichclimatechangehascometotakethecentrestageinrecentyears.Thegasindustryishighlytechnologicallyorientedwithahugeknowledgebaseaboutgeologyandreservoirs,processtechnologies,thedevelopmentofmega-projects,continentspanningpipelinesandend-useofnaturalgasinindustries,commercialbuildingsandhomes.

Energy efficiency in own operations Production,processingandtransportationofnaturalgasisquiteenergyconsumingaswehaveseeninchapter5.Muchofthishastodowiththecompressionofrelativelylowdensitynaturalgasbeinginherentlylessefficientthanpumpingofliquids(e.g.wateroroil).Anotherexplanationisthatmostoftheequipmentdrivingthesecompressorsaregasturbinesfiredbynaturalgas.Fornewplantsthesegasturbinesarestateoftheartequipmentcomparabletothegasturbineshangingunderthewingsofmodernjetplanes,butonlyabout1/3oftheenergyinthegasisconvertedtomechanicalenergydrivingthecompressor.Onaprocessingplantsomeofthisrejectedenergy–intheformofexhaustheatconvertedtosteamorhotoil–areutilisedforprocess-heating,distillationandforotherprocesspurposes.Inthecaseofapipelinecompressor,however,thereisoftennolargeconsumerofheatnearbyandtheexhaustheatislost.

Energyefficiencyinthenaturalgasindustry–asinmostotherprocessindustries–isverymuchaquestionofthecostsofenergy.Thenormallife-spanofcapitalequipmentbeforereplacementisalsoanimportantfactorandforsomecompaniesalsotheaccesstocapitalforrefurbishmentofexistingplants.Recently–insomeregionsoftheworld–thecostsofemittinggreenhousegasestotheatmospherehasbeenaddedtotheenergyefficiencyequation.

Fig. 6.2: Tool-box for a lower carbon world. The tools are energy efficiency, fuel-switching & renewables, CO2-capture and -storage (CCS) as well as cutting methane & flaring emissions. The two principal areas for applying these tools are within the natural gas industry’s own operations and with the gas customers themselves. This chapter is structured according to the logic of this tool-box.

Page 37: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

September2010|InternationalGasUnion 37

Highenergypriceswillnormallyleadtomoreenergyefficiencymeasuresbeingimplementedearlierthanwithlowerenergycosts.Allenergycompanieshavetheirownopinionoffutureenergycostswhichguidestheirprioritieswithrespect toenergyefficiencymeasures.Itmayalsotakeyearsbeforeevenhighlyprofitablemeasuresareimplementedsincemodificationshavetotakeplaceduringaplannedshut-downperhaps2-4yearsdowntheline.

Fuel switching & renewables in own operationsWithinthenaturalgaschainmostoftheself-consumptionofenergyiscoveredbynaturalgasitself.Oftentherearefew,ifanyotherchoicesgiventheremoteness(e.g.offshore,theArcticordeserts)ofmanysuchplantsandthelargesizeoftheenergyneeds.Onoccasions,however,ithasbeenfoundpossibletoutiliseelectricityfromthegridintheregiononanormalcommercialbasis.Onotheroccasionslocalframeconditionsaresuchthatextraordinarymeasureshavebeenimplemented.Onesuchistheelectrificationfromthehydro-poweredNorwegianland-gridofthelargeNorthSeaTrollgasplatformanditsassociatedlandterminalatKollsnes(text-box).

Example of energy efficiency in gas industry operations:-Combinedgasturbine&steamturbinesolutionsforOseberg,SnorreandEldfiskoffshoreplatforms

About75%oftheCO2fromtheNorwegiancontinentalshelfoilandnaturalgasactivityisproducedduringthegenerationofelectricityand90%isfromstationarysourcesintotal(pie-graphbelow).Combinedcyclepowerplantsrepresentanewsolutionforoffshoreplatformswherebyheatfromturbineexhaustgasisusedtoproducesteam. Thesteaminturnisusedtogenerateelectricpower.Combinedcyclepowerplantsincreasetheenergyefficiencybyabout30%andarecurrentlyinoperationontheOsebergfield(picture),SnorreandEldfiskfieldsontheNorwegiancontinentalshelf.Theseplantsaresofaruniqueinaglobaloffshorecontext.TheaddedcostcanbejustifiedbythehightaxonCO2-emissionsoffshoreNorway.

Stationary sources offshore 90 %

Process emissions 3 %

Exploration drilling 1 %

Development drilling 3 %

Gas terminals 3 %

CO2-capture and –storage (CCS) in own operationsTheglobalnaturalgasindustryhaspioneeredtheclimatemitigationconceptofCO2-captureand–storage(CCS).Itisalsolikely

thatthegasandoilindustrieswillcontinuetospearheadthiseffortforquitesometimeevenifthecoalindustryandelectricutilitiesareeagertobeseenasfront-runners.

Example of renewable energy powering gas industry operations:-Hydro-poweredTrollnaturalgasplatform.TheTrollOffshoreGasPlatform(picture),locatedoffNorwayintheNorthSea,istheheaviestmanmademobileobjectevermade,withadryweightofthegravitybasestructureat656,000tons.Standing369mtall,itwasmadefrom245,000m3ofconcrete,and100,000tonsofsteel(approximately15Eiffeltowers).Inadditiontobeingtheworld’slargestoffshoreplatform,italsohavetheunusualfeatureofbeingsuppliedbyelectricityfromahydro-poweredlandgrid.Theplatformissuppliedbyhighvoltagedirectcurrent(HVDC-Light;picture)fromtheshore-grid60kilometresdistant.ThedriverfortheelectrificationwasreducedoperatingexpensesincooperationwiththeNorwegianCO2-tax.

Page 38: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

38 InternationalGasUnion|September2010

Processing facilities

4 gasproductionwells

3 CO2injectionwells

Sandstones & mudstones - 900 metres thick (regional aquifer)

Mudstones - 900 metres thick

Sandstones reservoir - 20 metres thick

GasWater

Permian Basin

Natural CO2 Sources

500 miles

TexasNew Mexico Bravo Pipeline

Levelland Slaughter Kingdom (Abo)

Wellman EsteHuntley

SaltCreek

WelchCedar Lake

Kelly-Snyder(SACROC)

Cany

on R

eef C

arrie

rs

Maboo

McElroy

PecosPipeline

Yates

Brown-BassettGrey Ranch

Pucket

Northand South

CrossCommanche

Creek

PipelinePikes Peak

N. WardEste

El MarFord

Geraldine

East Vacuum

Winston

Sable

Cheep M

ountain

Pipeline

Cortez Pipeline

Majamar Llan

o

30

25

20

15

10

5

0

Year

CO

2 Del

iver

ies

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1998

Antropogenic CO2Val Verde BasinGas Processing Plants

Bravo DomeSheep MountainMcElmo Dome

Natural CO2

WithinthedomainofCCS,therearesomeso-called“low-hangingfruits”,alsocalledearlyopportunities.Ofthesethelowesthanging–meaningleastexpensive-fruitsarelargeCO2-pointsourceswhicharealreadycapturedandconcentratedtoalmost100%concentration.Figure6.5illustrateswherethesearetobefound.

Globallythereareestimatedtobeabout200suchlowhangingfruitsofconcentratedCO2.Theimportanceoftheseisnottheircombinedtonnages(moderate),butassourcesforearlyCCS-projectsandearlylearning.Experiencefromalreadyrealisedprojectsisthattheyalsoprovideasourceofmotivationforindustriesandgovernmentsinvolvedtospearheadthisclimatemitigationconcept.

Transportation

Power plants,boilers, gas turbines Cement,

iron & and steel

Existing/newgasification

Ethylene &ethylene oxide

Some refinery andpetrochemical

streams

Existing/new ammonia and hydrogen plants

Existing/new naturalgas purification

Fig. 6.3: The left part of this illustration shows the CO2-capture and –storage of nearly one million tons of carbon dioxide extracted from natural gas at the In Salah gas field in Algeria. Many types of sandstone have up to 30% pore-space, enabling such reservoirs to store surprisingly large amounts of CO2.

Fig. 6.4: Since the 1970’s CO2 has been injected into aging oil reservoirs in order to get more oil out (EOR- Enhanced Oil Recovery). The main, but not the only arena for this has been the US where at present over 80 oilfields are using this methode. A large pipeline system has been laid between naturally occurring CO2-reservoirs and the oil fields. Since the CO2 comes from pure CO2-fields, this type of enhanced oil recovery cannot be said to have climate mitigation effect. It is, however, a great source of practical learning for building and operating carbon dioxide infrastructure

Figure 6.5.: The low-hanging fruits. The large, already captured and almost 100% concentrated CO2 are to be found in natural gas purification, ammonia and hydrogen plants and sometimes in gasification of coal and heavy oil (Sources: IPCC SRCCS 2005 and Kaarstad, 2007).

Page 39: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

September2010|InternationalGasUnion 39

Reduction of fugitive methane emissions in the gas industry Themitigationofnon-carbondioxide(non-CO2)greenhousegasemissionscanbearelativelyinexpensivesupplementtoCO2-onlymitigationstrategies.Worldwide,thepotentialfor“no-regret”or“low-regret”non-CO2greenhousegasabatementissignificant(USEPAInternationalAnalysis).Methane(CH4)mitigationhasthelargestpotentialacrossallthenon-CO2greenhousegasesasillustratedbyfig.6.6.

NaturalgassystemsarealeadingsourceofanthropogenicCH4-emissions,accountingformorethan970MtCO2eq(USEPA,2006).TheUSEnvironmentalProtectionAgencyestimatesthatnaturalgassystemsaccountfor8percentoftotalglobalCH4emissions.TheRussianFederation,theUnitedStates,Africa,andMexicoaccountformorethan43percentoftheworld’smethaneemissionsinthenaturalgassector.

The natural gas industry as CCS-pioneers:ThereareatpresentthreenaturalgasindustryprojectsinoperationspearheadingtheconceptofCCS.TheseareSleipner(Norway),InSalah(Algeria)andSnøhvit(Norway).Itisexpectedthatseveralmorewillfollowinthecomingyears,withtheAustralianGorgonnaturalgasprojectasalikelymajoraddition.

AllthreeprojectsshowninthepicturesareinoperationandinjectsintheorderofonemilliontonsofCO2peryeareach.ThismeansthattheyarefullscaledemonstrationprojectsforCCS.TheSleipnerCO2-injectionhasbeengoingonsince1996,whileInSalahcameonstreamin2004andSnøhvitin2008.

Inthesecases–asinanumberofotherinsideandoutsidethenaturalgasindustrythecostlyCO2-capturestagehasbeentakenforcommercialreasons(suchasachievingaparticularnaturalgascustomerspecification).Thisleavesjustthelesscostlyfinalstagesoftransportationandstoragetobepaidforasclimatemitigation.

Sleipner In Salah Snøhvit

Poland: Using experience from acid gas injection to estimate CO2-storageOverthepastdecadethePolishOilandGasCompanyhaveimplementedtechnologyforacidgas(CO2+H2S)injectionasanefficientwayofavoidingemittingthesegasestoatmosphere.SuchacidgasinjectionoperationsconstituteaperfectanalogueforlargescalegeologicalstorageofCO2intoonshorecontinentalsedimentarybasins.ThehistoryofthefieldsintheCarpathiansandtheCarpathianForedeepislong;thisregionistheworld’soldestoilextractionarea.In2006,Polandhadinoperation86oilreservoirsand254gasreservoirs.MostofthemwerematurefieldsandsomeofthemmaybegoodcandidatesforCO2sequestration.TheresultsfromadecadeoffieldmeasurementsfromacidgasinjectionhavebeenusedtoestimatetheCO2-storagecapacityonlandinPoland.Itwasfoundthatthestoragecapacityformostoftheknowndepletedreservoirswasnothugebutstillinteresting,especiallyforsmallerpowerandchemicalplants.ThefigureillustratesthatbothlargeandsmallerfieldsmaycontributetoCO2-storageinPoland.

Storage potential, 106 tons

No.

of f

ield

s

45

40

35

30

25

20

15

10

5

0

0 to 2

2 to 4

4 to 6

6 to 8

8 to 1

0

10 to

15

15 to

20

20 to

25

25 to

50

50 to

75

75 to

100

100 t

o 125

125 t

o 150

More

Source:PaperbyStanisławRychlicki,JerzyStopaandPawełWojnarowski,AGHUniversityofScienceandTechnology

MexicoAfricaUnited StatesRussian FederationRest of the world

2,000

1,750

1,500

1,250

1,000

750

500

250

02000 2010 2020

MtC

O2e

g

Year

Fig. 6.6: Methane from natural gas systems by country 2000 – 2020 in million tons of CO2eq per year. (Source: US EPA http://www.epa.gov/climatechange/economics/international.html).

Page 40: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

40 InternationalGasUnion|September2010

Oneexampleofabatementtechnologyistoswitchfromgaspneumaticcontrolstocompressedinstrumentairsystems.Someprocessingplantsusenaturalgasinsteadofcompressedairforpneumaticcontrols.Somepipelinevalvesalsousegasfortheiractuators.Aspartoftheirnormaloperations,suchdevicesreleaseorbleedCH4intotheatmosphere.Suchequipmentcansubstitutecompressedairfornaturalgaswithinpneumaticsystems.

Anexampleoftheabatementoptionsavailabletothetransmissionssegmentismaintenanceatcompressorstations.Compressorstationsamplifypressureatseveralstagesalongatransmissionnaturalgaspipelinetocombatpressurelossoverlongdistances.Overtime,compressorsandotherrelatedcomponentsbecomefatiguedandmayleakCH4.Maintenanceprogramsreducessuchmethaneemissionsatcompressorstationsbyidentifyingleaksandfocusingmaintenanceonthelargestleaks. Anexampleamongabatementoptionsavailabletothedistributionsegmentofthegaschainistheuseofapipelinepump-downtechniquewhenperformingmaintenanceonsegmentsofdistributionpipeline.Operatorsroutinelyreducelinepressureanddischargegasfromapipelineduringmaintenanceandrepairactivities.

Usingapumpdowntechniquemeansapplyingacompressorstodepressurizethesectionofpipelinetobemaintainedandputthemethaneintoanotherpartofthepipeline,therebyavoidingthereleaseofthisgreenhousetotheatmosphere.Anotheralternativeistoutiliseamobileflaringunittoburnratherthanventmethane.

Segment Facility Equipment at the Facility

Production Wells, central gathering facilities Wellheads, separators, pneu -matic devices, chemical injection pumps, dehydrators, compres -sors, heaters, meters, pipelines

Processing Gas plants Vessels, dehydrators, compres -sors, acid gas removal (AGR) units, heaters, pneumatic devices

Transmission and storage Transmission pipeline networks, compressor stations, meter and pressure-regulating stations, underground injection withdrawal facilities, liquefied natural gas (LNG) facilities

Vessels, compressors, pipelines, meters/pressure regulators, pneumatic devices, dehydrators, heaters

Distribution Main and service pipeline networks, meter and pressure-regulating stations

Pipelines, meters, pressure regulators, pneumatic devices, customer meters

Reduction of fugitive methane emissions – the European experienceTheMarcogaz–EurogashasdoneasystematicmappingofpracticalmethodsforreductionfrommethaneemissionsfromnaturalgastransmissionanddistributionsystemsinEurope.

Transmission systemsForgastransmissionactivitiesparticularattentionshouldbedrawntotheuseofmethodsfor: •Gasre-compression(leftpicture)toreduceemissionsfromgasventing duringmaintenanceactivities; •Procedurestopreventemissionsduetothirdpartydamage; •Replacementofvalvesactuatedbynaturalgaswithothersthatareeitherair orelectricallyactuated •Reductionoffugitiveemissionsbyuseofportabledetectorstoidentify themduringmaintenanceprocedures.

Distribution systemsOpportunitiesforreductionofemissionsfromdistributionsystemsrelateto: •Improvementsinpressuremanagementthatenablesignificantcost effectivereductionsinmethaneemissions •Conditioningoflead/yarnjointsisrequiredinmanynetworkstoprevent deteriorationinemissionfactorsforthesecomponents; •Replacementofcastironandductileironpipeswitheithersteelorplastic pipes(rightpicture)asthelongtermsolutiontothemostsignificantlosses fromtheexistingsystem; •Procedurestopreventemissionsduetothirdpartydamage.

Table 6.1: Fugitive emissions from the natural gas industry come from diverse and numerous sources all along the gas chain as indicated by table 6.1. Fugitive emissions depend on the age, technical maintenance and operating procedures. This makes generalisation about the costs and size of mitigation of global gas industry methane emission difficult and unreliable until more experience is gained.

Page 41: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

September2010|InternationalGasUnion 41

6.2 Natural gas customers and climate mitigationEnergy efficiency for natural gas customersOnsiteproductionofheatandelectricitydirectfromnaturalgasisseenasapossibility

inthehouseoftomorrow.Inafuturehousewithahighinsulationlevelandsometimesincreaseduseofrenewableenergy,traditionalgasheatingandhotwaterproductionsystemswillbelessattractivethantoday.

Stopping fugitive methane emissions from the gas network in the city of Kursk;- A Joint Implementation Project (JI) under the Kyoto ProtocolTheKurskgazcompanyenteredintoanagreementwithDanishRussianCarbonFund(RCF)in2005topavethewayforRussia’sfirstprojecttomeasureandeliminatemethaneleakageinanaturalgasdistributionsystemintheRussiancityofKursk.Theprojectisviewedasafirststepforcarryingoutsimilaractivitiesin15regionsofthecountry,includingtheSverdlovRegion,Tomsk,Omsk,KurganandOrel.AccordingtoRCF,thenewtechnologieswilltrimtheleakagebybetween15millionand30milliontonsofCO2equivalent.TheDanishpartyistheprojectinvestor,whileNorwegianStatoilHydroisthebuyerpurchasingfromKurskgazthereleasedvolumesofgasemission. ThepurposeofthisjointimplementationprojectistoimprovetheintegrityofregionaldistributionalnetworksintheregionofKurskviareducingleakageofmethanefromthesystems.Thesupplysystemcoversapproximately7000kmofpipeswith2500kmofthispipelinesituatedwithinthecityandwith4500kmsituatedoutsideofthecitylimits.Thereare229GasDistributionPointsand1431cabinet-typeDistributionPointsinthesystem.Intotaltheycontain6178valvesandsome15361flanges.Leaksaremostlyfoundinplugvalves,blockvalves,pressurereliefvalvesandflanges.MethaneEmissionReductionisaccomplishedbyactivitiesthatdetectmeasureandrepairleaksatgasdistributionpointsandcabinettypedistributionpointsinthenaturalgassystemsoperatedbyKurskgas.

Source:TÜVMonitoringreport:http://www.netinform.net/KE/Wegweiser/Guide2aspx?ID=4600&Ebene1_ID=49&Ebene2_ID=1436&mode=4

Residential and commercial buildingsBuildingsplayasurprisinglylargeroleinenergyconsumption.IntheU.S.,theamountofenergyusedinbuildingsis40%greaterthaninthetransportationsector. Sincethelifetimesofbuildingscanapproachthecenturymark,itpaystofindwaysofimprovingtheirenergyuse.Condensingboilersneedstobemorewidelyspread,withfocusonexistinghouseholds.Inadditiontoloweringcostsofsuchsystems,combinationswithsolarheatandbiomethaneshouldbeexplored. Inthemostadvancedenergymarkets-withGermanyasanexample–residentialandcommercialnaturalgascustomersareincreasinglyswitchingtovariousformsofelectricallypoweredheat-pumpsandrenewables,inparticularinnewbuildings.

Withtheincreasingrequirementsinbuildingregulationsforhigherinsulationstandardsaswellasaprofusionofheat-releasingdevicesinhouseholdsandcommercialpremises,naturalgascouldbeseenasnotneededinbuildings.

Policymayalsoturnagainstnaturalgasuseinnewbuildingsfrom2020inGermany.Naturalgasisnotseenassufficiently“green”anymore.

Thesedevelopmentschallengethenaturalgasindustrytocomeupwithnewtechnologiesandnewcombinationsthatcancompeteonefficiencyandclimatesustainability.

Micro Combined Heat and Power for households;-integrationofahigh-efficiencyboilerandaSolidOxideFuelCell

TheAustraliancompanyCeramicFuelCellsLimited(CFCL)isdevelopingSolidOxideFuelCells(SOFC)formanydifferentapplications.CombinedHeat&Power(CHP)unitsbasedonSOFCappliancescanproduceheatforspaceheatingandhotwaterdirectlyfromnaturalgasaswellaselectricityforownuseandforsellingintotheelectricalgrid.SinceJanuary2006CFCLhasinstalledandoperatedfieldtrialunitsinAustralia,NewZealandandGermanyandisdevelopingfullyintegratedmCHP(micro-CHP)unitswithleadingutilitycustomersandappliancepartners.Thefuelcellsystemswillbeintegratedintoconventionalboilersandtherebyenablehouseholdsandsmallbusinessestogeneratebothheatandelectricity.Theunitlookslikeaconventionalhigh-efficiencyboiler(picture).Thismeansmoreefficientuseofnaturalgasresources,whiletheCO2emissionsareupto25%lowerthanfromagas-firedpowerstationandupto60%lowerthanfromaconventionalcoal-firedpowerstation.TheadvantagesofSOFCsystemsoverlow-temperaturefuel-cellsarethattheyoperateathighertemperature,whichreducestheneedforexpensivepreciousmetals(suchasplatinum),thattheycanoperatedirectlyonnaturalgasandhaveverygoodelectricalefficiency(upto70%).Whencombinedwithheatrecovery85%efficiencyisachievable.

Afurtherdevelopment-2kWunit–willprovideamplepowerforthebasicloadoftheaveragehouseholdaswellasadditionalpowerforexporttothegrid,savinguptothreetonsofCO2peryear.Thefuel-cellboilerwillbeeasytoinstallasitusesthesamepipesasexistinghigh-efficiencyboilers.

Page 42: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

42 InternationalGasUnion|September2010

Strategic Answer 1 →Better technologies + combine natural gas and renewables

Strategic Answer 2 →Expand technology portfolio - combine heat and power

Natural gas

Bio-methane

Natural gas

Highly efficient condensing heating systems (existing)

Highly efficient condensing heating systems (existing)

Solar & gascondensing boiler

Solar & gascondensing boiler

Gas heat pump to use ambient heat

Gas heat pump to use ambient heat

Micro CHP

Bio-methane

Fuel switching & renewables for natural gas customersThekindoffuel-switchingthatgiveclimatemitigationeffectischangingfromhighcarbon/lowhydrogenfuels(e.g.coal)tolowerorzerocarbonfuelssuchasnaturalgasorhydrogengas.Nuclearpowerandrenewablesareoftencategorisedaszero-carboninalife-cycleview,evenifthisisusuallyonlypartlythecase(e.g.largesteelandcementquantityusedintheconstructionofanuclearpowerplanthavegivenraisetoreleaseofCO2).

Aftertheadventofefficientgasturbinesforlargescalepowergenerationtwo-threedecadesago,fuelswitchingfromcoalfiredpowertonaturalgasfiredpowerplantsbecamethetrendincountrieswithaliberalisedenergymarketandaccesstogas.Insomecountries–withUKasa

primaryexample-theswitchingfromcoaltogaswasdramatic(seetext-box).Manyothercountrieshaveexperiencedsimilar,butlessdramaticpowersectorshiftsfromcoaltonaturalgas.

Other,moreeverydayformsoffuelswitchingisongoingallaroundtheglobeallthetime.Commercialandresidentialpremiseshavebeenandareswitchingfromoiltonaturalgasforheating,cookingandcoolingpurposes.Otherexamplesarelessdevelopedorwide-spreadgeographically,butcouldplayimportantrolesinthefutureasexemplifiedinseparatetext-boxes(e.g.gasinthetransportationsector).Theultimateswitch–asseenfromanaturalgaspointofview–wouldbetoconvertnaturalgastothetwinenergycarrierselectricityandhydrogenwithCO2-storageincorporated.

Fig. 6.7: How can the natural gas industry deliver customer-oriented solutions for residential and commercial premises? The strategy outlined in these two illustrations combines the best of natural gas, new technologies and renewables to satisfy future customers (Redrawn from: E.ON Ruhrgas, Gas Industry mCHP Workshop, Paris May 2008)

Fig. 6.7: How can the natural gas industry deliver customer-oriented solutions for residential and commercial premises? The strategy outlined in these two illustrations combines the best of natural gas, new technologies and renewables to satisfy future customers (Redrawn from: E.ON Ruhrgas, Gas Industry mCHP Workshop, Paris May 2008)

Page 43: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

September2010|InternationalGasUnion 43

Theelectricgridinmanycountrieswillreceiveanyelectricitythatfulfilscertainspecificationstobetransportedtocustomers.Itdoesnotmatterifthiselectricitycomesfromacoalfiredpowerplant,agasfiredcombinedcycleplant,ahydropowerstationsinthemountainorawind-millbythecoast.Thenaturalgasgridmayinthefuturebecomemoreliketheelectricgridalsointhisrespect.Methane-richbiogasareproducedfromfermentationandtreatedsewagegas,

When UK converted from coal to natural gas for power generationElectricitygenerationisthebiggestsinglesourceofCO2emissionsintheUKwith178MtCO2in2006(seegraph),responsibleforapproximatelyathirdoftotalemissions.

InUKavastnationalisedcoalbasedpowerindustrykeptthelightson,thefactoriesrunningandhundredsofthousandsoffamiliesinreliable,ifbackbreaking,workinthecoalminesinthedecadesafterWWII..

ThearrivalofNorthSeaoilinthemid1970swasawelcomeboosttoacashstrappedgovernment,turningtheUKintoasignificantexporterofenergy.Energypolicywasatthetimeseenasfartooimportanttoleavetothemarket.Thatchangedinthe1980s,withtheConservativeprivatisationofoil,coalandelectricitygeneration.Thenewlyprivatisedpowercompaniestoalargeextentswitchedfromcoaltonaturalgasreducingtheirdemandforcoal.ThisheraldedthestartofarapiddeclineoftheUK’scoalpits-leadingeventuallytotheclosureofallScotland’sminesandallbutoneinSouthWales.Gaswasthecleanerandcheaperalternative.

Thecoalindustryhascontinuedtoshrink.Thereare12workingpits-comparedwith170in1984.ThesedaystheUKpowerstationsarejustaslikelytogettheirenergysuppliesintheformofgasfromEasternEuropeorNorwayasfromthecountry’sowncoalpits.Thetrendis,however,tosomeextentturningbackduetotheincreasingcostdifferencebetweennaturalgasandcoalinthelateryears.

Tothegasindustryitisimportanttolearnfromthecostbasedphasingoutofoilintheelectricitygenerationsectorasindicatedintheleftpartofthisgraph.

(Graphredrawnfrom:UKPowerSectorEmissions–Targetsorreality(ReporttoWWF,2006)

MtC

O2 /y

r

200

150

100

50

01990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

Year

Coal Oil Gas Total

landfillgasandgasesmanufacturedther-mallyfrombiomassmayalsoservethepurpose.In2008therewereinEUabout5plantsinSwitzerland,4inSweden,and5inGermanyinjectingbiogasintogasgrids,withotherstofollow.

Inacarbonconstrainedfuture,thiswayoftransportingbio-gasmaybecomeasubstantialpartofagrid-ownersbusiness,inparticularinthedistributiongridclosetotheend-user(seetext-box).

Page 44: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

44 InternationalGasUnion|September2010

Europe’s largest bio-methane plant in operationE.ONtogetherwithSchmackAGhascommissionedEurope’slargestbio-methaneplantatSchwandorfinBavaria.

Sincethebeginningof2008biogashasbeenproducedtherefromregionalrawmaterials.ThisbiogasisthentreatedtoreachnaturalgasqualityandfedasbiomethaneintothenaturalgaspipelinesystemofE.ONBayern.”Inthefieldofrenewableenergies,bio-methaneplaysanimportantroleinourportfolioofpromisingtechnologies,”saidDr.FrankMastiaux,managingdirectorofE.ONClimate&RenewablesGmbH.”ThecommissioningoftheSchwandorfplantisanothermilestoneinourprogrammeforgrowth,whichwewillsystematicallyimplementby2010withaninvestmentvolumeofupto6billion.”

AttheSchwandorfplant,about16millionm3ofbiogascanbeobtainedannuallyfromroughly85,000tonsoflocalrenewableresources.Notonlymaize,butalsograssandintercropsilageisused.Theoutputoffilteredbiogasupgradedtonaturalgasquality,i.e.bio-methane,isapprox.1,000m3perhour.Mr.Mastiaux:”Withthisplantwecancovertheentirenaturalgasneedsofsome5,000households.”

Thedecisiveadvantageofbio-methaneisthat,asaclimate-neutralfuel,itcanbeusedeverywherebydistributingitthroughthegasnetwork.Therearemanyoptionsforefficientuseofbio-methane:inthetransportsector,incogenerationplantsorinpackagedcogenerationsystems.

ByexpandingtheseactivitiesE.ONisinvolvedinamarketwhichissaidtohavegreatgrowthpotential.”Weassumethatby2030about10%ofexistingnaturalgasconsumptioninGermanycanbecoveredwithbio-methane,”saidFritzWolf,managingdirectorofE.ONBioerdgas.”Andthiscanbedonewithoutadverselyaffectingareasneededtogrowfoodandfeedstuff.Thebio-methaneconsumptionanticipatedin2030correspondstotheenergyneedsof5millionhouseholds.”

Trash to treasure – the Doña Juana landfill gas to energy projectMunicipalwastegeneratesalotofmethane-themainingredientinnaturalgas–whendisposedaslandfill.Duetothemostlyorganicwasteinputstothelandfill,thegasfromsuchprojectsisviewedasarenewablesourceofenergy.TheDoñaJuanaLandfillbelongingtothecityofBogotáinColombiareceives2milliontonsofhouseholdwasteeveryyear.BytheendofOctoberin2007theownerofthelandfill,theUnidadAdministrativaEspecialdeServiciosPúblicos(UAESP)awardedabiogasconsortium–theBiogasDoñaJuanaS.A.ESP-apublicconcessioncontractforthecollection,treatmentandenergyuseofthelandfillgasfor23years.Includedinthiscontractwasthegascollectionsystem,thetreatmentfacilitiesaswellassupplyintoadedicatedlandfillgasdistributiongridforindustrialusersoperatedbygasNaturalESP,anaturalgasdistributorinColombia.Thisisoneofthelargestprojectsofitskindintheworld.

Thelandfillgasresultsfromtheorganicwastedegradationunderanaerobicconditions.Itisusuallycomposedofmorethan50%methaneandlessthan50%carbondioxideCO2.Bothofthesearegreenhousegaseswithmethane25timesmorepotentthanCO2.Inmostoftheworld’slandfillsthemethaneisstillallowedtodiffusetotheatmosphere.Inothersthemethaneiscollectedinspecialwellsandflaredatthesite,amethodethatsubstantiallyreducesthegreenhouseeffect.Collectionandflaringoflandfillgasareusualinlandfillsitesinordertopreventlocalriskslikefireinwaste,instabilityorstenches.TheDoñaJuanaprojectgoesonemajorstepfurtherbydistributingthegastobeburntusefullybyindustrialcustomersalongadedicatedlandfillgasgrid.Ithasbeencalculatedthattheprojectreducesthegreenhouseeffectby700000tCO2equivalentperyear.

Theprojectinvolvesthethermaluseofthelandfillgasintheceramicindustriesneartothelandfillsitewherepowderedcoalhasbeenuseduptonow.Thepotentialmarketforlandfillgasareaboutthirtybrickfactories.Thecustomer’skilnswillbeconvertedtoburngasinsteadofcoal.Anotheropportunitywillbetheintroductionofgasbaseddryingtechnologiesforceramicproductsinthesefactories.Athirdcustomeristhelandfillgasprojectitselfthatgenerateselectricityfromgasenginedrivengeneratorsinordertosupplypowertocompressorsandotherenergyconsumersinlandfillgasprocessingplant.

TheprojectisbeingdevelopedundertheguidelinesoftheKyotoProtocolCDMprocedures.Duetothis,extensivemonitoringandrecordingequipmentwillbeinstalledtokeeptrackofgasvolumesandcompositionaswellastheperformanceparametersforthecompletesystem.Theprojectwillsupportnotonlytheclimate,butalsotheeconomicandsocialdevelopmentaswellasthelocalenvironmentinthearea.

Sourcetext:Mr.IgnasiMallolSangra,gasNaturalSDGS.A,personalcommunication.

Page 45: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

September2010|InternationalGasUnion 45

Natural gas as vehicle fuelAsthenumberofvehiclesintheworldrisesfromaround800millionto2billionin2050,theamountoffuelconsumedwillincreaseconsiderably.Atpresentabout7millionoutofthe800millionvehiclesoftheworldarefuelledbynaturalgas(naturalgasvehicles-NGV’s).Between1991andtodayNGV-growthhasaveraged18%peryear,butforthelast3yearsthegrowthhasbeen30%peryear.TheInternationalAssociationforNaturalGasVehicles(IANGV)isprojectingthatthiswillincreaseten-fold,to65millionvehiclesby2020.ThismanyNGV’swouldconsumeabout400GSm3ofnaturalgas,amountingtonearly14percentoftoday’snaturalgasconsumption.Therearetodayabout11000refuellingstationsgloballytofillupthesevehicles.

Naturalgascanbeusedtofuelalmostanykindofvehicle-motorcyclesandthreewheelers,cars,vans&pickups,lifttrucks,buses,trucks,trains,boats,evenaircraft.Threewheelers,beingstableandhavingsufficientspace,arewellsuitedforCNG(compressednaturalgas)andareusedextensivelyinThailand,India,BangladeshandothermostlyAsiancountries.MostthreewheelersfittedoutforCNGareusedastaxisorlightdeliveryvehicles.

Urbanbusesareoneofthemostpopularusesfornaturalgas,usuallyutilizingCNGbutoccasionallyusingLNG(liquefiednaturalgas).Becausetheamountofmileageanurbanbustravelsdoesn’tvarymuchfrom

Spain: Where intermittent solar energy and natural gas work togetherSpainisoneofthemajorplayersintheworldwithrespecttosolarenergy.LocatedontheGuadixplateauinthesouthernSpanishprovinceofGranada,Andasol1wentintooperationinthesummerof2008asEurope’sfirstparabolictroughpowerplant.Glasstubesfilledwithoilstreamthroughthatfocuspointalongalongloopoftroughs.Withagrosselectricityoutputofaround180GWhperyearandacollectorsurfaceareaofover510,000squaremeters-equalto70soccerpitches-theyarethelargestsolarpowerplantsintheworld.Themirrorsslowlytrackthesunfromeasttowestduringdaytimehours,andtheoilreachesabout400degreesCelsius.

day-to-day,thefuelrequirementscanbecateredforquiteeasily.StoragecylindersforCNGareofteninstalledontheroofofabus,allowingtheweighttobedistributedevenlyoverthechassis.

Thebestfuelchoiceforaheavytruckdependsonthedutycycleofthevehicle.TrucksthatdolowermileagesorthatreturntoabasefrequentlywilloftenbesuitedforCNG,whiletrucksthatdohighermileagesmightbemoresuitedforLNG.

Transportationbyroadandseamaybecomeanareaofsubstantialgrowthforthenaturalgasindustryinthecomingdecadessincethisfuelgivesrisebothtolesslocalpollution(e.g.NOx,particles)aswellasreducingtheglobalwarmingimpacts.

TheU.S.DoEAlternativefuels&AdvancedVehiclesDataCentrehavemeasuredthepotentialbenefitsofCNGversusgasolinebasedontheinherentlycleaner-burningcharacteristicsofnaturalgas.Thefindingsare:- Reducedcarbonmonoxideemissions90%-97%

- Reducedcarbondioxideemissionsbyabout25%(seebelowtable)

- Reducednitrogenoxideemissions 35%-60%

- Potentially reducednon-methanehydrocarbonemissions50%-75%

- Emitfewertoxicandcarcinogenicpollutants,emitlittleornoparticulatematter,eliminateevaporativeemissions

Fig. 6.9: Greenest Vehicle of 2008. The natural gas fuelled Honda Civic GX was voted the greenest car of the year by Greenercars.org which is part of the American Council for an energy Efficient Economy (ACEEE).

Thissolarplantissupportedbynaturalgas,usedwhenastretchofrainyorovercastdayspreventtheplant’sfulloperationandthestoredenergycannotstretchfarenoughthroughtheendoftherainyphase.Itistherebyabletomaintainstability,notbestoppingandstartinguptheturbinesmorethanonceaday,asthey’redesignedtodo.Thisisanexampleofhowcleanburningnaturalgasandarenewablesourceofenergymayplaytogethertothebenefitofallinvolved.

Page 46: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

46 InternationalGasUnion|September2010

ThereductioninCO2-emissionsof25%isimportantinitselfandthefocusofthisreport,butitisthecombinedeffectoflocal,regionalandglobaleffectsthatmakesnaturalgasarealchallengertogasolineanddieselasavehiclefuel.

LNG as a maritime fuelTheworld’smerchantfleetcarrysome90%ofallworldtradeandshippingisaveryefficientwayoftransportinggoodsonaton-kilometrebasis.Therealsizeofcarbondioxideemissionsfromtheglobalshippingindustryisdisputed,butseemstobebetween3and4percentofglobaltotalCO2.Theconsensusestimateisabout1000milliontonsperyeartoday(seetable6.3)andissettoincreaseinparallelwiththegrowthoftheglobaleconomy.

Theshippingindustryneedstofurtherreduceharmfulemissionsfromtheiroperations.Historicallythebunkerfuelusedbylargesegmentsofshippinghasbeen“bottomofthebarrel”fromtheoilrefineries.ThosedayswillcometoanendoverthenextdecadesgivenrecentregionalrulingsbysomecountriesandsuchglobalinstitutionsasIMO.OneembryonicanswertothischallengemaylieintheintroductionofLNG-fuelledvessels.Switchingfromdieseltonaturalgashasatleasta20%CO2 reductionpotentialandisbeingpursuedasameasureforinlandferriesandoffshoresupplyvessels.ThemainobstacletotheincreasedutilizationofnaturalgasisthelackofaccesstoLNG-fuellingfacilitiesinmostharbours.

Aco-benefitofaswitchfromdieseltonaturalgasisthatitalsoreducesemissionsofSOx,NOxandparticlesthatcontributetolocalairpollutioninports.

Petroleum use and GHG emissions reductions(relative to baseline light-duty vehicle fuelled with reformulated gasoline)

Fuel Percent reduction in petroleum use*

Reduction in GHGs

CNG ~100% 21-26%

LNG ~98% 21-25%

Cleaning up city-air with natural gas; – an ongoing Indian success storyRapidurbangrowthinIndiahasresultedinveryseriousairpollutioninmanymetropolitanareas.InDelhialone,thenumbersofvehicleshaveincreasedfrom235000in1975to2,1millionin1991and5,1millionatpresent. Thefirsttrialswithnaturalgasvehicles(NGV’s)inIndiastartedin1992withtheaimofimprovingurbanairqualityandtoresolvetechnicalandsafetyissues.

Thecurrentstatusforcompressednaturalgas(CNG)fuelledvehiclesisthatslightlyover3%outofIndia’s14,5millionvehiclesrunongas.Thereare383CNG-fillingstations-in16majorcities-andover450000CNGvehiclesinIndiaasawhole.

ThelargecitiesofDelhi,Ahmadabad,MumbaiandSurathaveallnowdevelopedCNG-infrastructureonafairlylargescale,withDelhiandAhmadabadthefirstcitiesintheworldtohavetheirentirebusfleetonCNG.Theeffectontheairpollutionhasbeenverymarkedfortheinhabitantsandvisitorstothesecities.

ThecurrenthandicaptothegrowthofnaturalgasvehiclesinIndiaisthelimitedavailabilityofnaturalgasaswellastheimmaturedevelopmentofthegaspipelinenetwork.Bothofthesewillbeaddressedinthecomingyears.

Source:Gumber,Ashwani,GAIL(India).PaperatWorldPetroleumCongressinMadrid,June2008

Table 6.2 Greenhouse gas emission reduction from use of natural gas (as CNG or LNG) in light-duty vehicles (Source: A Full Fuel-Cycle Analysis of Energy and Emissions Impacts of Transportation Fuels Produced from Natural Gas: (http://www.eere.energy.gov/afdc/vehicles/emissions_natural_gas.html)

Page 47: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

September2010|InternationalGasUnion 47

Norwegian ship-owners have beenforerunnersforLNG-fuelledships(seetext-box)andtheinterestforsuchsolutionsisgrowingglobally.

Low bound

Consensus estimate

High bound

Consensus estimate %Global CO2 emissions

Total shipping emissions 854 1019 1224 3,3

International shipping 685 843 1039 2,7

Ship-owners spearheads LNG for fuelInearlyspringof2000anLNG-poweredcarferrycalledGlutrawasputintooperationinNorway.Thispioneeringferrywasfuelledfromasmall-scaleLNGproductionplantatthenearbynaturalgasplant.LaterthreemoresmallandlargescaleLNGproductionplantswerebuiltinNorwaytoservevarioustypesofgascustomers.Thesedistributeto20–mostlycoastal-LNG-stationsbytruckandsmallLNG-carriersinthiscountrycriss-crossedbydeepfjordsandruggedterrainunsuitableforoverlandpipelines.

TheavailabilityofLNGincombinationwithfactorslikeanenthusiasticR&Dcommunityfocussingonshipmotors,similarlyengagedshipownersandroadauthorities(responsibleforferries)tokeepmomentum.AlsoimportantwerethegovernmentregulatorydevelopmentsandtheroleoftheshipclassificationsocietyDnV.ThefocusonNOx-reductioninNorwayinordertoachieveanationalreductiontargetwasanunderlyingfactor.Atthepresenttimetheship-ownerEidesvikhasfourLNG-fuelledsupplyvesselsservingtheoffshoreoilandgasactivityintheNorthSea.Furthermore6LNG-fuelledcarferriesareinoperationandseveralareattheplanningstage.OneLNGdistributionvesselisalsoLNG-fuelledandtheNorwegianCoastGuardhas3partlyLNG-fuelledvesselsonorder.

TablecomparingemissionsfromtwoshipsondieselandLNGfuel.NOxisreducedby87%andCO2isreducedby29%incomparablecases.

AprocessisunderwayforestablishingregulationsforgaspoweredcargoshipsinIMO.ThenextstepintechnologydevelopmentrelatedtoLNG-shipsistotestouta320kWfuel-cellunitduring2009forpowergenerationononeofEidesvik’sships.

Source:WPC2008a

Emissions to produce1 MWhe

Viking Energy-Gas mode

Viking Energy-Diesel mode

Viking Avant-Diesel with SCR

Total energy consumption 11214 MJ 11356 MJ 12072 MJ Emission of NOx 1,29 kg 12,4 kg 3,66 kg Emission of CO2 621 kg 822 kg 872 kg Emission of SOx 0,15 kg 1,94 kg 2,05 kg Total energy efficiency 32,1 % 31,7 % 29,8 %

Table 6.3 Consensus estimate 2007 CO2 emissions (million tons CO2) from shipping. (International Maritime Organization IMO, 2008)

Fig. 6.10: LNG may in the next decades become a fuel of choice for some segments of the shipping industry. Among the driving forces for this will be local environmental concerns (e.g. NOx, SOx, soot) in harbours and along coastlines as well as new rules from the International Maritime Organisation (IMO). Left picture is LNG-fuelled car ferry Bergensfjord. The right picture is the small LNG-carrier Pioneer Knutsen which distributes LNG to terminals along the coast of Norway.

Page 48: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

48 InternationalGasUnion|September2010

Naturalgashasforalongtimeplayedanimportantroleinheatingandcoolingofcommercialpremisesaswellasinresidentialbuildings(seefigure4.8).Thetechnologytoservethisend-usesectorisalreadyquiteefficient.Canwemakeitevenmoreefficient?Oneofthewaystoprogressend-useefficiencytothenextlevelisbyintroducingnaturalgasfiredheatpumpsthatcanreplaceexistingboilertechnology(text-box)andatthesametimeserveasacoolingappliance.

Thepicturedheatpumpisahighlyefficientsinglepieceofequipmentthatcanproducechilledwateraslowas3oC forcoolingorwateratupto60oCforheating.Ineffect,itisa2-pipe

arrangementthatoperatesaseitherachillerorasaheater–dependentontheapplicationrequirements.

Eachaircooledmoduleofthistypeproduces16.9kWofcoolingor35.3kWofheatingwithanominalheatingefficiencyashighas140percent.Thismeansthatheatingisproducedatasubstantiallyhigherefficiencycomparedtoaconventionalgas-firedboileroperatingattypically90%efficiency.Unlikeconventionalelectricpoweredheatpumps,theheatoutputandheatingefficiencyislessaffectedbyexternalambienttemperatures.

Switching from coal to natural gas in electricity generationWhenanelectricutilityhasadecisiontomakewithregardtochoiceoffuelforanewpowerplant,manyfactorsentertheconsiderationincludingprojectionsoffuelcostsdecadesahead,technology,marketsandsoforth.AnewfactorcomingtotheforefrontinthelastfewyearsistheamountofCO2emittedperunitofelectricitywiththedifferentfuelsandtheirassociatedtechnologies.

Fossilfuelledpowerplantsgloballyemit78percentofalllargepoint-sourceCO2 (fig.6.16).Atpresentthese78%aresharedwith60%-pointsascoalfired,11%naturalgasand7%oil.Ifwebymagicandovernightcouldswitchalltheworld’scoalfiredpowerplantstomodernnaturalgasfiredcombinedcycleplants,wewouldexperienceover5GtCO2/yr,areductioninglobalCO2-emissionsby1/5.Whileinitselfnotveryrealistic,thisthoughtexperimentillustratethehugepotentialforfuelswitchingtonaturalgasintheelectricitygenerationsector.

Heat and cool with new gas fired heat pumpsOverthelastdecade,advancesinnaturalgascoolingtechnologymadelargecoolingunitsavailabletobusinessandindustry,allowingthemtotakeadvantageoftheefficiency,economy,reliabilityandsuperiorperformanceofnaturalgas.Now,thissametechnologyhasbeenappliedtosmallerpackagedunitsinsizessuitableforcommercialandresidentialpremises. Theheatpumpisthetechnologythatisreadynowandcanbeafirststepinreplacingtheexistingboilertechnologyathigherefficiencyandatthesametimebringanewfunction(cooling).

Aheatpumpisahighlyefficientsinglepieceofequipmentthatcanproducechilledwateraslowas3oCforcoolingorwateratupto60degCforheating. Eachaircooledmoduleofthistypeproduces16.9kWofcoolingor35.3kWofheatingwithanominalheatingefficiencyashighas140percent.Thismeansthatheatingisproducedatamuchhigherefficiencycomparedtoaconventionalgas-firedboiler,savingalmost50percentrunningcostsandalmosthalvingCO2emissions. Unlikeconventionalelectricpoweredheatpumps,theheatoutputandheatingefficiencyishardlyaffectedbyexternalambienttemperatures.Heatpumpsareconsideredbymanythenextlargedevelopmentofgasapplicationintheresidentialadcommercialsector.

1,2

0,85

0,35

Kg CO2 per kWh of electricity produced

Lignite fired power

Hard coal fired power

Natural gas fired power

Fig. 6.11: Approximate CO2-emissions per unit of electricity produced from the three fuels natural gas, internationally traded coal and brown coal (lignite). The latter is usually not traded over distance, but used in a power plant close to the mine. The large gap between coal and natural gas (0,85 vs 0,35 kg/kWh) is explained partly by less CO2 per unit of energy in natural gas than in coal. Another reason is that natural gas is fired in a highly efficient gas turbine based combine cycle plant, while coal is usually being fired in a less efficient boiler-based power plant in a steam-cycle.

Page 49: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

September2010|InternationalGasUnion 49

IGURE-

100

90

80

70

60

50

40

30

20

10

0

%

South

Africa

Poland

China

Austra

liaInd

ia

Czech

Rep

ublic

Greece

Denmark

Taiw

an USA

German

yWorl

d

93

37

56

79

21

55

66

54 6055 53 49

27

24

35

42

7

2

Hard CoalLignite

Oceania

Other Europe

Latin America

North America

Asia

Africa

Middle East

EU25

FSU

0 20 40 60 80

Million tonnes/yr

Switching to hydrogen made from natural gas Thefurtherend-usedecarbonisationofenergywill–togetherwithcarbonneutralrenewables-ultimatelydependonswitchingtoelectricityandhydrogen(H2),thetwoenergycarriersthatdonotcarrycarbontothepointofuse.

Inthe1970’sjournalistscalledhydrogen“theTomorrowFuel”,andcriticshaveworriedthathydrogen–likefusion-willremainforeveronthehorizon.Invisibletothepublic,however,hydrogenisalreadyverymuchpartoftheworldofenergy.

Hydrogenisathrivingyoungindustry.Hydrogenproductionisalargeandgrowing.Globallysome50millionmetrictonsofhydrogen,equaltoabout170milliontonsofoilequivalentareproducedannually.

Inanenergycomparison,thisisjustabout7%oftheglobalnaturalgasproduction.Thegrowthrateforhydrogenproductionisaround10%peryear.Currently,globalhydrogenproductionisabouthalffromnaturalgas,30%fromoil,andmostoftherestfromcoal.Waterelectrolysis-contrarytowidespreadbelief-accountsforonly4%.

Therearetwoprimaryusesforhydrogentoday.Abouthalfisusedtoproduceammonia(NH3)forfertilizersviatheHaberprocess.Theotherhalfisusedtoconvertheavypetroleumsourcesintolighterfractionssuitableforuseasvehiclefuels.Ammoniaisinstrumentalinfeedingtheglobalpopulation,thefuelupgradingisalreadycontributingtodecarbonisationofthetransportsector.Verylittlehydrogenistodayuseddirectlyforenergypurposes.

Fig. 6.12. Contribution of coal to power generation in selected countries (2003 data). Switching from coal to natural gas in the power generation sector give rise to only half as much CO2-emission per kilowatt-hour electricity generated. The power sector in the countries listed in this graph could be prime targets for such fuel switching in climate driven world (Redrawn based on IEA source material).

Fig. 6.13: About half of global hydrogen production is used for the production of ammonia (NH3) for the fertiliser industry. Most of the capacity is to be found in Asia. The production of ammonia goes through a step where pure hydrogen is made with CO2- removal an integrated part of the process (Data: Fertecon, PottashCorp, 2005). The global potential for already captured CO2 is around 100 Mt per year (IEA, 2008a)

Page 50: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

50 InternationalGasUnion|September2010

Whenhydrogenismadefromnaturalgas(orcoal,oil),theprocessinvolvesremovalofCO2fromthehydrogenstream.ThismeansthattheexpensiveCO2-capturestageisalreadypartoftheexistingindustrialpractice,makingthetransitiontoundergroundstorageofCO2(CCS)lesscostlyforhydrogenproductionthanforelectricitygeneration.

Hydrogenisverymuchpartofourdailylife,butevenmoreinvisiblethannaturalgassinceitisbeingusedalmostexclusivelyinthepetrochemical,fertilizerandrefineryindustries.Themapshowsanexampleofanexistinghydrogenpipelinenetwork(inred)coveringover700kminthreecountriesownedbytheindustrialgasproviderAirLiquide.Intotaltherearegloballynearly3000kilometresofhydrogenpipelines,equallysharedbetweenNorthAmericaandEurope.

Mixing hydrogen into natural gasInaparalleldevelopmenttomixingbio-methaneintothenaturalgasgrid,the“NaturalHy”R&DprojectintheEuropeanUnionhasforsomeyearsbeenresearchingthepossibilityofinjectingpurehydrogenintonaturalgaspipelines.

Itisnotyetpossibletosayconclusivelywhatlevelofhydrogenmaybesafelyaddedtoexistingnaturalgasnetworks,butcurrentindicationsarethatitmaybepossibletotransportinexcessof30%hydrogeninhighpressuretransmissionlineswithexistingsteelmaterials.

Inthesamewayasachainisonlyasstrongasitsweakestlink,however,themaximumlevelofhydrogenwilldependonacarefulanalysisofimpactsacrossthewholegaschainandinparticulartheend-usepart.Themodernpre-mixeddomesticboilerstestedintheNaturalHyprojectcantoleratemixturescontainingmorethan50%hydrogeninnaturalgas,apparentlywithslightlylowerNOxlevels.

Thesearepotentiallyveryimportantresults,obtainedbothinlaboratorytestsandinyear-longfieldtrials.Itmustbekeptinmind,however,thattheseresultsarederivedusingnewpre-mixedboilers.Manyofthe

Performance and cost measuresNew hydrogen plant

Range Representative valueLow High

Emission rate without capture (kgCO2/GJ) 78 174 137Emission rate with capture (kgCO2/GJ) 7 28 17Percent CO2-reduction pr GJ (%) 72 96 86Plant efficiency with capture, LHV basis (%) 52 68 60Capture energy requirement (% more input pr GJ) 4 22 8Cost of hydrogen without capture (US$/GJ) 6,5 10 7,8

Cost of hydrogen with capture (US$/GJ) 7,5 13,3 9,1

Percent increase in H2 cost with capture (%) 5 33 15

Cost of net CO2 captured (US$/tCO2) 2 56 15

Capture cost confidence level Moderate to high

Oxygen, nitrogen, hydrogenand cabon monoxide pipelines

NORTHERN EUROPEnetworks

NETHERLANDS

BELGIUM

FRANCE

Wazlers

Mons

Dunkerque

Terneuzen

Bergen-Op-Zoom

Rozenburg

Feluy

CharlerolLiége

Antwerpen

Zeebrugge

Lille

Maubeuge

Gent

Brussel

Rotterdam

Dortmund

GeleenGenk

OxygenNitrogenHydrogenCarbon monoxide and/or syngas

Oxygen & nitrogen plantCogeneration plantHydrogen and/or carbon monoxide plant

1034 km 732 km 879 km 56 km

domesticappliancesinusetodayarenotnew,arenotofthepre-mixeddesignandarenotsubjecttorigorousmaintenance.

Thereisalargevariationinthequality(gascomposition)ofnaturalgasusedwithinEUcountriesandconsequentlythiswouldleadtoasignificantvariationinmaximum

allowablehydrogen.Takingthesefactorsintoaccount,themaximumallowedpercentageofhydrogeninnaturalgasmayturnouttobe10percentorless.

Table 6.4: The costs of producing hydrogen from natural gas with and without CO2-capture (transport and storage not included in figures). The incremental costs of CCS for a hydrogen plant (including existing plants) is much lower than for an electricity generation plant. This is due to CO2 being already captured in the hydrogen plant as part of the normal process (Source: IPCC SRCCS 2005)

Fig. 6.14: Hydrogen pipelines (in red). This map shows the pipeline network in the three countries France, Belgium and the Netherlands of the industrial gases supplier Air Liquide. Similar pipeline grids of varying length exist in USA, Germany and a few other countries serving industrial consumers (Redrawn based on an Air Liquide original).

Page 51: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

September2010|InternationalGasUnion 51

CO2-capture and –storage (CCS) for natural gas customersGascustomersandotheractorswithintheenergyindustryarealreadyturninguponthedoorstepsofthenaturalgasindustryaskingforadviceandhelptocarryoutundergroundstorageprojectsfortheirCO2.CCSprojectssofarmaterialised,however,arefewandfarbetween.Thebarriersaremany(highcosts,legal,publicacceptance)whileatthesametimedependable,long-termfinancialincentivesforCCSaremostlyabsent.

CCSismostlydiscussedinconnectionwiththelargeindustrysectorsofcoalandelectricitygeneration.Thereare,however,numerousotherlargeindustrialpointsourcesofCO2thatarecandidatesforCCS.Thesecanbefoundinthepetrochemicalindustries,thefertiliserindustry,refineries,ironandsteelproduction,cementplantsandsoforth.

Globallythereisalarge,butfinitenumberoflargepointsourcesofCO2asshownbyfig6.16.

Gas power

Oil power Coal power

Iron & steelCement

RefiningPetrochem

icals

Coal power generation ~60%

Gas power generation ~11%

Fuel oil power generation ~7%

Cement production ~7%

Iron and steel ~5%

Oil refineries ~6%

Petrochemical industry ~3%

Will the natural gas industry be transporting and storing CO2 for others?ThenaturalgasindustryhasstartedtouseCCStocleanupitsownoperations.AnumberofindicatorsarepointingtowardsthenaturalgasindustryovertimetakingawiderCCSrole. ThegasindustryhasbeenpioneeringtheconceptofCCS,ithasanabundanceofknowledgeofgeology,drilling,reservoirs,pipelinetransportationaswellasexperiencefromover600undergroundnaturalgasstoragesites. ThenaturalgasindustryisthereforeuniquelypositionedtotransportandstoreCO2 ingeologicalformationsalsoforowngascustomersaswellasotherinneedofsuchservices.ForthistohappenitisnecessarytohaveregulatoryandlegalframeworksinplacemakingCO2-transportand-storageanattractivecommercialprospect.

ThefirstprojectsamongnaturalgascustomersthatlendsthemselvestoCCSareCO2 fromhydrogenandammoniaplantswhichhasalreadycapturedtheCO2forprocessreasons.Furtheralongthetime-lineiscapturefromnaturalgasfiredandotherthermalpowerplantsaswellassourcesinthepetrochemicalindustryetc.

Fig. 6.15: The illustration shows a typical power-plant and CO2-capture scheme in combination with underground CO2-storage. There are several capture technologies that can be applied to power plants depending on circumstances. The capture-, separation and – compression plant will usually be collocated and integrated with the power plant in order to facilitate heat and other utility integration. CO2- storage will usually take place below a depth of over 800 meters (below the surface) in order to store the dense, socalled supercritical CO2.

Fig. 6.16: The global number of point sources for CO2 larger than 0,1 million tons per year are limited to about 7500. Taken together these 7500 large point sources represent 56% of all fossil fuel derived CO2- emissions (Data source: IPCC SRCCS, 2005).

AsimilargraphfocussingonlyonpointsourcesaboveonemilliontonsofCO2/yrwouldshowasignificantlysmallernumberofplants,butnotanequivalentreductioninCO2-volumes.

Page 52: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

52 InternationalGasUnion|September2010

Cutting methane & flaring emissions for the oil industryForthenaturalgasindustrytoassistinreducingmethaneemissionsandflaringintheoilindustryisoneareawheretworelated,butdifferentindustriescancooperatetotackleconnectedproblems.

Theoilproducingindustryhasforyearsstruggledwithhowtocurbthepracticeofburningthenaturalgasthatoftencomesoutofthereservoirsalongwithcrudeoil.Thecontroversialandvisiblepractice,calledflaring,hasdeclinedinpartsoftheworld,butsuchreductionshavebeenoffsetbyincreasesinflaringelsewhere.

Highernaturalgaspricesandimprovedtechnologieshavewidenedtherangeofoptionsforreducinggasflaring.

Muchingenuityhasgoneintodevelopingwaystoavoidgasflaring.Amongthoseare:

• Inject thenaturalgas ina localgeologicalreservoirawaitingfuturetechnologiesandorgaspricesmakingitpossibletotransportthegastomarket

• Gatherseveralsmallgassourcestomakeiteconomicallypossibletoinvestinagatheringpipelinetoapayingmarket

• Transportnon-flarednaturalgasasLNG(e.g.mini-LNG)orCNGontrucks,trains,bargesorshipstoapayingmarket

• Convertgastoelectricity(gas-to-wire)tomaketransportationmoreeconomicaloverlongerdistances.Oververylongdistancesdirectcurrent(DC)maybepreferredtoalternatingcurrent(AC).

• Convertthegastoamoretransportablefluidsuchassyntheticoil(GTL),methanol,DME,oxygenates,ammoniaandsoforth

Localcircumstanceswilltoalargeextentdeterminewhichoftheseoptions,ifany,canbeappliedtoaspecificflaringcase.

MarketDemand

Competition other energyGas-to-gas competition

EconomicsCapacityDistance

Gas quality

EnviromentNo gas flaring

H2S and contaminantsGHG emissions

In2007,theWorldBankandRosneftsignedamemorandumofunderstandingtojointlydevelopagasflaringreductionprogram,underwhichemissionreductionunitscouldbeboughtbythebank.TheprogramwillbeimplementedintheframeworkofagasutilizationprojectcurrentlyunderwayattheKomsomolskoyefieldintheYamal-NenetsAutonomousDistrictofRussia.

Theprojecthasthefollowingmainobjectives:a)ImplementationoftheRosneftgasutilizationprogramincreasingtheassociatedgasutilizationefficiencyupto95%,b)collectionofassociatedgasattheKomsomolskoilfieldandtransportationintoGazpromUnifiedGasTransmissionSystemforretailtoendconsumersandc)reductionofassociatedgasand/oritsflaringproductsemissionsintotheatmosphere,andimprovementoftheregionalairquality.

TheprojectwillhavelargepositiveenvironmentalimpactswhicharerelatedtothereductionofGHGemissions(about2.4milliontonsofCO2eqannually).Apartfromemissionreductionsduetothereductionofflaring,theexpectedbenefitsfromtheprojectincludethedecreaseofotherenvironmentalpollutants,suchasSOx,NOxandothers.Italsodecreasesconsiderablythermal(theflareburnsatanaveragetemperatureof1700°C),visual(light)andnoisepollutiontothelocalenvironment.

Source:WorldBank

Oftenthereisalackofcoordinationandalackofpolicy/strategybetweenactors.Inmanycasesthereisalackofdatawithrespecttoproductionprofilesfordifferentfields,makingforwardplanningdifficult.

Fig. 6.17: Flaring reduction projects have to take into account the three major factors indicated in this triangle. The economics are influenced by gas volume (economics of scale), by transportation distance and by the presence of contaminants in the gas. Environmental aspects of any hydrogen sulphide (H2S) content in the gas as well as how much energy and CO2 the flaring reduction gives rise to must be factored in. Finally there must be a market willing to pay for the gas or product made from gas (e.g. electricity). Redrawn based on a GGFRP original.

Page 53: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

September2010|InternationalGasUnion 53

PresidentPutin’s2007StateoftheUnionspeechcalledforareductioninthecountry’sgasflaringandthegovernmenttodayhasplanstoestablisha95%utilizationrequirementforassociatedgas.TheRosneftflaringreductionproject(textbox)-andotherslikeit-illustratesthatRussiaistacklingtheflaringprobleminabusinesslikemanner.

PFCEnergyhasconductedthestudy“UsingRussia’sAssociatedGas”onbehalfoftheGlobalGasFlaringReductionPartnership(GGFR)andtheWorldBank.Thestudywasmadepublicin2008assessingthatRussianoilproducersannuallyflare38billioncubicmeters(Bcm)or1.3trillioncubicfeet(Tcf).

ThePFCstudycomparedtheeconomicsoffiveoptionsforincreasingassociatedgasutilizationinRussia,including:

• Generationofelectricitytoprovidepowertotheoilfield

• Generationofelectricityfortheregionalmarket

• ProcessintoLPG(propane,butane),petrochemicalsanddrygas

• Processintodieselormethanol(GasToLiquids-GTL)

• Re-injectionforEnhancedOilRecovery

ThePFCEnergyanalysisdemonstratesthat:

• Theoptimaluseofassociatedgasvarieswiththesizeoftheproducingfield.

• Forsmallfields,themostattractiveoptionisthroughsmall-scalepowerproductiontomeettheneedsofthefielditself(electricsubmersiblepumps,etc.)andotherlocalusers.

• Formedium-sizedfields,themosteconomicutilizationoptionisthroughextractionoftheLPGingasprocessingplants,andsaleoftheLPGorpetrochemicalsanddrygas.

• Forlargefields,themostattractiveoptioniselectricpowergenerationthroughalargepowerplantsellingpowerwholesaletothegrid.

Attheendofthedaygasflaringismostlyabouteconomics,buttherearealsostrongelementsoftechnology,incentives(e.g.CDMandJI)andregulations.TheadditionalrevenuestreamfromCDMorJIforflaringreductionisexpectedtogetasubstantialamountofotherwiseflaredorventedgastothemarket.

References chapter 6BPStatisticalReviewofWorldEnergy2008

IPCCSRCCS,SpecialReportonCO2-captureand–storage,2005

WPC(2008a),PaperatWorldPetroleumCongress,2008;Sandaker,KjellMartin,EidesvikOffshoreASA

IEA,(2008a),CO2CaptureandStorage.AkeyCarbonAbatementOption,IEAParis

Useful web-sites for this chapter:-USEPAonmethaneemissions:http://www.epa.gov/climatechange/economics/international.html

GGFRP-WorldBankGlobalGasFlaringReductionPartnership:http://web.worldbank.orgWBSITE/EXTERNAL/TOPICSEXTOGMC/EXTGGFR/0,,menuPK:578075~pagePK:64168427~piP:64168435~theSitePK:578069,00html

USDoEAlternativeFuels&AdvancedvehiclesdataCentre:http://www.afdc.energy.gov/afdc/

InternationalAssociationofNaturalGasvehicles(IANGV):http://www.iangv.org/

GreenCarCongress: http://www.greencarcongress.com/2008/06/iangv-sees-pote.html

InternationalMaritimeOrganisation(IMO):http://www.imo.org/

CDM–CleanDevelopmentMechanism:http://cdm.unfccc.int/index.html

Page 54: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

54 InternationalGasUnion|September2010

Theopportunitiesforclimatechangemitigationinthenaturalgasindustryitselfaswellasamongexistingandfuturecustomersarenumerousaswehaveseeninthepreviouschapters.Oneobviousquestionis:Whyhavetheseopportunitiesnotbeenadoptedtoagreaterextentalready?Thischapterattemptstohighlightsomeoftheimportanttechnical,economical,regulatory,geographicandattituderelatedbarriersthatinthepasthavecomeinthewayofimplementingactionsinvolvingnaturalgasasawayofreducingclimateimpact.Thelistingwillnotbecompletegiventhedifferenceincircumstancesbetweencountriesandregions.Someofthechallengesare,however,globallyrelevant.

Onthemorepositivesidewehaveattemptedtodescribeafewcaseswherebarriershavebeenencounteredandtackledinawaythatotherscanlearnfrom.

7.Challenge

MotivatorsInfig.7.1weseektoillustratethattherearemanyandvariedwaysofmotivatingclimatechangemitigation,inparticularwhenwelookasfaraheadasfiftyyears.Classicallywehavedividedthemotivatorsinto“carrots”and“sticks”sincebothareneededandcomplementeachotheracrosssectorsandcultures.Theleasteffective–oftenhavingtheoppositeeffect-isshowninthelowerleftcornernamed“emptydeclarations”.Themosteffective(upperrightcorner)areestablishingframeworkssuchthatclimatechangemitigationmakescommercialsenseincompetitionwithothercommercialprojects.Inafiftyyeartime-frameweseethatlongtermactivitiessuchascountriesandcompaniessettinggoodexamplesmaybecomeimportant.Whenthinkingintermsofdecadeswefindthatbetterclimateandenergyinformationinlowergradeschoolsalsobecomeefficientmotivators.

Country and companies setting good example:- Targets- Technology- Implementation

Level playing field for mature, low-GHG technology deployment

CARROT Direct subsidies of conven-tional energy efficiency renewables (development)

Voluntary climate action

International target setting for GHG-reductions

Empty declarations

Early subsidies for improved long-lived intrastructure(teck-lock in)

Climate & energy informa-tion in schools

Assist & motivate developing countries to choose low-GHG tracks

High end- use energy prices

Technology deve-lopment & deploy-ment for improved low-GHG energy

National and regional ambitions targets for GHG-reduction

CDM & JI

Cap & trade

Targeted energy and low-carbon standards & regulations

Targeted energy and low-carbon taxation

EFFECT ON CLIMATE CHANGE

NEUTRAL

STICK

LOW MODERATE HIGH

Commercial cases for climate mitigation

Figure 7.1 What motivates climate change action? This figure attempts to sort the major motivators (sticks and carrots) and their effects (low, moderate or high) on different actors. There are many more motivators at work than shown in this figure and some of them may have different effect in one culture compared to another.

Page 55: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

September2010|InternationalGasUnion 55

BarriersWhyisclimatechangemitigationsoslowtocomeintoplace?Partofitcanbeseeninthemotivator’sfigure(fig.7.1),buttherearealsootherreasonswhymitigationistakingtimetohappen.Intheenergyindustrythereareforinstancedecade’slongturnovertimes

“Crying wolf” effect. Difficult to keep up motivation for several decadesLack of knowledge of energy & GHG-sources

Rapidly increasing energy use & GHG-emissions in non-target developing countries

High cost of non- or low--carbon energy sources (e.g. solar)Lack of level playing field for low-carbon alternatives (e.g CDM)

Lack of decades-long targets and mitigation framework in most countries

Tendency towards “least common” denominator in international climate negotiations (e.g.Kyoto)

Not sufficient GHG-focus in standards in most countries (e.g. buildings, cars)

Lack of low-carbon technology suited for real-world application

Long-term technology lock-in for long lived infrastructure (e.g. power plants, transport networks)

Uneven country-focus and climate targets causes international trade problems

Lack of commercial incentives (e.g. monetary carrots or regulatory sticks)

START Sceptisism towards reality/impact of climate change

GOAL

forplantsandequipment.Withoutverystrongclimate-incentives,relativelysmallchangeswillhappenwithrespecttoenergyefficiencyorotherreductionmeasuresuntiltheslownaturalplantreplacementcyclehasmadeitsnextturn.

Manyotherbarriersof a technical,educational,motivationalorinstitutionalnaturestandinthewayofspeedyrealisationofclimatechangemitigation.Thisisillustratedfornaturalgasindustryrelatedreductionmeasuresinfig7.2andtable7.1.

Fig. 7.2 How a mountaineer might view barriers to climate change mitigation. Not all the indicated barriers are equally relevant to specific countries, companies or individuals, but the route to the top contains a number of difficult obstructions between the valley and the top of the mountain.

Page 56: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

56 InternationalGasUnion|September2010

Long turn-over time for plants

Gas prices high enough to defend costs

Assist oil industry in reducing flaring

Long turnover time for equipment, pipelines, compressors etc.

Lack of long-term GHG regime & -price

Lack of long-term GHG -regime & -price (CDM, JI 7 )

Limit gas industry flaring, venting, fugitive emissions

Lack of regulatory framework for cross-bordertransportation and storage sites

See as interesting new business sector?Gas companies as CO2-transp/-storageservice providers

Oil price high enough to defend EOR-costs?

Distance between sufficiently low cost CO2-sources and EOR locations

Sell CO2 for use in enhanced oil recovery projects

Lower cost technologies and more tech.suppliers

CCS from flue gases in gas industry

Long term storage liability

Lack of long-term CO2-regime & -price

Lack of long-term CO2-regime & -price

CCS for already captured CO2 (e.g. LNG, high CO2 NG)

Availability of renewable energy for specific plant locations

Price diff. hydro vs gas (incl. CO2-price)Renewables in gas industry operations(e.g. hydropower)

Availability of bio-gas

Price incentives for use of renewablesMix bio-gas into natural gas grid

Availability of H2 end-use equipment

Compatibility of existing/new pipelines

Price diff. between hydrogen production w/CCS and natural gas

Hydrogen from natural gas for distribution

New technologies needed for efficiency

Price difference between coal/heavy fuel oil and natural gas (incl. CO2-price)

Switch to natural gas in energy intensive industries (e.g. steel)

Gas compatible motors, turbines, systems

Price diff. between oil and LNG/CNGSwitch to natural gas in new types of end-use (e.g. ship-fuel, trucks)

Superior gas-fired technologies availablePrice gap between coal and gas (incl. CO2-price)Switch from coal to

gas in electricity generation

Government regulations for efficiency

Make natural gas available in more regions and locations to replace coal, oil

New end-use areas. New technologies for end-use

More efficient end-use technologiesChange of public attitudes to efficiencyEnergy efficiency for

natural gas customers

High gas- and el.-prices benefits efficiency Energy efficiency innatural gas industry

Later than 2025

Before 2025

Before2015

Expected time until removal of barrier

Potential barriers or enablersMitigation areas and tools

Table 7.1 Barriers and enablers to climate change mitigation in the natural gas industry and with natural gas customers.

Page 57: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

September2010|InternationalGasUnion 57

Thegreen,yellowandredlightsintable7.1-whilediscouragingintheshorttermto2015-givesrisetoconsiderableoptimisminthemedium(to2025)tolongerterm.Muchisalreadyhappeningthatmayremovebarriersforthemostrelevantmitigationeffortsbothwithingovernmentsandwithinthenaturalgasindustryitselfandwithourpresentandfuturegascustomers.

Oneofthemoresignificantbarriersagainstenergyefficiencyinthegasindustryitselfisthelongturn-overtimeforequipment.Anindustry-wideexpectationsofrelativelyhighgaspricesaswellasreadyavailabilityofcapitalwillontheotherhandofferincentivesforefficiencymeasures.

Energyefficiencyamongthecustomersofthenaturalgasindustryismoreaffectedbygovernmentregulations(e.g.standards),theattitudesofindividualsaswellastheavailabilityofnaturalgastopotentialfuturecustomers.Whenperhapsasfewas10%ofhumanityhasaccesstonaturalgas,thismeansthatasmanyas90%oftheglobalpopulationarelikelytochooselesscleanformsofenergy.

Fuelswitchinginpowergenerationandindustry(e.g.coaltonaturalgas)dependstoalargeextentonthepricedifferencebetweenthevariousfuels(“spark-spread”),inparticularbetweencoalandgas.

Sincethepowerandindustrysectorsareheavilyregulatedbygovernments,politicalfactorstraditionallyplayimportantrolesinmouldingnationalfuelmixes.Fuelswitchinginotherenergyintensiveindustries(e.g.ironandsteel)ismainlydependentonpricedifferencebetweencoal,heavyoilandnaturalgas.

IncreasinglytheexpectedfuturecostsofemittingCO2 totheatmospherearebecomingpartoftheequationforenergyintensivebranchesofindustry.Efficiencyandclimatemotivated technologydevelopmentwillinthemediumtolongrunbeanimportantdriverforswitching

tonaturalgasinmanyenergyintensiveindustries.

Fuelswitchingfromoilproductstonaturalgasinbuses,trucks,carsandevenshipshavehappenedforsometime,butarestilllowonthedevelopmentcurve.Bothpricedifferentialsbetweenfuels,environmentalconcernsandgovernmentactionshaveinthepastbeenimportantforpromotingnaturalgasintheseend-usesectors.

Somepartsofthegasindustryareveryactiveinthetransportationsector,othersmayuptonowhaveunderestimatedtheirownrolesinfurtheringasectorimportantforbothlocalpollutionandclimate.

HydrogenasanenergycarriermadefromnaturalgaswithCO2-storagecaninadeepCO2-reductionperspectiveturnouttobeanimportantsupplementtoelectricity.Barrierssuchaslackofatransportanddistributiongridandcommercialavailabilityofend-useequipmentwill,however,takealongtimetoovercome.Buildingfromanalmostnon-existingbasewillstretchovermanydecades.

Mixingbiogasintonaturalgasgridsishappeningtoanincreasingextent.Thebarriersaretobefoundinthemagnitudeofthebiogasresourceclosetogasgridsaswellasingovernmentincentivesforrenewableenergysources.

Theuseofrenewablesintheinternaloperationsofthegasindustrywillbelimitedbytheavailabilityofsuchresourcesclosetothegasoperations.Forthegasindustrythisseemslikelytobenicheapplicationsparticulartoafewregions,butstillanimportantwayoffurtheringtheintroductionofmorerenewables.

Captureand–storage(CCS)ofCO2

capturedfromnaturalgasisalreadyhappeningand thegas industry ispioneeringthistechnology.Increasingly,however,theuptakeofthistechnologyishamperedbypoliticalandmarketuncertaintyofthefuturepriceofemitting

CO2toatmosphere.OneofthesebarriersisthepresentlackofacceptanceofCCSundertheCDMregime.AnotherbarrierinmostcountriesisthelongtermliabilityoftheCO2storedunderground.Theindustrialviewisthatthislongtermperspectivemustbetheresponsibilityofgovernments.

ThealreadycapturedCO2fromthegasindustrymaybesoldtotheoilindustrytoenhanceoilrecoveryinagingfields.Thisoffersthepossibilityofseveralwin-wins.Onebeingthebetterutilisationofoilreservesfromalreadydevelopedoilfields.

AnotherbeingtheopportunityforthegasindustrytoearnmoneyandathirdopportunityistobuildaCO2-pipelineinfrastructurethatcanbeusedtotransportandstoreCO2oncetheoilfieldsaredepleted.ThegascompaniesmayalsoseeCO2-infrastructureasabusinessopportunitybothforownuseaswellasprovidersofservicesforcustomers.

Capturing and storing CO2 fromcombustionrelatedfluegasesinthegasindustryhasthesamebarriersasforalreadycapturedsourcesofCO2,butinadditionevenmuchmoreofaneconomicbarriergiventhehighcostsofcapturefromdilutefluegassources.

Thelimitationoreliminationofflaring,ventingandfugitiveemissionsofmethanefromtheoilindustryisoneimportantareawherethegasindustrycanassistanotherbranchofindustryinclimatechangemitigation.

Thebarriersagainstthishappeningaretoalargeparteconomic.ThiseconomicuncertaintyincludestheleveloffuturepriceoftherecoverednaturalgasaswellasthecostsofemittingCO2ormethanetotheatmosphereindifferentcountriesandregions.

Anotherbarriertofastimplementationisthelongreplacementtimeforlargecapitalequipmentaswellastheremotenessofmuchoftheflaringandventinglocations.

Page 58: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

58 InternationalGasUnion|September2010

Barrierremovalsuccessstory1;CCS and the OSPAR and London ConventionsInthosecaseswhereCO2storageactivitiestakeplaceoffshore,severalinternationalinstrumentscomesintoplayinordertoprotectthemarineenvironment.TheprimaryinternationalmarineenvironmentprotectiontreatiesaretheLawoftheSea,theLondonConvention(andLondonProtocol),andtheOSPAR(Oslo-Paris)Conventionandotherregionaltreaties.

NeitherofthesetreatieshadprovisionsfortherelativelynewtopicofCO2-captureand–storage,somethingthatwasrealisedbyinstitutionssuchastheIEAGreenhouseGasR&DProgrammeandsomenationalgovernmentsinthe1990’s.Undertheleadershipofgovernmentaldelegates,educationaleffortswereputinplaceaboutCCSforthoseinvolved.

OveraperiodofmanyyearsthisresultedinamendmentsandmonitoringguidancecomingintoplaceforbothLondonandOSPAR.TheselegaldevelopmentsmustbemonitoredandconsideredasgovernmentsandindustryattempttoharmoniseinternationalapproachestoCO2storagemonitoringandverification.In2007,anamendmentwentintoforceundertheLondonProtocolwhichallowsthestorageofCO2if: 1.Thedisposalisintoasub-seabedgeologicalformation;and 2.Storedstreamsconsistoverwhelminglyofcarbondioxide;and 3.Nowasteisaddedforthepurposeofdisposal.

ThisamendmentprovidedforthefirsttimeabasisininternationalenvironmentallawtoregulateCO2sequestrationinsub-seabedgeologicalformations.InJune2007theOSPARCommissionfollowedasimilarapproachandadoptedamendmentstoallowfortheoffshoregeologicalstorageofCO2,ifcompletedunderanauthorisedpermitfromaresponsiblenationalgovernment.

Barrierremovalsuccessstory2:How natural gas flaring in the oil industry came on the global agendaIn2002theWorldBankanditspartnerslaunchedtheGlobalGasFlaringReductionpartnership(GGFR)attheWorldSummitonSustainableDevelopmentinJohannesburg.ThePartnershipwasprecededbyaninitiativebetweentheBankandtheNorwegianGovernmenttoassessglobalgasflaring.

DuringthefirstinternationalconferenceongasflaringreductioninOsloin2002itwasagreedthataGlobalPublic-PrivatePartnershipwasthewayforwardforithadthepotentialofmakinggreatercontributionstogasflaringreduction,inspiteofthehugechallengesfacedbackthenandsomehowstillfacedtoday.Bynowthereisamuchbetterunderstandingofthebarriersthatweneedtoovercomeforreducingflaring,includingthelackofreliabledatatogaugethemagnitudeofthepractice.

Theactorsarealsomoreconsciousoftheneedforcountriestohavenotonlyeffectiveregulationsbutalsoclearpolicieswiththerightincentivesforoperatingcompaniessothatthenecessaryinfrastructureisputinplaceandmarketsforgasutilizationaredeveloped.Gasflaringreductionhasbeenmostsuccessfulwherethereiscountrybuy-in,high-levelsupportandaneffectivelocalpartnershipbetweengovernmentandindustry.

Thereisnolongerdoubtthatgovernmentsandprivatesectorneedtoworkasrealpartnersiftangibleresultsaretobeachieved.Therehasalsobeendevelopedakeenerawarenessofthecriticalrolethatleadershipandcommitmentplayinboththepublicandprivatesectorsinordertosustainprogressoverthelongterm.GGFR’smainroleisthatofacatalystthatbringskeystakeholdersaroundthetable,facilitatestheestablishmentofacommongroundwithcleartargets,anddoesnotallowthemtogiveuporgetdistractedfromtheultimateobjective.

Page 59: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

September2010|InternationalGasUnion 59

Insummarythemostimportantbarrier-breakersareremovalofinstitutional(mostlygovernmentandinternationaltreaty)barriers,deploymentofbettertechnologiesaswellasexpectationsofincreasingcostsofemissionsofgreenhousegasestotheatmosphereoverthenextdecades.Expectationsoffuturehighenergypriceswillalsoworkinthedirectionofanefficientenergysystembothintheindustrialisedandintheindustrialisingcountriesoftheworld.

Thenaturalgasindustrycan–anddoes-cleanupitsownoperations.Thisreporthasillustratedthemanyfacetsofthisworkaroundtheworld.Themaincontributionofnaturalgastomitigationofglobalwarminglies,however,inmakingitpossibleforourcustomerstoreducetheirgreenhousegasemissions.Thereporthasshownhowthiscanbedonebyswitchingfromhigher-carbonfuels,includingmixingbiogas(or

evenpurehydrogen)intonaturalgasaswellasreplacingoilproductsinvehiclesandships.Bythenatureofthefuel,naturalgasenablesenergyefficiencyinmostapplications.ThegasindustryisalreadyhelpingtheoilindustrytoreduceflaringandcaninthefuturetakearoleastransportersandundergroundstorageprovidersforCO2 (CCS)onbehalfofgascustomersaswellasinownoperations.

Naturalgasistheyoungestofthefossilfuelsintermsofcominglatertothemarketthancoaloroil.Gashasforthatreasonyettoshowitsfullpotentialinmostcountriesandregionsoftheworld.Theglobalwarmingissuewillbeoneofthekeystounlockingthispotentialinthefirstdecadesofthe21stcentury.

Useful web-sites for this chapter:-InternationalGasUnion(IGU):http://www.igu.org/-IntergovernmentalPanelonClimateChange(IPCC):http://www.ipcc.ch/-LondonConvention:http://www.imo.org/home.asp?topic_id=1488-OsparCommission:http://www.ospar.org/-CleanDevelopmentMechanism(CDM):http://cdm.unfccc.int/index.html

Page 60: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

60 InternationalGasUnion|September2010

Abbreviations:AC: AlternatingCurrentACEEE: AmericanCouncilforanenergyEfficientEconomyBAT: BestAvailabletechnologyBcm: BillioncubicmetresBPSRWE: BPStatisticalReviewofWorldEnergy(yearlystatistics)CCS: CO2-captureand-storageorcarboncaptureand-storage, alternativelycarboncaptureand-sequestrationCDM: CleanDevelopmentMechanism(oneoftheKyotoMechanisms)CFLC: CeramicFuelCellsLimitedCH4: Methane,amoleculeconsistingofonecarbonatomandfour hydrogenatomsCHP: CombinedHeatandPower.Productionofelectricity+heat simultaneouslyCNG: CompressednaturalgasCO2: CarbondioxideCO2eq: CarbondioxideequivalentDnV: DetnorskeVeritas(shipclassificationsociety)DoE: USDepartmentofEnergye.g.: Forexample(Latinphrase:exempligratia)EIA: USEnergyInformationAdministrationEOR: EnhancedoilrecoveryGGFR: WorldBankGlobalGasFlaringProjectGSm3: GigastandardcubicmetersGTL: GastoLiquidsGWP: GlobalWarmingPotentialH2S: HydrogenSulphideHHV: Higherheatingvalue(orgrosscalorificvalue–GCV)HVDC: HighVoltageDirectCurrentIANGV: InternationalAssociationofNaturalGasvehiclesIEA: InternationalEnergyAgencyIEAGHG: IEAGreenhouseGasR&DProgrammeIGU: InternationalGasUnionIIASA: InternationalInstituteforAppliedSystemsAnalysis(Austria)IMO: InternationalMaritimeOrganisationIPCC: IntergovernmentalPanelonClimateChangeIPCCSRCCS: IPCCSpecialReportonCO2-captureand–storage,2005IPCCWG3: IPCCWorkingGroup3JI: JointImplementation(oneoftheKyotoMechanisms)kPa: KiloPascal(unitofpressure)LCA: LifecycleanalysisLDV: LightdutyvehicleLHV: LowerheatingvalueLNG: LiquefiedNaturalGas;liquidatatmosphericpressureand-161oCLPG: LiquefiedPetroleumGases(mostlypropane,butane)Mtoe: MilliontonsofoilequivalentMWhe: megawatthourselectricN.A.: NotApplicableNGV: Naturalgasvehicle

Page 61: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

September2010|InternationalGasUnion 61

NETL: NationalEnergyTechnologyLaboratory(USA)Nm3: NormalcubicmetreOECD: OrganisationforEconomicCo-operationandDevelopmentOSPAR: OsparCommissionR&D: ResearchandDevelopmentSCR: SelectivecatalyticReductionofNOxfromcombustionSm3: StandardcubicmeterSOFC: SolidOxideFuelCellTcm: TrillioncubicmetresTJ: TeraJouleUK: UnitedKingdomUNECE: UnitedNationsEconomicCommissionforEuropeUS: ShortforUnitedStatesUSEPA: USEnvironmentalProtectionAgencyUSGS: USGeologicalSurveyWEO: WorldEnergyOutlookreport(IEA)WRI: WorldResourcesInstituteWrt.: WithrespecttoYr.: Shortforyear

Page 62: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

62 InternationalGasUnion|September2010

Conversion factors1PJ(HHV) =25,6millionm3 naturalgas1m3 ofnaturalgas =39megajoules(MJ-HHV) =10,8kWh1Mtoe =1milliontonsofoilequivalent =41,89PJ1000m3 ofnat.gas =0,9tonofoilequivalent(toe–crudeoil)1Bcm =1billioncubicmetres1Tcm =1trillioncubicmetres(or1000Bcm)1cubicmetre =35,315cubicfeet(cf)

NetCalorificValue(NCVorLHV) =0,9GrossCalorificValue(GCVorHHV)1megajoule(MJ) =106 joules1gigajoule(GJ) =109 joules1terajoule(TJ) =1012 joules1petajoule(PJ) =1015 joules

IGU members involved in making this reportAmundsen,GroJofridTrovåg;CO2projectsteeringcommitteeleaderApeland,Sigbjørn;WOC4contactBarland,Knut;PGCAchairmanBashkin,Vladimir,PGCAcontactCopin,DominiqueFlorette,MarcGonder,Erik;IGUsecretariatGrappe,JacquesGrigelova,Petra;WOC2secretaryHuijzer,Elbert,PGCASGA2contactHunsbedt,KariLindøe;PGCAsecretaryKaarstad,Olav;Statoil(mainauthor)Leonov,Sergey;WOC1secretaryOnderka,Vladimir;WOC2chairmanPuertas,Juan;PGCAchairmanRasmussen,NielsBjarneK;WOC5contactRychlicki,Stanislaw;WOC1contactSchneidermann,NahumSchweitzer,Jean;WOC5chairmanVorgang,Jürgen;WOC5Wolf,Helge;WOC3chairmanYakushev,Vladimir;WOC1chairman

AspecialthanktoStatoilforprovidingthegraphicsandlayoutwork forthereport.

Page 63: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

September2010|InternationalGasUnion 63

Page 64: International Gas Union (IGU) · INTERNATIONAL GAS UNION (IGU) by theAuthor(s) mentioned. The Author(s) and IGU enjoy joint copyright to this publication This publication may not

International Gas Union

OfficeoftheSecretaryGeneral c/oStatoilASA 0246Oslo Norway

Telephone: +4751990000 Fax: +4722536318 Email: [email protected] Website: www.igu.org

1004

66 IG

U 2

010

IGUmembers

IGUTheInternationalGasUnionisaworldwidenon-profit organisation aimed at promoting the technical andeconomicprogressofthegasindustry.TheUnionhasmorethan100membersworldwideonallcontinents. Themembers of IGU are national associations and corporationsofthegasindustry.IGU’sworkingorgani- sationcoversallaspectsofthegasindustry,includingexploration and production, storage, LNG, distribu-tionandnaturalgasutilisationinallmarketsegments.IGU promotes technical and economic progress ofthegasindustryemphasisingenvironmentalperform-anceworldwide. Formore information, please visit www.igu.org